diff options
Diffstat (limited to 'library/compiler-builtins/libm/src/math/generic/fma.rs')
| -rw-r--r-- | library/compiler-builtins/libm/src/math/generic/fma.rs | 278 |
1 files changed, 278 insertions, 0 deletions
diff --git a/library/compiler-builtins/libm/src/math/generic/fma.rs b/library/compiler-builtins/libm/src/math/generic/fma.rs new file mode 100644 index 00000000000..aaf459d1b61 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fma.rs @@ -0,0 +1,278 @@ +/* SPDX-License-Identifier: MIT */ +/* origin: musl src/math/fma.c. Ported to generic Rust algorithm in 2025, TG. */ + +use crate::support::{ + CastFrom, CastInto, DInt, Float, FpResult, HInt, Int, IntTy, MinInt, Round, Status, +}; + +/// Fused multiply-add that works when there is not a larger float size available. Computes +/// `(x * y) + z`. +#[inline] +pub fn fma_round<F>(x: F, y: F, z: F, _round: Round) -> FpResult<F> +where + F: Float, + F: CastFrom<F::SignedInt>, + F: CastFrom<i8>, + F::Int: HInt, + u32: CastInto<F::Int>, +{ + let one = IntTy::<F>::ONE; + let zero = IntTy::<F>::ZERO; + + // Normalize such that the top of the mantissa is zero and we have a guard bit. + let nx = Norm::from_float(x); + let ny = Norm::from_float(y); + let nz = Norm::from_float(z); + + if nx.is_zero_nan_inf() || ny.is_zero_nan_inf() { + // Value will overflow, defer to non-fused operations. + return FpResult::ok(x * y + z); + } + + if nz.is_zero_nan_inf() { + if nz.is_zero() { + // Empty add component means we only need to multiply. + return FpResult::ok(x * y); + } + // `z` is NaN or infinity, which sets the result. + return FpResult::ok(z); + } + + // multiply: r = x * y + let zhi: F::Int; + let zlo: F::Int; + let (mut rlo, mut rhi) = nx.m.widen_mul(ny.m).lo_hi(); + + // Exponent result of multiplication + let mut e: i32 = nx.e + ny.e; + // Needed shift to align `z` to the multiplication result + let mut d: i32 = nz.e - e; + let sbits = F::BITS as i32; + + // Scale `z`. Shift `z <<= kz`, `r >>= kr`, so `kz+kr == d`, set `e = e+kr` (== ez-kz) + if d > 0 { + // The magnitude of `z` is larger than `x * y` + if d < sbits { + // Maximum shift of one `F::BITS` means shifted `z` will fit into `2 * F::BITS`. Shift + // it into `(zhi, zlo)`. No exponent adjustment necessary. + zlo = nz.m << d; + zhi = nz.m >> (sbits - d); + } else { + // Shift larger than `sbits`, `z` only needs the top half `zhi`. Place it there (acts + // as a shift by `sbits`). + zlo = zero; + zhi = nz.m; + d -= sbits; + + // `z`'s exponent is large enough that it now needs to be taken into account. + e = nz.e - sbits; + + if d == 0 { + // Exactly `sbits`, nothing to do + } else if d < sbits { + // Remaining shift fits within `sbits`. Leave `z` in place, shift `x * y` + rlo = (rhi << (sbits - d)) | (rlo >> d); + // Set the sticky bit + rlo |= IntTy::<F>::from((rlo << (sbits - d)) != zero); + rhi = rhi >> d; + } else { + // `z`'s magnitude is enough that `x * y` is irrelevant. It was nonzero, so set + // the sticky bit. + rlo = one; + rhi = zero; + } + } + } else { + // `z`'s magnitude once shifted fits entirely within `zlo` + zhi = zero; + d = -d; + if d == 0 { + // No shift needed + zlo = nz.m; + } else if d < sbits { + // Shift s.t. `nz.m` fits into `zlo` + let sticky = IntTy::<F>::from((nz.m << (sbits - d)) != zero); + zlo = (nz.m >> d) | sticky; + } else { + // Would be entirely shifted out, only set the sticky bit + zlo = one; + } + } + + /* addition */ + + let mut neg = nx.neg ^ ny.neg; + let samesign: bool = !neg ^ nz.neg; + let mut rhi_nonzero = true; + + if samesign { + // r += z + rlo = rlo.wrapping_add(zlo); + rhi += zhi + IntTy::<F>::from(rlo < zlo); + } else { + // r -= z + let (res, borrow) = rlo.overflowing_sub(zlo); + rlo = res; + rhi = rhi.wrapping_sub(zhi.wrapping_add(IntTy::<F>::from(borrow))); + if (rhi >> (F::BITS - 1)) != zero { + rlo = rlo.signed().wrapping_neg().unsigned(); + rhi = rhi.signed().wrapping_neg().unsigned() - IntTy::<F>::from(rlo != zero); + neg = !neg; + } + rhi_nonzero = rhi != zero; + } + + /* Construct result */ + + // Shift result into `rhi`, left-aligned. Last bit is sticky + if rhi_nonzero { + // `d` > 0, need to shift both `rhi` and `rlo` into result + e += sbits; + d = rhi.leading_zeros() as i32 - 1; + rhi = (rhi << d) | (rlo >> (sbits - d)); + // Update sticky + rhi |= IntTy::<F>::from((rlo << d) != zero); + } else if rlo != zero { + // `rhi` is zero, `rlo` is the entire result and needs to be shifted + d = rlo.leading_zeros() as i32 - 1; + if d < 0 { + // Shift and set sticky + rhi = (rlo >> 1) | (rlo & one); + } else { + rhi = rlo << d; + } + } else { + // exact +/- 0.0 + return FpResult::ok(x * y + z); + } + + e -= d; + + // Use int->float conversion to populate the significand. + // i is in [1 << (BITS - 2), (1 << (BITS - 1)) - 1] + let mut i: F::SignedInt = rhi.signed(); + + if neg { + i = -i; + } + + // `|r|` is in `[0x1p62,0x1p63]` for `f64` + let mut r: F = F::cast_from_lossy(i); + + /* Account for subnormal and rounding */ + + // Unbiased exponent for the maximum value of `r` + let max_pow = F::BITS - 1 + F::EXP_BIAS; + + let mut status = Status::OK; + + if e < -(max_pow as i32 - 2) { + // Result is subnormal before rounding + if e == -(max_pow as i32 - 1) { + let mut c = F::from_parts(false, max_pow, zero); + if neg { + c = -c; + } + + if r == c { + // Min normal after rounding, + status.set_underflow(true); + r = F::MIN_POSITIVE_NORMAL.copysign(r); + return FpResult::new(r, status); + } + + if (rhi << (F::SIG_BITS + 1)) != zero { + // Account for truncated bits. One bit will be lost in the `scalbn` call, add + // another top bit to avoid double rounding if inexact. + let iu: F::Int = (rhi >> 1) | (rhi & one) | (one << (F::BITS - 2)); + i = iu.signed(); + + if neg { + i = -i; + } + + r = F::cast_from_lossy(i); + + // Remove the top bit + r = F::cast_from(2i8) * r - c; + status.set_underflow(true); + } + } else { + // Only round once when scaled + d = F::EXP_BITS as i32 - 1; + let sticky = IntTy::<F>::from(rhi << (F::BITS as i32 - d) != zero); + i = (((rhi >> d) | sticky) << d).signed(); + + if neg { + i = -i; + } + + r = F::cast_from_lossy(i); + } + } + + // Use our exponent to scale the final value. + FpResult::new(super::scalbn(r, e), status) +} + +/// Representation of `F` that has handled subnormals. +#[derive(Clone, Copy, Debug)] +struct Norm<F: Float> { + /// Normalized significand with one guard bit, unsigned. + m: F::Int, + /// Exponent of the mantissa such that `m * 2^e = x`. Accounts for the shift in the mantissa + /// and the guard bit; that is, 1.0 will normalize as `m = 1 << 53` and `e = -53`. + e: i32, + neg: bool, +} + +impl<F: Float> Norm<F> { + /// Unbias the exponent and account for the mantissa's precision, including the guard bit. + const EXP_UNBIAS: u32 = F::EXP_BIAS + F::SIG_BITS + 1; + + /// Values greater than this had a saturated exponent (infinity or NaN), OR were zero and we + /// adjusted the exponent such that it exceeds this threashold. + const ZERO_INF_NAN: u32 = F::EXP_SAT - Self::EXP_UNBIAS; + + fn from_float(x: F) -> Self { + let mut ix = x.to_bits(); + let mut e = x.ex() as i32; + let neg = x.is_sign_negative(); + if e == 0 { + // Normalize subnormals by multiplication + let scale_i = F::BITS - 1; + let scale_f = F::from_parts(false, scale_i + F::EXP_BIAS, F::Int::ZERO); + let scaled = x * scale_f; + ix = scaled.to_bits(); + e = scaled.ex() as i32; + e = if e == 0 { + // If the exponent is still zero, the input was zero. Artifically set this value + // such that the final `e` will exceed `ZERO_INF_NAN`. + 1 << F::EXP_BITS + } else { + // Otherwise, account for the scaling we just did. + e - scale_i as i32 + }; + } + + e -= Self::EXP_UNBIAS as i32; + + // Absolute value, set the implicit bit, and shift to create a guard bit + ix &= F::SIG_MASK; + ix |= F::IMPLICIT_BIT; + ix <<= 1; + + Self { m: ix, e, neg } + } + + /// True if the value was zero, infinity, or NaN. + fn is_zero_nan_inf(self) -> bool { + self.e >= Self::ZERO_INF_NAN as i32 + } + + /// The only value we have + fn is_zero(self) -> bool { + // The only exponent that strictly exceeds this value is our sentinel value for zero. + self.e > Self::ZERO_INF_NAN as i32 + } +} |
