about summary refs log tree commit diff
path: root/compiler/rustc_pattern_analysis/src/constructor.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_pattern_analysis/src/constructor.rs')
-rw-r--r--compiler/rustc_pattern_analysis/src/constructor.rs1241
1 files changed, 1241 insertions, 0 deletions
diff --git a/compiler/rustc_pattern_analysis/src/constructor.rs b/compiler/rustc_pattern_analysis/src/constructor.rs
new file mode 100644
index 00000000000..4c12cb3b029
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/constructor.rs
@@ -0,0 +1,1241 @@
+//! As explained in [`super::usefulness`], values and patterns are made from constructors applied to
+//! fields. This file defines a `Constructor` enum and various operations to manipulate them.
+//!
+//! There are two important bits of core logic in this file: constructor inclusion and constructor
+//! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
+//! is straightforward and defined in [`Constructor::is_covered_by`].
+//!
+//! Constructor splitting is mentioned in [`super::usefulness`] but not detailed. We describe it
+//! precisely here.
+//!
+//!
+//!
+//! # Constructor grouping and splitting
+//!
+//! As explained in the corresponding section in [`super::usefulness`], to make usefulness tractable
+//! we need to group together constructors that have the same effect when they are used to
+//! specialize the matrix.
+//!
+//! Example:
+//! ```compile_fail,E0004
+//! match (0, false) {
+//!     (0 ..=100, true) => {}
+//!     (50..=150, false) => {}
+//!     (0 ..=200, _) => {}
+//! }
+//! ```
+//!
+//! In this example we can restrict specialization to 5 cases: `0..50`, `50..=100`, `101..=150`,
+//! `151..=200` and `200..`.
+//!
+//! In [`super::usefulness`], we had said that `specialize` only takes value-only constructors. We
+//! now relax this restriction: we allow `specialize` to take constructors like `0..50` as long as
+//! we're careful to only do that with constructors that make sense. For example, `specialize(0..50,
+//! (0..=100, true))` is sensible, but `specialize(50..=200, (0..=100, true))` is not.
+//!
+//! Constructor splitting looks at the constructors in the first column of the matrix and constructs
+//! such a sensible set of constructors. Formally, we want to find a smallest disjoint set of
+//! constructors:
+//! - Whose union covers the whole type, and
+//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
+//!     each either disjoint with or covered by any given column constructor).
+//!
+//! We compute this in two steps: first [`ConstructorSet::for_ty`] determines the set of all
+//! possible constructors for the type. Then [`ConstructorSet::split`] looks at the column of
+//! constructors and splits the set into groups accordingly. The precise invariants of
+//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
+//!
+//! Constructor splitting has two interesting special cases: integer range splitting (see
+//! [`IntRange::split`]) and slice splitting (see [`Slice::split`]).
+//!
+//!
+//!
+//! # The `Missing` constructor
+//!
+//! We detail a special case of constructor splitting that is a bit subtle. Take the following:
+//!
+//! ```
+//! enum Direction { North, South, East, West }
+//! # let wind = (Direction::North, 0u8);
+//! match wind {
+//!     (Direction::North, 50..) => {}
+//!     (_, _) => {}
+//! }
+//! ```
+//!
+//! Here we expect constructor splitting to output two cases: `North`, and "everything else". This
+//! "everything else" is represented by [`Constructor::Missing`]. Unlike other constructors, it's a
+//! bit contextual: to know the exact list of constructors it represents we have to look at the
+//! column. In practice however we don't need to, because by construction it only matches rows that
+//! have wildcards. This is how this constructor is special: the only constructor that covers it is
+//! `Wildcard`.
+//!
+//! The only place where we care about which constructors `Missing` represents is in diagnostics
+//! (see `super::usefulness::WitnessMatrix::apply_constructor`).
+//!
+//! We choose whether to specialize with `Missing` in
+//! `super::usefulness::compute_exhaustiveness_and_reachability`.
+//!
+//!
+//!
+//! ## Empty types, empty constructors, and the `exhaustive_patterns` feature
+//!
+//! An empty type is a type that has no valid value, like `!`, `enum Void {}`, or `Result<!, !>`.
+//! They require careful handling.
+//!
+//! First, for soundness reasons related to the possible existence of invalid values, by default we
+//! don't treat empty types as empty. We force them to be matched with wildcards. Except if the
+//! `exhaustive_patterns` feature is turned on, in which case we do treat them as empty. And also
+//! except if the type has no constructors (like `enum Void {}` but not like `Result<!, !>`), we
+//! specifically allow `match void {}` to be exhaustive. There are additionally considerations of
+//! place validity that are handled in `super::usefulness`. Yes this is a bit tricky.
+//!
+//! The second thing is that regardless of the above, it is always allowed to use all the
+//! constructors of a type. For example, all the following is ok:
+//!
+//! ```rust,ignore(example)
+//! # #![feature(never_type)]
+//! # #![feature(exhaustive_patterns)]
+//! fn foo(x: Option<!>) {
+//!   match x {
+//!     None => {}
+//!     Some(_) => {}
+//!   }
+//! }
+//! fn bar(x: &[!]) -> u32 {
+//!   match x {
+//!     [] => 1,
+//!     [_] => 2,
+//!     [_, _] => 3,
+//!   }
+//! }
+//! ```
+//!
+//! Moreover, take the following:
+//!
+//! ```rust
+//! # #![feature(never_type)]
+//! # #![feature(exhaustive_patterns)]
+//! # let x = None::<!>;
+//! match x {
+//!   None => {}
+//! }
+//! ```
+//!
+//! On a normal type, we would identify `Some` as missing and tell the user. If `x: Option<!>`
+//! however (and `exhaustive_patterns` is on), it's ok to omit `Some`. When listing the constructors
+//! of a type, we must therefore track which can be omitted.
+//!
+//! Let's call "empty" a constructor that matches no valid value for the type, like `Some` for the
+//! type `Option<!>`. What this all means is that `ConstructorSet` must know which constructors are
+//! empty. The difference between empty and nonempty constructors is that empty constructors need
+//! not be present for the match to be exhaustive.
+//!
+//! A final remark: empty constructors of arity 0 break specialization, we must avoid them. The
+//! reason is that if we specialize by them, nothing remains to witness the emptiness; the rest of
+//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
+//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
+//!
+//! This is all handled by [`ConstructorSet::for_ty`] and [`ConstructorSet::split`]. The invariants
+//! of [`SplitConstructorSet`] are also of interest.
+//!
+//!
+//!
+//! ## Opaque patterns
+//!
+//! Some patterns, such as constants that are not allowed to be matched structurally, cannot be
+//! inspected, which we handle with `Constructor::Opaque`. Since we know nothing of these patterns,
+//! we assume they never cover each other. In order to respect the invariants of
+//! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.
+
+use std::cmp::{self, max, min, Ordering};
+use std::fmt;
+use std::iter::once;
+
+use smallvec::SmallVec;
+
+use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
+use rustc_data_structures::fx::FxHashSet;
+use rustc_hir::RangeEnd;
+use rustc_index::IndexVec;
+use rustc_middle::middle::stability::EvalResult;
+use rustc_middle::mir;
+use rustc_middle::mir::interpret::Scalar;
+use rustc_middle::thir::{Pat, PatKind, PatRange, PatRangeBoundary};
+use rustc_middle::ty::layout::IntegerExt;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_span::DUMMY_SP;
+use rustc_target::abi::{Integer, VariantIdx, FIRST_VARIANT};
+
+use self::Constructor::*;
+use self::MaybeInfiniteInt::*;
+use self::SliceKind::*;
+
+use crate::pat::Fields;
+use crate::usefulness::{MatchCheckCtxt, PatCtxt};
+
+/// Whether we have seen a constructor in the column or not.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
+enum Presence {
+    Unseen,
+    Seen,
+}
+
+/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
+/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
+/// `255`. See `signed_bias` for details.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
+pub enum MaybeInfiniteInt {
+    NegInfinity,
+    /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`.
+    Finite(u128),
+    /// The integer after `u128::MAX`. We need it to represent `x..=u128::MAX` as an exclusive range.
+    JustAfterMax,
+    PosInfinity,
+}
+
+impl MaybeInfiniteInt {
+    // The return value of `signed_bias` should be XORed with a value to encode/decode it.
+    fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
+        match *ty.kind() {
+            ty::Int(ity) => {
+                let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128;
+                1u128 << (bits - 1)
+            }
+            _ => 0,
+        }
+    }
+
+    fn new_finite(tcx: TyCtxt<'_>, ty: Ty<'_>, bits: u128) -> Self {
+        let bias = Self::signed_bias(tcx, ty);
+        // Perform a shift if the underlying types are signed, which makes the interval arithmetic
+        // type-independent.
+        let x = bits ^ bias;
+        Finite(x)
+    }
+    pub(crate) fn from_pat_range_bdy<'tcx>(
+        bdy: PatRangeBoundary<'tcx>,
+        ty: Ty<'tcx>,
+        tcx: TyCtxt<'tcx>,
+        param_env: ty::ParamEnv<'tcx>,
+    ) -> Self {
+        match bdy {
+            PatRangeBoundary::NegInfinity => NegInfinity,
+            PatRangeBoundary::Finite(value) => {
+                let bits = value.eval_bits(tcx, param_env);
+                Self::new_finite(tcx, ty, bits)
+            }
+            PatRangeBoundary::PosInfinity => PosInfinity,
+        }
+    }
+
+    /// Used only for diagnostics.
+    /// Note: it is possible to get `isize/usize::MAX+1` here, as explained in the doc for
+    /// [`IntRange::split`]. This cannot be represented as a `Const`, so we represent it with
+    /// `PosInfinity`.
+    fn to_diagnostic_pat_range_bdy<'tcx>(
+        self,
+        ty: Ty<'tcx>,
+        tcx: TyCtxt<'tcx>,
+    ) -> PatRangeBoundary<'tcx> {
+        match self {
+            NegInfinity => PatRangeBoundary::NegInfinity,
+            Finite(x) => {
+                let bias = Self::signed_bias(tcx, ty);
+                let bits = x ^ bias;
+                let size = ty.primitive_size(tcx);
+                match Scalar::try_from_uint(bits, size) {
+                    Some(scalar) => {
+                        let value = mir::Const::from_scalar(tcx, scalar, ty);
+                        PatRangeBoundary::Finite(value)
+                    }
+                    // The value doesn't fit. Since `x >= 0` and 0 always encodes the minimum value
+                    // for a type, the problem isn't that the value is too small. So it must be too
+                    // large.
+                    None => PatRangeBoundary::PosInfinity,
+                }
+            }
+            JustAfterMax | PosInfinity => PatRangeBoundary::PosInfinity,
+        }
+    }
+
+    /// Note: this will not turn a finite value into an infinite one or vice-versa.
+    pub fn minus_one(self) -> Self {
+        match self {
+            Finite(n) => match n.checked_sub(1) {
+                Some(m) => Finite(m),
+                None => bug!(),
+            },
+            JustAfterMax => Finite(u128::MAX),
+            x => x,
+        }
+    }
+    /// Note: this will not turn a finite value into an infinite one or vice-versa.
+    pub fn plus_one(self) -> Self {
+        match self {
+            Finite(n) => match n.checked_add(1) {
+                Some(m) => Finite(m),
+                None => JustAfterMax,
+            },
+            JustAfterMax => bug!(),
+            x => x,
+        }
+    }
+}
+
+/// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always
+/// store a contiguous range.
+///
+/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
+/// space: i.e., `range.lo < range.hi`.
+#[derive(Clone, Copy, PartialEq, Eq)]
+pub struct IntRange {
+    pub(crate) lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
+    pub(crate) hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
+}
+
+impl IntRange {
+    #[inline]
+    pub(super) fn is_integral(ty: Ty<'_>) -> bool {
+        matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_))
+    }
+
+    /// Best effort; will not know that e.g. `255u8..` is a singleton.
+    pub fn is_singleton(&self) -> bool {
+        // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
+        // to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
+        self.lo.plus_one() == self.hi
+    }
+
+    #[inline]
+    pub fn from_bits<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, bits: u128) -> IntRange {
+        let x = MaybeInfiniteInt::new_finite(tcx, ty, bits);
+        IntRange { lo: x, hi: x.plus_one() }
+    }
+
+    #[inline]
+    pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
+        if end == RangeEnd::Included {
+            hi = hi.plus_one();
+        }
+        if lo >= hi {
+            // This should have been caught earlier by E0030.
+            bug!("malformed range pattern: {lo:?}..{hi:?}");
+        }
+        IntRange { lo, hi }
+    }
+
+    fn is_subrange(&self, other: &Self) -> bool {
+        other.lo <= self.lo && self.hi <= other.hi
+    }
+
+    fn intersection(&self, other: &Self) -> Option<Self> {
+        if self.lo < other.hi && other.lo < self.hi {
+            Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) })
+        } else {
+            None
+        }
+    }
+
+    /// Partition a range of integers into disjoint subranges. This does constructor splitting for
+    /// integer ranges as explained at the top of the file.
+    ///
+    /// This returns an output that covers `self`. The output is split so that the only
+    /// intersections between an output range and a column range are inclusions. No output range
+    /// straddles the boundary of one of the inputs.
+    ///
+    /// Additionally, we track for each output range whether it is covered by one of the column ranges or not.
+    ///
+    /// The following input:
+    /// ```text
+    ///   (--------------------------) // `self`
+    /// (------) (----------)    (-)
+    ///     (------) (--------)
+    /// ```
+    /// is first intersected with `self`:
+    /// ```text
+    ///   (--------------------------) // `self`
+    ///   (----) (----------)    (-)
+    ///     (------) (--------)
+    /// ```
+    /// and then iterated over as follows:
+    /// ```text
+    ///   (-(--)-(-)-(------)-)--(-)-
+    /// ```
+    /// where each sequence of dashes is an output range, and dashes outside parentheses are marked
+    /// as `Presence::Missing`.
+    ///
+    /// ## `isize`/`usize`
+    ///
+    /// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize`
+    /// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for
+    /// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are
+    /// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`.
+    /// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and
+    /// not others. This was decided in <https://github.com/rust-lang/rfcs/pull/2591>.
+    ///
+    /// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and
+    /// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these
+    /// fictitious ranges sensibly.
+    fn split(
+        &self,
+        column_ranges: impl Iterator<Item = IntRange>,
+    ) -> impl Iterator<Item = (Presence, IntRange)> {
+        // The boundaries of ranges in `column_ranges` intersected with `self`.
+        // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts
+        // a range and -1 if it ends it. When the count is > 0 between two boundaries, we
+        // are within an input range.
+        let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges
+            .filter_map(|r| self.intersection(&r))
+            .flat_map(|r| [(r.lo, 1), (r.hi, -1)])
+            .collect();
+        // We sort by boundary, and for each boundary we sort the "closing parentheses" first. The
+        // order of +1/-1 for a same boundary value is actually irrelevant, because we only look at
+        // the accumulated count between distinct boundary values.
+        boundaries.sort_unstable();
+
+        // Accumulate parenthesis counts.
+        let mut paren_counter = 0isize;
+        // Gather pairs of adjacent boundaries.
+        let mut prev_bdy = self.lo;
+        boundaries
+            .into_iter()
+            // End with the end of the range. The count is ignored.
+            .chain(once((self.hi, 0)))
+            // List pairs of adjacent boundaries and the count between them.
+            .map(move |(bdy, delta)| {
+                // `delta` affects the count as we cross `bdy`, so the relevant count between
+                // `prev_bdy` and `bdy` is untouched by `delta`.
+                let ret = (prev_bdy, paren_counter, bdy);
+                prev_bdy = bdy;
+                paren_counter += delta;
+                ret
+            })
+            // Skip empty ranges.
+            .filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy)
+            // Convert back to ranges.
+            .map(move |(prev_bdy, paren_count, bdy)| {
+                use Presence::*;
+                let presence = if paren_count > 0 { Seen } else { Unseen };
+                let range = IntRange { lo: prev_bdy, hi: bdy };
+                (presence, range)
+            })
+    }
+
+    /// Whether the range denotes the fictitious values before `isize::MIN` or after
+    /// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
+    pub fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool {
+        ty.is_ptr_sized_integral() && {
+            // The two invalid ranges are `NegInfinity..isize::MIN` (represented as
+            // `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `to_diagnostic_pat_range_bdy`
+            // converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `self.lo`
+            // otherwise.
+            let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
+            matches!(lo, PatRangeBoundary::PosInfinity)
+                || matches!(self.hi, MaybeInfiniteInt::Finite(0))
+        }
+    }
+    /// Only used for displaying the range.
+    pub(super) fn to_diagnostic_pat<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> Pat<'tcx> {
+        let kind = if matches!((self.lo, self.hi), (NegInfinity, PosInfinity)) {
+            PatKind::Wild
+        } else if self.is_singleton() {
+            let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
+            let value = lo.as_finite().unwrap();
+            PatKind::Constant { value }
+        } else {
+            // We convert to an inclusive range for diagnostics.
+            let mut end = RangeEnd::Included;
+            let mut lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
+            if matches!(lo, PatRangeBoundary::PosInfinity) {
+                // The only reason to get `PosInfinity` here is the special case where
+                // `to_diagnostic_pat_range_bdy` found `{u,i}size::MAX+1`. So the range denotes the
+                // fictitious values after `{u,i}size::MAX` (see [`IntRange::split`] for why we do
+                // this). We show this to the user as `usize::MAX..` which is slightly incorrect but
+                // probably clear enough.
+                let c = ty.numeric_max_val(tcx).unwrap();
+                let value = mir::Const::from_ty_const(c, tcx);
+                lo = PatRangeBoundary::Finite(value);
+            }
+            let hi = if matches!(self.hi, MaybeInfiniteInt::Finite(0)) {
+                // The range encodes `..ty::MIN`, so we can't convert it to an inclusive range.
+                end = RangeEnd::Excluded;
+                self.hi
+            } else {
+                self.hi.minus_one()
+            };
+            let hi = hi.to_diagnostic_pat_range_bdy(ty, tcx);
+            PatKind::Range(Box::new(PatRange { lo, hi, end, ty }))
+        };
+
+        Pat { ty, span: DUMMY_SP, kind }
+    }
+}
+
+/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern
+/// first.
+impl fmt::Debug for IntRange {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        if let Finite(lo) = self.lo {
+            write!(f, "{lo}")?;
+        }
+        write!(f, "{}", RangeEnd::Excluded)?;
+        if let Finite(hi) = self.hi {
+            write!(f, "{hi}")?;
+        }
+        Ok(())
+    }
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub enum SliceKind {
+    /// Patterns of length `n` (`[x, y]`).
+    FixedLen(usize),
+    /// Patterns using the `..` notation (`[x, .., y]`).
+    /// Captures any array constructor of `length >= i + j`.
+    /// In the case where `array_len` is `Some(_)`,
+    /// this indicates that we only care about the first `i` and the last `j` values of the array,
+    /// and everything in between is a wildcard `_`.
+    VarLen(usize, usize),
+}
+
+impl SliceKind {
+    fn arity(self) -> usize {
+        match self {
+            FixedLen(length) => length,
+            VarLen(prefix, suffix) => prefix + suffix,
+        }
+    }
+
+    /// Whether this pattern includes patterns of length `other_len`.
+    fn covers_length(self, other_len: usize) -> bool {
+        match self {
+            FixedLen(len) => len == other_len,
+            VarLen(prefix, suffix) => prefix + suffix <= other_len,
+        }
+    }
+}
+
+/// A constructor for array and slice patterns.
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub struct Slice {
+    /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
+    pub(crate) array_len: Option<usize>,
+    /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
+    pub(crate) kind: SliceKind,
+}
+
+impl Slice {
+    pub fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
+        let kind = match (array_len, kind) {
+            // If the middle `..` has length 0, we effectively have a fixed-length pattern.
+            (Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
+            (Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => bug!(
+                "Slice pattern of length {} longer than its array length {len}",
+                prefix + suffix
+            ),
+            _ => kind,
+        };
+        Slice { array_len, kind }
+    }
+
+    pub(crate) fn arity(self) -> usize {
+        self.kind.arity()
+    }
+
+    /// See `Constructor::is_covered_by`
+    fn is_covered_by(self, other: Self) -> bool {
+        other.kind.covers_length(self.arity())
+    }
+
+    /// This computes constructor splitting for variable-length slices, as explained at the top of
+    /// the file.
+    ///
+    /// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x,
+    /// _, _, y] | etc`. The corresponding value constructors are fixed-length array constructors of
+    /// corresponding lengths. We obviously can't list this infinitude of constructors.
+    /// Thankfully, it turns out that for each finite set of slice patterns, all sufficiently large
+    /// array lengths are equivalent.
+    ///
+    /// Let's look at an example, where we are trying to split the last pattern:
+    /// ```
+    /// # fn foo(x: &[bool]) {
+    /// match x {
+    ///     [true, true, ..] => {}
+    ///     [.., false, false] => {}
+    ///     [..] => {}
+    /// }
+    /// # }
+    /// ```
+    /// Here are the results of specialization for the first few lengths:
+    /// ```
+    /// # fn foo(x: &[bool]) { match x {
+    /// // length 0
+    /// [] => {}
+    /// // length 1
+    /// [_] => {}
+    /// // length 2
+    /// [true, true] => {}
+    /// [false, false] => {}
+    /// [_, _] => {}
+    /// // length 3
+    /// [true, true,  _    ] => {}
+    /// [_,    false, false] => {}
+    /// [_,    _,     _    ] => {}
+    /// // length 4
+    /// [true, true, _,     _    ] => {}
+    /// [_,    _,    false, false] => {}
+    /// [_,    _,    _,     _    ] => {}
+    /// // length 5
+    /// [true, true, _, _,     _    ] => {}
+    /// [_,    _,    _, false, false] => {}
+    /// [_,    _,    _, _,     _    ] => {}
+    /// # _ => {}
+    /// # }}
+    /// ```
+    ///
+    /// We see that above length 4, we are simply inserting columns full of wildcards in the middle.
+    /// This means that specialization and witness computation with slices of length `l >= 4` will
+    /// give equivalent results regardless of `l`. This applies to any set of slice patterns: there
+    /// will be a length `L` above which all lengths behave the same. This is exactly what we need
+    /// for constructor splitting.
+    ///
+    /// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just
+    /// saw, we can split this in two: lengths below `L` are treated individually with a
+    /// fixed-length slice each; lengths above `L` are grouped into a single variable-length slice
+    /// constructor.
+    ///
+    /// For each variable-length slice pattern `p` with a prefix of length `plₚ` and suffix of
+    /// length `slₚ`, only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as
+    /// long as `L` is positive (to avoid concerns about empty types), all elements after the
+    /// maximum prefix length and before the maximum suffix length are not examined by any
+    /// variable-length pattern, and therefore can be ignored. This gives us a way to compute `L`.
+    ///
+    /// Additionally, if fixed-length patterns exist, we must pick an `L` large enough to miss them,
+    /// so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`.
+    /// `max_slice` below will be made to have this arity `L`.
+    ///
+    /// If `self` is fixed-length, it is returned as-is.
+    ///
+    /// Additionally, we track for each output slice whether it is covered by one of the column slices or not.
+    fn split(
+        self,
+        column_slices: impl Iterator<Item = Slice>,
+    ) -> impl Iterator<Item = (Presence, Slice)> {
+        // Range of lengths below `L`.
+        let smaller_lengths;
+        let arity = self.arity();
+        let mut max_slice = self.kind;
+        // Tracks the smallest variable-length slice we've seen. Any slice arity above it is
+        // therefore `Presence::Seen` in the column.
+        let mut min_var_len = usize::MAX;
+        // Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
+        let mut seen_fixed_lens = FxHashSet::default();
+        match &mut max_slice {
+            VarLen(max_prefix_len, max_suffix_len) => {
+                // A length larger than any fixed-length slice encountered.
+                // We start at 1 in case the subtype is empty because in that case the zero-length
+                // slice must be treated separately from the rest.
+                let mut fixed_len_upper_bound = 1;
+                // We grow `max_slice` to be larger than all slices encountered, as described above.
+                // `L` is `max_slice.arity()`. For diagnostics, we keep the prefix and suffix
+                // lengths separate.
+                for slice in column_slices {
+                    match slice.kind {
+                        FixedLen(len) => {
+                            fixed_len_upper_bound = cmp::max(fixed_len_upper_bound, len + 1);
+                            seen_fixed_lens.insert(len);
+                        }
+                        VarLen(prefix, suffix) => {
+                            *max_prefix_len = cmp::max(*max_prefix_len, prefix);
+                            *max_suffix_len = cmp::max(*max_suffix_len, suffix);
+                            min_var_len = cmp::min(min_var_len, prefix + suffix);
+                        }
+                    }
+                }
+                // If `fixed_len_upper_bound >= L`, we set `L` to `fixed_len_upper_bound`.
+                if let Some(delta) =
+                    fixed_len_upper_bound.checked_sub(*max_prefix_len + *max_suffix_len)
+                {
+                    *max_prefix_len += delta
+                }
+
+                // We cap the arity of `max_slice` at the array size.
+                match self.array_len {
+                    Some(len) if max_slice.arity() >= len => max_slice = FixedLen(len),
+                    _ => {}
+                }
+
+                smaller_lengths = match self.array_len {
+                    // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
+                    // is fixed-length or variable-length, it will be the only relevant slice to output
+                    // here.
+                    Some(_) => 0..0, // empty range
+                    // We need to cover all arities in the range `(arity..infinity)`. We split that
+                    // range into two: lengths smaller than `max_slice.arity()` are treated
+                    // independently as fixed-lengths slices, and lengths above are captured by
+                    // `max_slice`.
+                    None => self.arity()..max_slice.arity(),
+                };
+            }
+            FixedLen(_) => {
+                // No need to split here. We only track presence.
+                for slice in column_slices {
+                    match slice.kind {
+                        FixedLen(len) => {
+                            if len == arity {
+                                seen_fixed_lens.insert(len);
+                            }
+                        }
+                        VarLen(prefix, suffix) => {
+                            min_var_len = cmp::min(min_var_len, prefix + suffix);
+                        }
+                    }
+                }
+                smaller_lengths = 0..0;
+            }
+        };
+
+        smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
+            let arity = kind.arity();
+            let seen = if min_var_len <= arity || seen_fixed_lens.contains(&arity) {
+                Presence::Seen
+            } else {
+                Presence::Unseen
+            };
+            (seen, Slice::new(self.array_len, kind))
+        })
+    }
+}
+
+/// A globally unique id to distinguish `Opaque` patterns.
+#[derive(Clone, Debug, PartialEq, Eq)]
+pub struct OpaqueId(u32);
+
+impl OpaqueId {
+    pub fn new() -> Self {
+        use std::sync::atomic::{AtomicU32, Ordering};
+        static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
+        OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
+    }
+}
+
+/// A value can be decomposed into a constructor applied to some fields. This struct represents
+/// the constructor. See also `Fields`.
+///
+/// `pat_constructor` retrieves the constructor corresponding to a pattern.
+/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
+/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
+/// `Fields`.
+#[derive(Clone, Debug, PartialEq)]
+pub enum Constructor<'tcx> {
+    /// The constructor for patterns that have a single constructor, like tuples, struct patterns,
+    /// and references. Fixed-length arrays are treated separately with `Slice`.
+    Single,
+    /// Enum variants.
+    Variant(VariantIdx),
+    /// Booleans
+    Bool(bool),
+    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
+    IntRange(IntRange),
+    /// Ranges of floating-point literal values (`2.0..=5.2`).
+    F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
+    F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
+    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
+    Str(mir::Const<'tcx>),
+    /// Array and slice patterns.
+    Slice(Slice),
+    /// Constants that must not be matched structurally. They are treated as black boxes for the
+    /// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
+    /// match exhaustive.
+    /// Carries an id that must be unique within a match. We need this to ensure the invariants of
+    /// [`SplitConstructorSet`].
+    Opaque(OpaqueId),
+    /// Or-pattern.
+    Or,
+    /// Wildcard pattern.
+    Wildcard,
+    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
+    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
+    NonExhaustive,
+    /// Fake extra constructor for variants that should not be mentioned in diagnostics.
+    /// We use this for variants behind an unstable gate as well as
+    /// `#[doc(hidden)]` ones.
+    Hidden,
+    /// Fake extra constructor for constructors that are not seen in the matrix, as explained at the
+    /// top of the file.
+    Missing,
+}
+
+impl<'tcx> Constructor<'tcx> {
+    pub(super) fn is_non_exhaustive(&self) -> bool {
+        matches!(self, NonExhaustive)
+    }
+
+    pub(super) fn as_variant(&self) -> Option<VariantIdx> {
+        match self {
+            Variant(i) => Some(*i),
+            _ => None,
+        }
+    }
+    fn as_bool(&self) -> Option<bool> {
+        match self {
+            Bool(b) => Some(*b),
+            _ => None,
+        }
+    }
+    pub(super) fn as_int_range(&self) -> Option<&IntRange> {
+        match self {
+            IntRange(range) => Some(range),
+            _ => None,
+        }
+    }
+    fn as_slice(&self) -> Option<Slice> {
+        match self {
+            Slice(slice) => Some(*slice),
+            _ => None,
+        }
+    }
+
+    pub(crate) fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
+        match *self {
+            Variant(idx) => idx,
+            Single => {
+                assert!(!adt.is_enum());
+                FIRST_VARIANT
+            }
+            _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
+        }
+    }
+
+    /// The number of fields for this constructor. This must be kept in sync with
+    /// `Fields::wildcards`.
+    pub(crate) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
+        match self {
+            Single | Variant(_) => match pcx.ty.kind() {
+                ty::Tuple(fs) => fs.len(),
+                ty::Ref(..) => 1,
+                ty::Adt(adt, ..) => {
+                    if adt.is_box() {
+                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
+                        // patterns. If we're here we can assume this is a box pattern.
+                        1
+                    } else {
+                        let variant = &adt.variant(self.variant_index_for_adt(*adt));
+                        Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
+                    }
+                }
+                _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty),
+            },
+            Slice(slice) => slice.arity(),
+            Bool(..)
+            | IntRange(..)
+            | F32Range(..)
+            | F64Range(..)
+            | Str(..)
+            | Opaque(..)
+            | NonExhaustive
+            | Hidden
+            | Missing { .. }
+            | Wildcard => 0,
+            Or => bug!("The `Or` constructor doesn't have a fixed arity"),
+        }
+    }
+
+    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
+    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
+    /// this checks for inclusion.
+    // We inline because this has a single call site in `Matrix::specialize_constructor`.
+    #[inline]
+    pub(crate) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
+        match (self, other) {
+            (Wildcard, _) => {
+                span_bug!(
+                    pcx.cx.scrut_span,
+                    "Constructor splitting should not have returned `Wildcard`"
+                )
+            }
+            // Wildcards cover anything
+            (_, Wildcard) => true,
+            // Only a wildcard pattern can match these special constructors.
+            (Missing { .. } | NonExhaustive | Hidden, _) => false,
+
+            (Single, Single) => true,
+            (Variant(self_id), Variant(other_id)) => self_id == other_id,
+            (Bool(self_b), Bool(other_b)) => self_b == other_b,
+
+            (IntRange(self_range), IntRange(other_range)) => self_range.is_subrange(other_range),
+            (F32Range(self_from, self_to, self_end), F32Range(other_from, other_to, other_end)) => {
+                self_from.ge(other_from)
+                    && match self_to.partial_cmp(other_to) {
+                        Some(Ordering::Less) => true,
+                        Some(Ordering::Equal) => other_end == self_end,
+                        _ => false,
+                    }
+            }
+            (F64Range(self_from, self_to, self_end), F64Range(other_from, other_to, other_end)) => {
+                self_from.ge(other_from)
+                    && match self_to.partial_cmp(other_to) {
+                        Some(Ordering::Less) => true,
+                        Some(Ordering::Equal) => other_end == self_end,
+                        _ => false,
+                    }
+            }
+            (Str(self_val), Str(other_val)) => {
+                // FIXME Once valtrees are available we can directly use the bytes
+                // in the `Str` variant of the valtree for the comparison here.
+                self_val == other_val
+            }
+            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
+
+            // Opaque constructors don't interact with anything unless they come from the
+            // syntactically identical pattern.
+            (Opaque(self_id), Opaque(other_id)) => self_id == other_id,
+            (Opaque(..), _) | (_, Opaque(..)) => false,
+
+            _ => span_bug!(
+                pcx.cx.scrut_span,
+                "trying to compare incompatible constructors {:?} and {:?}",
+                self,
+                other
+            ),
+        }
+    }
+}
+
+#[derive(Debug, Clone, Copy)]
+pub enum VariantVisibility {
+    /// Variant that doesn't fit the other cases, i.e. most variants.
+    Visible,
+    /// Variant behind an unstable gate or with the `#[doc(hidden)]` attribute. It will not be
+    /// mentioned in diagnostics unless the user mentioned it first.
+    Hidden,
+    /// Variant that matches no value. E.g. `Some::<Option<!>>` if the `exhaustive_patterns` feature
+    /// is enabled. Like `Hidden`, it will not be mentioned in diagnostics unless the user mentioned
+    /// it first.
+    Empty,
+}
+
+/// Describes the set of all constructors for a type. For details, in particular about the emptiness
+/// of constructors, see the top of the file.
+///
+/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
+/// `exhaustive_patterns` feature.
+#[derive(Debug)]
+pub enum ConstructorSet {
+    /// The type has a single constructor, e.g. `&T` or a struct. `empty` tracks whether the
+    /// constructor is empty.
+    Single { empty: bool },
+    /// This type has the following list of constructors. If `variants` is empty and
+    /// `non_exhaustive` is false, don't use this; use `NoConstructors` instead.
+    Variants { variants: IndexVec<VariantIdx, VariantVisibility>, non_exhaustive: bool },
+    /// Booleans.
+    Bool,
+    /// The type is spanned by integer values. The range or ranges give the set of allowed values.
+    /// The second range is only useful for `char`.
+    Integers { range_1: IntRange, range_2: Option<IntRange> },
+    /// The type is matched by slices. `array_len` is the compile-time length of the array, if
+    /// known. If `subtype_is_empty`, all constructors are empty except possibly the zero-length
+    /// slice `[]`.
+    Slice { array_len: Option<usize>, subtype_is_empty: bool },
+    /// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`,
+    /// floats.
+    Unlistable,
+    /// The type has no constructors (not even empty ones). This is `!` and empty enums.
+    NoConstructors,
+}
+
+/// Describes the result of analyzing the constructors in a column of a match.
+///
+/// `present` is morally the set of constructors present in the column, and `missing` is the set of
+/// constructors that exist in the type but are not present in the column.
+///
+/// More formally, if we discard wildcards from the column, this respects the following constraints:
+/// 1. the union of `present`, `missing` and `missing_empty` covers all the constructors of the type
+/// 2. each constructor in `present` is covered by something in the column
+/// 3. no constructor in `missing` or `missing_empty` is covered by anything in the column
+/// 4. each constructor in the column is equal to the union of one or more constructors in `present`
+/// 5. `missing` does not contain empty constructors (see discussion about emptiness at the top of
+///    the file);
+/// 6. `missing_empty` contains only empty constructors
+/// 7. constructors in `present`, `missing` and `missing_empty` are split for the column; in other
+///    words, they are either fully included in or fully disjoint from each constructor in the
+///    column. In yet other words, there are no non-trivial intersections like between `0..10` and
+///    `5..15`.
+///
+/// We must be particularly careful with weird constructors like `Opaque`: they're not formally part
+/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
+/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
+#[derive(Debug)]
+pub(super) struct SplitConstructorSet<'tcx> {
+    pub(super) present: SmallVec<[Constructor<'tcx>; 1]>,
+    pub(super) missing: Vec<Constructor<'tcx>>,
+    pub(super) missing_empty: Vec<Constructor<'tcx>>,
+}
+
+impl ConstructorSet {
+    /// Creates a set that represents all the constructors of `ty`.
+    ///
+    /// See at the top of the file for considerations of emptiness.
+    #[instrument(level = "debug", skip(cx), ret)]
+    pub fn for_ty<'p, 'tcx>(cx: &MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
+        let make_range = |start, end| {
+            IntRange::from_range(
+                MaybeInfiniteInt::new_finite(cx.tcx, ty, start),
+                MaybeInfiniteInt::new_finite(cx.tcx, ty, end),
+                RangeEnd::Included,
+            )
+        };
+        // This determines the set of all possible constructors for the type `ty`. For numbers,
+        // arrays and slices we use ranges and variable-length slices when appropriate.
+        match ty.kind() {
+            ty::Bool => Self::Bool,
+            ty::Char => {
+                // The valid Unicode Scalar Value ranges.
+                Self::Integers {
+                    range_1: make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
+                    range_2: Some(make_range('\u{E000}' as u128, '\u{10FFFF}' as u128)),
+                }
+            }
+            &ty::Int(ity) => {
+                let range = if ty.is_ptr_sized_integral() {
+                    // The min/max values of `isize` are not allowed to be observed.
+                    IntRange { lo: NegInfinity, hi: PosInfinity }
+                } else {
+                    let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128;
+                    let min = 1u128 << (bits - 1);
+                    let max = min - 1;
+                    make_range(min, max)
+                };
+                Self::Integers { range_1: range, range_2: None }
+            }
+            &ty::Uint(uty) => {
+                let range = if ty.is_ptr_sized_integral() {
+                    // The max value of `usize` is not allowed to be observed.
+                    let lo = MaybeInfiniteInt::new_finite(cx.tcx, ty, 0);
+                    IntRange { lo, hi: PosInfinity }
+                } else {
+                    let size = Integer::from_uint_ty(&cx.tcx, uty).size();
+                    let max = size.truncate(u128::MAX);
+                    make_range(0, max)
+                };
+                Self::Integers { range_1: range, range_2: None }
+            }
+            ty::Slice(sub_ty) => {
+                Self::Slice { array_len: None, subtype_is_empty: cx.is_uninhabited(*sub_ty) }
+            }
+            ty::Array(sub_ty, len) => {
+                // We treat arrays of a constant but unknown length like slices.
+                Self::Slice {
+                    array_len: len.try_eval_target_usize(cx.tcx, cx.param_env).map(|l| l as usize),
+                    subtype_is_empty: cx.is_uninhabited(*sub_ty),
+                }
+            }
+            ty::Adt(def, args) if def.is_enum() => {
+                let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(ty);
+                if def.variants().is_empty() && !is_declared_nonexhaustive {
+                    Self::NoConstructors
+                } else {
+                    let mut variants =
+                        IndexVec::from_elem(VariantVisibility::Visible, def.variants());
+                    for (idx, v) in def.variants().iter_enumerated() {
+                        let variant_def_id = def.variant(idx).def_id;
+                        // Visibly uninhabited variants.
+                        let is_inhabited = v
+                            .inhabited_predicate(cx.tcx, *def)
+                            .instantiate(cx.tcx, args)
+                            .apply(cx.tcx, cx.param_env, cx.module);
+                        // Variants that depend on a disabled unstable feature.
+                        let is_unstable = matches!(
+                            cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
+                            EvalResult::Deny { .. }
+                        );
+                        // Foreign `#[doc(hidden)]` variants.
+                        let is_doc_hidden =
+                            cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
+                        let visibility = if !is_inhabited {
+                            // FIXME: handle empty+hidden
+                            VariantVisibility::Empty
+                        } else if is_unstable || is_doc_hidden {
+                            VariantVisibility::Hidden
+                        } else {
+                            VariantVisibility::Visible
+                        };
+                        variants[idx] = visibility;
+                    }
+
+                    Self::Variants { variants, non_exhaustive: is_declared_nonexhaustive }
+                }
+            }
+            ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => {
+                Self::Single { empty: cx.is_uninhabited(ty) }
+            }
+            ty::Never => Self::NoConstructors,
+            // This type is one for which we cannot list constructors, like `str` or `f64`.
+            // FIXME(Nadrieril): which of these are actually allowed?
+            ty::Float(_)
+            | ty::Str
+            | ty::Foreign(_)
+            | ty::RawPtr(_)
+            | ty::FnDef(_, _)
+            | ty::FnPtr(_)
+            | ty::Dynamic(_, _, _)
+            | ty::Closure(_, _)
+            | ty::Coroutine(_, _, _)
+            | ty::Alias(_, _)
+            | ty::Param(_)
+            | ty::Error(_) => Self::Unlistable,
+            ty::CoroutineWitness(_, _) | ty::Bound(_, _) | ty::Placeholder(_) | ty::Infer(_) => {
+                bug!("Encountered unexpected type in `ConstructorSet::for_ty`: {ty:?}")
+            }
+        }
+    }
+
+    /// This analyzes a column of constructors to 1/ determine which constructors of the type (if
+    /// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
+    /// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
+    /// and its invariants.
+    #[instrument(level = "debug", skip(self, pcx, ctors), ret)]
+    pub(super) fn split<'a, 'tcx>(
+        &self,
+        pcx: &PatCtxt<'_, '_, 'tcx>,
+        ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
+    ) -> SplitConstructorSet<'tcx>
+    where
+        'tcx: 'a,
+    {
+        let mut present: SmallVec<[_; 1]> = SmallVec::new();
+        // Empty constructors found missing.
+        let mut missing_empty = Vec::new();
+        // Nonempty constructors found missing.
+        let mut missing = Vec::new();
+        // Constructors in `ctors`, except wildcards and opaques.
+        let mut seen = Vec::new();
+        for ctor in ctors.cloned() {
+            match ctor {
+                Opaque(..) => present.push(ctor),
+                Wildcard => {} // discard wildcards
+                _ => seen.push(ctor),
+            }
+        }
+
+        match self {
+            ConstructorSet::Single { empty } => {
+                if !seen.is_empty() {
+                    present.push(Single);
+                } else if *empty {
+                    missing_empty.push(Single);
+                } else {
+                    missing.push(Single);
+                }
+            }
+            ConstructorSet::Variants { variants, non_exhaustive } => {
+                let seen_set: FxHashSet<_> = seen.iter().map(|c| c.as_variant().unwrap()).collect();
+                let mut skipped_a_hidden_variant = false;
+
+                for (idx, visibility) in variants.iter_enumerated() {
+                    let ctor = Variant(idx);
+                    if seen_set.contains(&idx) {
+                        present.push(ctor);
+                    } else {
+                        // We only put visible variants directly into `missing`.
+                        match visibility {
+                            VariantVisibility::Visible => missing.push(ctor),
+                            VariantVisibility::Hidden => skipped_a_hidden_variant = true,
+                            VariantVisibility::Empty => missing_empty.push(ctor),
+                        }
+                    }
+                }
+
+                if skipped_a_hidden_variant {
+                    missing.push(Hidden);
+                }
+                if *non_exhaustive {
+                    missing.push(NonExhaustive);
+                }
+            }
+            ConstructorSet::Bool => {
+                let mut seen_false = false;
+                let mut seen_true = false;
+                for b in seen.iter().map(|ctor| ctor.as_bool().unwrap()) {
+                    if b {
+                        seen_true = true;
+                    } else {
+                        seen_false = true;
+                    }
+                }
+                if seen_false {
+                    present.push(Bool(false));
+                } else {
+                    missing.push(Bool(false));
+                }
+                if seen_true {
+                    present.push(Bool(true));
+                } else {
+                    missing.push(Bool(true));
+                }
+            }
+            ConstructorSet::Integers { range_1, range_2 } => {
+                let seen_ranges: Vec<_> =
+                    seen.iter().map(|ctor| ctor.as_int_range().unwrap().clone()).collect();
+                for (seen, splitted_range) in range_1.split(seen_ranges.iter().cloned()) {
+                    match seen {
+                        Presence::Unseen => missing.push(IntRange(splitted_range)),
+                        Presence::Seen => present.push(IntRange(splitted_range)),
+                    }
+                }
+                if let Some(range_2) = range_2 {
+                    for (seen, splitted_range) in range_2.split(seen_ranges.into_iter()) {
+                        match seen {
+                            Presence::Unseen => missing.push(IntRange(splitted_range)),
+                            Presence::Seen => present.push(IntRange(splitted_range)),
+                        }
+                    }
+                }
+            }
+            ConstructorSet::Slice { array_len, subtype_is_empty } => {
+                let seen_slices = seen.iter().map(|c| c.as_slice().unwrap());
+                let base_slice = Slice::new(*array_len, VarLen(0, 0));
+                for (seen, splitted_slice) in base_slice.split(seen_slices) {
+                    let ctor = Slice(splitted_slice);
+                    match seen {
+                        Presence::Seen => present.push(ctor),
+                        Presence::Unseen => {
+                            if *subtype_is_empty && splitted_slice.arity() != 0 {
+                                // We have subpatterns of an empty type, so the constructor is
+                                // empty.
+                                missing_empty.push(ctor);
+                            } else {
+                                missing.push(ctor);
+                            }
+                        }
+                    }
+                }
+            }
+            ConstructorSet::Unlistable => {
+                // Since we can't list constructors, we take the ones in the column. This might list
+                // some constructors several times but there's not much we can do.
+                present.extend(seen);
+                missing.push(NonExhaustive);
+            }
+            ConstructorSet::NoConstructors => {
+                // In a `MaybeInvalid` place even an empty pattern may be reachable. We therefore
+                // add a dummy empty constructor here, which will be ignored if the place is
+                // `ValidOnly`.
+                missing_empty.push(NonExhaustive);
+            }
+        }
+
+        // We have now grouped all the constructors into 3 buckets: present, missing, missing_empty.
+        // In the absence of the `exhaustive_patterns` feature however, we don't count nested empty
+        // types as empty. Only non-nested `!` or `enum Foo {}` are considered empty.
+        if !pcx.cx.tcx.features().exhaustive_patterns
+            && !(pcx.is_top_level && matches!(self, Self::NoConstructors))
+        {
+            // Treat all missing constructors as nonempty.
+            missing.extend(missing_empty.drain(..));
+        }
+
+        SplitConstructorSet { present, missing, missing_empty }
+    }
+}