about summary refs log tree commit diff
path: root/library/alloc/tests/binary_heap.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/alloc/tests/binary_heap.rs')
-rw-r--r--library/alloc/tests/binary_heap.rs464
1 files changed, 464 insertions, 0 deletions
diff --git a/library/alloc/tests/binary_heap.rs b/library/alloc/tests/binary_heap.rs
new file mode 100644
index 00000000000..62084ccf53c
--- /dev/null
+++ b/library/alloc/tests/binary_heap.rs
@@ -0,0 +1,464 @@
+use std::collections::binary_heap::{Drain, PeekMut};
+use std::collections::BinaryHeap;
+use std::iter::TrustedLen;
+use std::panic::{catch_unwind, AssertUnwindSafe};
+use std::sync::atomic::{AtomicU32, Ordering};
+
+#[test]
+fn test_iterator() {
+    let data = vec![5, 9, 3];
+    let iterout = [9, 5, 3];
+    let heap = BinaryHeap::from(data);
+    let mut i = 0;
+    for el in &heap {
+        assert_eq!(*el, iterout[i]);
+        i += 1;
+    }
+}
+
+#[test]
+fn test_iter_rev_cloned_collect() {
+    let data = vec![5, 9, 3];
+    let iterout = vec![3, 5, 9];
+    let pq = BinaryHeap::from(data);
+
+    let v: Vec<_> = pq.iter().rev().cloned().collect();
+    assert_eq!(v, iterout);
+}
+
+#[test]
+fn test_into_iter_collect() {
+    let data = vec![5, 9, 3];
+    let iterout = vec![9, 5, 3];
+    let pq = BinaryHeap::from(data);
+
+    let v: Vec<_> = pq.into_iter().collect();
+    assert_eq!(v, iterout);
+}
+
+#[test]
+fn test_into_iter_size_hint() {
+    let data = vec![5, 9];
+    let pq = BinaryHeap::from(data);
+
+    let mut it = pq.into_iter();
+
+    assert_eq!(it.size_hint(), (2, Some(2)));
+    assert_eq!(it.next(), Some(9));
+
+    assert_eq!(it.size_hint(), (1, Some(1)));
+    assert_eq!(it.next(), Some(5));
+
+    assert_eq!(it.size_hint(), (0, Some(0)));
+    assert_eq!(it.next(), None);
+}
+
+#[test]
+fn test_into_iter_rev_collect() {
+    let data = vec![5, 9, 3];
+    let iterout = vec![3, 5, 9];
+    let pq = BinaryHeap::from(data);
+
+    let v: Vec<_> = pq.into_iter().rev().collect();
+    assert_eq!(v, iterout);
+}
+
+#[test]
+fn test_into_iter_sorted_collect() {
+    let heap = BinaryHeap::from(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
+    let it = heap.into_iter_sorted();
+    let sorted = it.collect::<Vec<_>>();
+    assert_eq!(sorted, vec![10, 9, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 0]);
+}
+
+#[test]
+fn test_drain_sorted_collect() {
+    let mut heap = BinaryHeap::from(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
+    let it = heap.drain_sorted();
+    let sorted = it.collect::<Vec<_>>();
+    assert_eq!(sorted, vec![10, 9, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 0]);
+}
+
+fn check_exact_size_iterator<I: ExactSizeIterator>(len: usize, it: I) {
+    let mut it = it;
+
+    for i in 0..it.len() {
+        let (lower, upper) = it.size_hint();
+        assert_eq!(Some(lower), upper);
+        assert_eq!(lower, len - i);
+        assert_eq!(it.len(), len - i);
+        it.next();
+    }
+    assert_eq!(it.len(), 0);
+    assert!(it.is_empty());
+}
+
+#[test]
+fn test_exact_size_iterator() {
+    let heap = BinaryHeap::from(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
+    check_exact_size_iterator(heap.len(), heap.iter());
+    check_exact_size_iterator(heap.len(), heap.clone().into_iter());
+    check_exact_size_iterator(heap.len(), heap.clone().into_iter_sorted());
+    check_exact_size_iterator(heap.len(), heap.clone().drain());
+    check_exact_size_iterator(heap.len(), heap.clone().drain_sorted());
+}
+
+fn check_trusted_len<I: TrustedLen>(len: usize, it: I) {
+    let mut it = it;
+    for i in 0..len {
+        let (lower, upper) = it.size_hint();
+        if upper.is_some() {
+            assert_eq!(Some(lower), upper);
+            assert_eq!(lower, len - i);
+        }
+        it.next();
+    }
+}
+
+#[test]
+fn test_trusted_len() {
+    let heap = BinaryHeap::from(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
+    check_trusted_len(heap.len(), heap.clone().into_iter_sorted());
+    check_trusted_len(heap.len(), heap.clone().drain_sorted());
+}
+
+#[test]
+fn test_peek_and_pop() {
+    let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
+    let mut sorted = data.clone();
+    sorted.sort();
+    let mut heap = BinaryHeap::from(data);
+    while !heap.is_empty() {
+        assert_eq!(heap.peek().unwrap(), sorted.last().unwrap());
+        assert_eq!(heap.pop().unwrap(), sorted.pop().unwrap());
+    }
+}
+
+#[test]
+fn test_peek_mut() {
+    let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
+    let mut heap = BinaryHeap::from(data);
+    assert_eq!(heap.peek(), Some(&10));
+    {
+        let mut top = heap.peek_mut().unwrap();
+        *top -= 2;
+    }
+    assert_eq!(heap.peek(), Some(&9));
+}
+
+#[test]
+fn test_peek_mut_pop() {
+    let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
+    let mut heap = BinaryHeap::from(data);
+    assert_eq!(heap.peek(), Some(&10));
+    {
+        let mut top = heap.peek_mut().unwrap();
+        *top -= 2;
+        assert_eq!(PeekMut::pop(top), 8);
+    }
+    assert_eq!(heap.peek(), Some(&9));
+}
+
+#[test]
+fn test_push() {
+    let mut heap = BinaryHeap::from(vec![2, 4, 9]);
+    assert_eq!(heap.len(), 3);
+    assert!(*heap.peek().unwrap() == 9);
+    heap.push(11);
+    assert_eq!(heap.len(), 4);
+    assert!(*heap.peek().unwrap() == 11);
+    heap.push(5);
+    assert_eq!(heap.len(), 5);
+    assert!(*heap.peek().unwrap() == 11);
+    heap.push(27);
+    assert_eq!(heap.len(), 6);
+    assert!(*heap.peek().unwrap() == 27);
+    heap.push(3);
+    assert_eq!(heap.len(), 7);
+    assert!(*heap.peek().unwrap() == 27);
+    heap.push(103);
+    assert_eq!(heap.len(), 8);
+    assert!(*heap.peek().unwrap() == 103);
+}
+
+#[test]
+fn test_push_unique() {
+    let mut heap = BinaryHeap::<Box<_>>::from(vec![box 2, box 4, box 9]);
+    assert_eq!(heap.len(), 3);
+    assert!(**heap.peek().unwrap() == 9);
+    heap.push(box 11);
+    assert_eq!(heap.len(), 4);
+    assert!(**heap.peek().unwrap() == 11);
+    heap.push(box 5);
+    assert_eq!(heap.len(), 5);
+    assert!(**heap.peek().unwrap() == 11);
+    heap.push(box 27);
+    assert_eq!(heap.len(), 6);
+    assert!(**heap.peek().unwrap() == 27);
+    heap.push(box 3);
+    assert_eq!(heap.len(), 7);
+    assert!(**heap.peek().unwrap() == 27);
+    heap.push(box 103);
+    assert_eq!(heap.len(), 8);
+    assert!(**heap.peek().unwrap() == 103);
+}
+
+fn check_to_vec(mut data: Vec<i32>) {
+    let heap = BinaryHeap::from(data.clone());
+    let mut v = heap.clone().into_vec();
+    v.sort();
+    data.sort();
+
+    assert_eq!(v, data);
+    assert_eq!(heap.into_sorted_vec(), data);
+}
+
+#[test]
+fn test_to_vec() {
+    check_to_vec(vec![]);
+    check_to_vec(vec![5]);
+    check_to_vec(vec![3, 2]);
+    check_to_vec(vec![2, 3]);
+    check_to_vec(vec![5, 1, 2]);
+    check_to_vec(vec![1, 100, 2, 3]);
+    check_to_vec(vec![1, 3, 5, 7, 9, 2, 4, 6, 8, 0]);
+    check_to_vec(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
+    check_to_vec(vec![9, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0]);
+    check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
+    check_to_vec(vec![10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);
+    check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2]);
+    check_to_vec(vec![5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1]);
+}
+
+#[test]
+fn test_empty_pop() {
+    let mut heap = BinaryHeap::<i32>::new();
+    assert!(heap.pop().is_none());
+}
+
+#[test]
+fn test_empty_peek() {
+    let empty = BinaryHeap::<i32>::new();
+    assert!(empty.peek().is_none());
+}
+
+#[test]
+fn test_empty_peek_mut() {
+    let mut empty = BinaryHeap::<i32>::new();
+    assert!(empty.peek_mut().is_none());
+}
+
+#[test]
+fn test_from_iter() {
+    let xs = vec![9, 8, 7, 6, 5, 4, 3, 2, 1];
+
+    let mut q: BinaryHeap<_> = xs.iter().rev().cloned().collect();
+
+    for &x in &xs {
+        assert_eq!(q.pop().unwrap(), x);
+    }
+}
+
+#[test]
+fn test_drain() {
+    let mut q: BinaryHeap<_> = [9, 8, 7, 6, 5, 4, 3, 2, 1].iter().cloned().collect();
+
+    assert_eq!(q.drain().take(5).count(), 5);
+
+    assert!(q.is_empty());
+}
+
+#[test]
+fn test_drain_sorted() {
+    let mut q: BinaryHeap<_> = [9, 8, 7, 6, 5, 4, 3, 2, 1].iter().cloned().collect();
+
+    assert_eq!(q.drain_sorted().take(5).collect::<Vec<_>>(), vec![9, 8, 7, 6, 5]);
+
+    assert!(q.is_empty());
+}
+
+#[test]
+fn test_drain_sorted_leak() {
+    static DROPS: AtomicU32 = AtomicU32::new(0);
+
+    #[derive(Clone, PartialEq, Eq, PartialOrd, Ord)]
+    struct D(u32, bool);
+
+    impl Drop for D {
+        fn drop(&mut self) {
+            DROPS.fetch_add(1, Ordering::SeqCst);
+
+            if self.1 {
+                panic!("panic in `drop`");
+            }
+        }
+    }
+
+    let mut q = BinaryHeap::from(vec![
+        D(0, false),
+        D(1, false),
+        D(2, false),
+        D(3, true),
+        D(4, false),
+        D(5, false),
+    ]);
+
+    catch_unwind(AssertUnwindSafe(|| drop(q.drain_sorted()))).ok();
+
+    assert_eq!(DROPS.load(Ordering::SeqCst), 6);
+}
+
+#[test]
+fn test_extend_ref() {
+    let mut a = BinaryHeap::new();
+    a.push(1);
+    a.push(2);
+
+    a.extend(&[3, 4, 5]);
+
+    assert_eq!(a.len(), 5);
+    assert_eq!(a.into_sorted_vec(), [1, 2, 3, 4, 5]);
+
+    let mut a = BinaryHeap::new();
+    a.push(1);
+    a.push(2);
+    let mut b = BinaryHeap::new();
+    b.push(3);
+    b.push(4);
+    b.push(5);
+
+    a.extend(&b);
+
+    assert_eq!(a.len(), 5);
+    assert_eq!(a.into_sorted_vec(), [1, 2, 3, 4, 5]);
+}
+
+#[test]
+fn test_append() {
+    let mut a = BinaryHeap::from(vec![-10, 1, 2, 3, 3]);
+    let mut b = BinaryHeap::from(vec![-20, 5, 43]);
+
+    a.append(&mut b);
+
+    assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
+    assert!(b.is_empty());
+}
+
+#[test]
+fn test_append_to_empty() {
+    let mut a = BinaryHeap::new();
+    let mut b = BinaryHeap::from(vec![-20, 5, 43]);
+
+    a.append(&mut b);
+
+    assert_eq!(a.into_sorted_vec(), [-20, 5, 43]);
+    assert!(b.is_empty());
+}
+
+#[test]
+fn test_extend_specialization() {
+    let mut a = BinaryHeap::from(vec![-10, 1, 2, 3, 3]);
+    let b = BinaryHeap::from(vec![-20, 5, 43]);
+
+    a.extend(b);
+
+    assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
+}
+
+#[allow(dead_code)]
+fn assert_covariance() {
+    fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> {
+        d
+    }
+}
+
+#[test]
+fn test_retain() {
+    let mut a = BinaryHeap::from(vec![-10, -5, 1, 2, 4, 13]);
+    a.retain(|x| x % 2 == 0);
+
+    assert_eq!(a.into_sorted_vec(), [-10, 2, 4])
+}
+
+// old binaryheap failed this test
+//
+// Integrity means that all elements are present after a comparison panics,
+// even if the order may not be correct.
+//
+// Destructors must be called exactly once per element.
+// FIXME: re-enable emscripten once it can unwind again
+#[test]
+#[cfg(not(target_os = "emscripten"))]
+fn panic_safe() {
+    use rand::{seq::SliceRandom, thread_rng};
+    use std::cmp;
+    use std::panic::{self, AssertUnwindSafe};
+    use std::sync::atomic::{AtomicUsize, Ordering};
+
+    static DROP_COUNTER: AtomicUsize = AtomicUsize::new(0);
+
+    #[derive(Eq, PartialEq, Ord, Clone, Debug)]
+    struct PanicOrd<T>(T, bool);
+
+    impl<T> Drop for PanicOrd<T> {
+        fn drop(&mut self) {
+            // update global drop count
+            DROP_COUNTER.fetch_add(1, Ordering::SeqCst);
+        }
+    }
+
+    impl<T: PartialOrd> PartialOrd for PanicOrd<T> {
+        fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
+            if self.1 || other.1 {
+                panic!("Panicking comparison");
+            }
+            self.0.partial_cmp(&other.0)
+        }
+    }
+    let mut rng = thread_rng();
+    const DATASZ: usize = 32;
+    // Miri is too slow
+    let ntest = if cfg!(miri) { 1 } else { 10 };
+
+    // don't use 0 in the data -- we want to catch the zeroed-out case.
+    let data = (1..=DATASZ).collect::<Vec<_>>();
+
+    // since it's a fuzzy test, run several tries.
+    for _ in 0..ntest {
+        for i in 1..=DATASZ {
+            DROP_COUNTER.store(0, Ordering::SeqCst);
+
+            let mut panic_ords: Vec<_> =
+                data.iter().filter(|&&x| x != i).map(|&x| PanicOrd(x, false)).collect();
+            let panic_item = PanicOrd(i, true);
+
+            // heapify the sane items
+            panic_ords.shuffle(&mut rng);
+            let mut heap = BinaryHeap::from(panic_ords);
+            let inner_data;
+
+            {
+                // push the panicking item to the heap and catch the panic
+                let thread_result = {
+                    let mut heap_ref = AssertUnwindSafe(&mut heap);
+                    panic::catch_unwind(move || {
+                        heap_ref.push(panic_item);
+                    })
+                };
+                assert!(thread_result.is_err());
+
+                // Assert no elements were dropped
+                let drops = DROP_COUNTER.load(Ordering::SeqCst);
+                assert!(drops == 0, "Must not drop items. drops={}", drops);
+                inner_data = heap.clone().into_vec();
+                drop(heap);
+            }
+            let drops = DROP_COUNTER.load(Ordering::SeqCst);
+            assert_eq!(drops, DATASZ);
+
+            let mut data_sorted = inner_data.into_iter().map(|p| p.0).collect::<Vec<_>>();
+            data_sorted.sort();
+            assert_eq!(data_sorted, data);
+        }
+    }
+}