diff options
Diffstat (limited to 'library/core/src/alloc/global.rs')
| -rw-r--r-- | library/core/src/alloc/global.rs | 208 |
1 files changed, 208 insertions, 0 deletions
diff --git a/library/core/src/alloc/global.rs b/library/core/src/alloc/global.rs new file mode 100644 index 00000000000..c198797e650 --- /dev/null +++ b/library/core/src/alloc/global.rs @@ -0,0 +1,208 @@ +use crate::alloc::Layout; +use crate::cmp; +use crate::ptr; + +/// A memory allocator that can be registered as the standard library’s default +/// through the `#[global_allocator]` attribute. +/// +/// Some of the methods require that a memory block be *currently +/// allocated* via an allocator. This means that: +/// +/// * the starting address for that memory block was previously +/// returned by a previous call to an allocation method +/// such as `alloc`, and +/// +/// * the memory block has not been subsequently deallocated, where +/// blocks are deallocated either by being passed to a deallocation +/// method such as `dealloc` or by being +/// passed to a reallocation method that returns a non-null pointer. +/// +/// +/// # Example +/// +/// ```no_run +/// use std::alloc::{GlobalAlloc, Layout, alloc}; +/// use std::ptr::null_mut; +/// +/// struct MyAllocator; +/// +/// unsafe impl GlobalAlloc for MyAllocator { +/// unsafe fn alloc(&self, _layout: Layout) -> *mut u8 { null_mut() } +/// unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {} +/// } +/// +/// #[global_allocator] +/// static A: MyAllocator = MyAllocator; +/// +/// fn main() { +/// unsafe { +/// assert!(alloc(Layout::new::<u32>()).is_null()) +/// } +/// } +/// ``` +/// +/// # Safety +/// +/// The `GlobalAlloc` trait is an `unsafe` trait for a number of reasons, and +/// implementors must ensure that they adhere to these contracts: +/// +/// * It's undefined behavior if global allocators unwind. This restriction may +/// be lifted in the future, but currently a panic from any of these +/// functions may lead to memory unsafety. +/// +/// * `Layout` queries and calculations in general must be correct. Callers of +/// this trait are allowed to rely on the contracts defined on each method, +/// and implementors must ensure such contracts remain true. +#[stable(feature = "global_alloc", since = "1.28.0")] +pub unsafe trait GlobalAlloc { + /// Allocate memory as described by the given `layout`. + /// + /// Returns a pointer to newly-allocated memory, + /// or null to indicate allocation failure. + /// + /// # Safety + /// + /// This function is unsafe because undefined behavior can result + /// if the caller does not ensure that `layout` has non-zero size. + /// + /// (Extension subtraits might provide more specific bounds on + /// behavior, e.g., guarantee a sentinel address or a null pointer + /// in response to a zero-size allocation request.) + /// + /// The allocated block of memory may or may not be initialized. + /// + /// # Errors + /// + /// Returning a null pointer indicates that either memory is exhausted + /// or `layout` does not meet this allocator's size or alignment constraints. + /// + /// Implementations are encouraged to return null on memory + /// exhaustion rather than aborting, but this is not + /// a strict requirement. (Specifically: it is *legal* to + /// implement this trait atop an underlying native allocation + /// library that aborts on memory exhaustion.) + /// + /// Clients wishing to abort computation in response to an + /// allocation error are encouraged to call the [`handle_alloc_error`] function, + /// rather than directly invoking `panic!` or similar. + /// + /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html + #[stable(feature = "global_alloc", since = "1.28.0")] + unsafe fn alloc(&self, layout: Layout) -> *mut u8; + + /// Deallocate the block of memory at the given `ptr` pointer with the given `layout`. + /// + /// # Safety + /// + /// This function is unsafe because undefined behavior can result + /// if the caller does not ensure all of the following: + /// + /// * `ptr` must denote a block of memory currently allocated via + /// this allocator, + /// + /// * `layout` must be the same layout that was used + /// to allocate that block of memory, + #[stable(feature = "global_alloc", since = "1.28.0")] + unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout); + + /// Behaves like `alloc`, but also ensures that the contents + /// are set to zero before being returned. + /// + /// # Safety + /// + /// This function is unsafe for the same reasons that `alloc` is. + /// However the allocated block of memory is guaranteed to be initialized. + /// + /// # Errors + /// + /// Returning a null pointer indicates that either memory is exhausted + /// or `layout` does not meet allocator's size or alignment constraints, + /// just as in `alloc`. + /// + /// Clients wishing to abort computation in response to an + /// allocation error are encouraged to call the [`handle_alloc_error`] function, + /// rather than directly invoking `panic!` or similar. + /// + /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html + #[stable(feature = "global_alloc", since = "1.28.0")] + unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 { + let size = layout.size(); + // SAFETY: the safety contract for `alloc` must be upheld by the caller. + let ptr = unsafe { self.alloc(layout) }; + if !ptr.is_null() { + // SAFETY: as allocation succeeded, the region from `ptr` + // of size `size` is guaranteed to be valid for writes. + unsafe { ptr::write_bytes(ptr, 0, size) }; + } + ptr + } + + /// Shrink or grow a block of memory to the given `new_size`. + /// The block is described by the given `ptr` pointer and `layout`. + /// + /// If this returns a non-null pointer, then ownership of the memory block + /// referenced by `ptr` has been transferred to this allocator. + /// The memory may or may not have been deallocated, + /// and should be considered unusable (unless of course it was + /// transferred back to the caller again via the return value of + /// this method). The new memory block is allocated with `layout`, but + /// with the `size` updated to `new_size`. + /// + /// If this method returns null, then ownership of the memory + /// block has not been transferred to this allocator, and the + /// contents of the memory block are unaltered. + /// + /// # Safety + /// + /// This function is unsafe because undefined behavior can result + /// if the caller does not ensure all of the following: + /// + /// * `ptr` must be currently allocated via this allocator, + /// + /// * `layout` must be the same layout that was used + /// to allocate that block of memory, + /// + /// * `new_size` must be greater than zero. + /// + /// * `new_size`, when rounded up to the nearest multiple of `layout.align()`, + /// must not overflow (i.e., the rounded value must be less than `usize::MAX`). + /// + /// (Extension subtraits might provide more specific bounds on + /// behavior, e.g., guarantee a sentinel address or a null pointer + /// in response to a zero-size allocation request.) + /// + /// # Errors + /// + /// Returns null if the new layout does not meet the size + /// and alignment constraints of the allocator, or if reallocation + /// otherwise fails. + /// + /// Implementations are encouraged to return null on memory + /// exhaustion rather than panicking or aborting, but this is not + /// a strict requirement. (Specifically: it is *legal* to + /// implement this trait atop an underlying native allocation + /// library that aborts on memory exhaustion.) + /// + /// Clients wishing to abort computation in response to a + /// reallocation error are encouraged to call the [`handle_alloc_error`] function, + /// rather than directly invoking `panic!` or similar. + /// + /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html + #[stable(feature = "global_alloc", since = "1.28.0")] + unsafe fn realloc(&self, ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 { + // SAFETY: the caller must ensure that the `new_size` does not overflow. + // `layout.align()` comes from a `Layout` and is thus guaranteed to be valid. + let new_layout = unsafe { Layout::from_size_align_unchecked(new_size, layout.align()) }; + // SAFETY: the caller must ensure that `new_layout` is greater than zero. + let new_ptr = unsafe { self.alloc(new_layout) }; + if !new_ptr.is_null() { + // SAFETY: the previously allocated block cannot overlap the newly allocated block. + // The safety contract for `dealloc` must be upheld by the caller. + unsafe { + ptr::copy_nonoverlapping(ptr, new_ptr, cmp::min(layout.size(), new_size)); + self.dealloc(ptr, layout); + } + } + new_ptr + } +} |
