diff options
Diffstat (limited to 'compiler/rustc_ty_utils/src/abi.rs')
| -rw-r--r-- | compiler/rustc_ty_utils/src/abi.rs | 138 |
1 files changed, 8 insertions, 130 deletions
diff --git a/compiler/rustc_ty_utils/src/abi.rs b/compiler/rustc_ty_utils/src/abi.rs index 09b9ecb3486..48149a08de8 100644 --- a/compiler/rustc_ty_utils/src/abi.rs +++ b/compiler/rustc_ty_utils/src/abi.rs @@ -1,7 +1,7 @@ use std::iter; -use rustc_abi::Primitive::{Float, Pointer}; -use rustc_abi::{Abi, AddressSpace, PointerKind, Scalar, Size}; +use rustc_abi::Primitive::Pointer; +use rustc_abi::{Abi, PointerKind, Scalar, Size}; use rustc_hir as hir; use rustc_hir::lang_items::LangItem; use rustc_middle::bug; @@ -13,8 +13,7 @@ use rustc_middle::ty::{self, InstanceKind, Ty, TyCtxt}; use rustc_session::config::OptLevel; use rustc_span::def_id::DefId; use rustc_target::abi::call::{ - ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind, - RiscvInterruptKind, + ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, RiscvInterruptKind, }; use rustc_target::spec::abi::Abi as SpecAbi; use tracing::debug; @@ -678,6 +677,8 @@ fn fn_abi_adjust_for_abi<'tcx>( let tcx = cx.tcx(); if abi == SpecAbi::Rust || abi == SpecAbi::RustCall || abi == SpecAbi::RustIntrinsic { + fn_abi.adjust_for_rust_abi(cx, abi); + // Look up the deduced parameter attributes for this function, if we have its def ID and // we're optimizing in non-incremental mode. We'll tag its parameters with those attributes // as appropriate. @@ -688,125 +689,9 @@ fn fn_abi_adjust_for_abi<'tcx>( &[] }; - let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>, arg_idx: Option<usize>| { + for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() { if arg.is_ignore() { - return; - } - - // Avoid returning floats in x87 registers on x86 as loading and storing from x87 - // registers will quiet signalling NaNs. Also avoid using SSE registers since they - // are not always available (depending on target features). - if tcx.sess.target.arch == "x86" - && arg_idx.is_none() - // Intrinsics themselves are not actual "real" functions, so theres no need to - // change their ABIs. - && abi != SpecAbi::RustIntrinsic - { - let has_float = match arg.layout.abi { - Abi::Scalar(s) => matches!(s.primitive(), Float(_)), - Abi::ScalarPair(s1, s2) => { - matches!(s1.primitive(), Float(_)) || matches!(s2.primitive(), Float(_)) - } - _ => false, // anyway not passed via registers on x86 - }; - if has_float { - if arg.layout.size <= Pointer(AddressSpace::DATA).size(cx) { - // Same size or smaller than pointer, return in a register. - arg.cast_to(Reg { kind: RegKind::Integer, size: arg.layout.size }); - } else { - // Larger than a pointer, return indirectly. - arg.make_indirect(); - } - return; - } - } - - if arg_idx.is_none() && arg.layout.size > Pointer(AddressSpace::DATA).size(cx) * 2 { - // Return values larger than 2 registers using a return area - // pointer. LLVM and Cranelift disagree about how to return - // values that don't fit in the registers designated for return - // values. LLVM will force the entire return value to be passed - // by return area pointer, while Cranelift will look at each IR level - // return value independently and decide to pass it in a - // register or not, which would result in the return value - // being passed partially in registers and partially through a - // return area pointer. - // - // While Cranelift may need to be fixed as the LLVM behavior is - // generally more correct with respect to the surface language, - // forcing this behavior in rustc itself makes it easier for - // other backends to conform to the Rust ABI and for the C ABI - // rustc already handles this behavior anyway. - // - // In addition LLVM's decision to pass the return value in - // registers or using a return area pointer depends on how - // exactly the return type is lowered to an LLVM IR type. For - // example `Option<u128>` can be lowered as `{ i128, i128 }` - // in which case the x86_64 backend would use a return area - // pointer, or it could be passed as `{ i32, i128 }` in which - // case the x86_64 backend would pass it in registers by taking - // advantage of an LLVM ABI extension that allows using 3 - // registers for the x86_64 sysv call conv rather than the - // officially specified 2 registers. - // - // FIXME: Technically we should look at the amount of available - // return registers rather than guessing that there are 2 - // registers for return values. In practice only a couple of - // architectures have less than 2 return registers. None of - // which supported by Cranelift. - // - // NOTE: This adjustment is only necessary for the Rust ABI as - // for other ABI's the calling convention implementations in - // rustc_target already ensure any return value which doesn't - // fit in the available amount of return registers is passed in - // the right way for the current target. - arg.make_indirect(); - return; - } - - match arg.layout.abi { - Abi::Aggregate { .. } => {} - - // This is a fun case! The gist of what this is doing is - // that we want callers and callees to always agree on the - // ABI of how they pass SIMD arguments. If we were to *not* - // make these arguments indirect then they'd be immediates - // in LLVM, which means that they'd used whatever the - // appropriate ABI is for the callee and the caller. That - // means, for example, if the caller doesn't have AVX - // enabled but the callee does, then passing an AVX argument - // across this boundary would cause corrupt data to show up. - // - // This problem is fixed by unconditionally passing SIMD - // arguments through memory between callers and callees - // which should get them all to agree on ABI regardless of - // target feature sets. Some more information about this - // issue can be found in #44367. - // - // Note that the intrinsic ABI is exempt here as - // that's how we connect up to LLVM and it's unstable - // anyway, we control all calls to it in libstd. - Abi::Vector { .. } - if abi != SpecAbi::RustIntrinsic && tcx.sess.target.simd_types_indirect => - { - arg.make_indirect(); - return; - } - - _ => return, - } - // Compute `Aggregate` ABI. - - let is_indirect_not_on_stack = - matches!(arg.mode, PassMode::Indirect { on_stack: false, .. }); - assert!(is_indirect_not_on_stack, "{:?}", arg); - - let size = arg.layout.size; - if !arg.layout.is_unsized() && size <= Pointer(AddressSpace::DATA).size(cx) { - // We want to pass small aggregates as immediates, but using - // an LLVM aggregate type for this leads to bad optimizations, - // so we pick an appropriately sized integer type instead. - arg.cast_to(Reg { kind: RegKind::Integer, size }); + continue; } // If we deduced that this parameter was read-only, add that to the attribute list now. @@ -814,9 +699,7 @@ fn fn_abi_adjust_for_abi<'tcx>( // The `readonly` parameter only applies to pointers, so we can only do this if the // argument was passed indirectly. (If the argument is passed directly, it's an SSA // value, so it's implicitly immutable.) - if let (Some(arg_idx), &mut PassMode::Indirect { ref mut attrs, .. }) = - (arg_idx, &mut arg.mode) - { + if let &mut PassMode::Indirect { ref mut attrs, .. } = &mut arg.mode { // The `deduced_param_attrs` list could be empty if this is a type of function // we can't deduce any parameters for, so make sure the argument index is in // bounds. @@ -827,11 +710,6 @@ fn fn_abi_adjust_for_abi<'tcx>( } } } - }; - - fixup(&mut fn_abi.ret, None); - for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() { - fixup(arg, Some(arg_idx)); } } else { fn_abi |
