diff options
Diffstat (limited to 'library/core/src/ptr/mod.rs')
| -rw-r--r-- | library/core/src/ptr/mod.rs | 293 | 
1 files changed, 283 insertions, 10 deletions
diff --git a/library/core/src/ptr/mod.rs b/library/core/src/ptr/mod.rs index bd6c4daa509..35a909f6904 100644 --- a/library/core/src/ptr/mod.rs +++ b/library/core/src/ptr/mod.rs @@ -405,16 +405,6 @@ mod alignment; #[unstable(feature = "ptr_alignment_type", issue = "102070")] pub use alignment::Alignment; -#[stable(feature = "rust1", since = "1.0.0")] -#[doc(inline)] -pub use crate::intrinsics::copy; -#[stable(feature = "rust1", since = "1.0.0")] -#[doc(inline)] -pub use crate::intrinsics::copy_nonoverlapping; -#[stable(feature = "rust1", since = "1.0.0")] -#[doc(inline)] -pub use crate::intrinsics::write_bytes; - mod metadata; #[unstable(feature = "ptr_metadata", issue = "81513")] pub use metadata::{DynMetadata, Pointee, Thin, from_raw_parts, from_raw_parts_mut, metadata}; @@ -430,6 +420,289 @@ pub use unique::Unique; mod const_ptr; mod mut_ptr; +// Some functions are defined here because they accidentally got made +// available in this module on stable. See <https://github.com/rust-lang/rust/issues/15702>. +// (`transmute` also falls into this category, but it cannot be wrapped due to the +// check that `T` and `U` have the same size.) + +/// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source +/// and destination must *not* overlap. +/// +/// For regions of memory which might overlap, use [`copy`] instead. +/// +/// `copy_nonoverlapping` is semantically equivalent to C's [`memcpy`], but +/// with the source and destination arguments swapped, +/// and `count` counting the number of `T`s instead of bytes. +/// +/// The copy is "untyped" in the sense that data may be uninitialized or otherwise violate the +/// requirements of `T`. The initialization state is preserved exactly. +/// +/// [`memcpy`]: https://en.cppreference.com/w/c/string/byte/memcpy +/// +/// # Safety +/// +/// Behavior is undefined if any of the following conditions are violated: +/// +/// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes. +/// +/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes. +/// +/// * Both `src` and `dst` must be properly aligned. +/// +/// * The region of memory beginning at `src` with a size of `count * +/// size_of::<T>()` bytes must *not* overlap with the region of memory +/// beginning at `dst` with the same size. +/// +/// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of +/// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values +/// in the region beginning at `*src` and the region beginning at `*dst` can +/// [violate memory safety][read-ownership]. +/// +/// Note that even if the effectively copied size (`count * size_of::<T>()`) is +/// `0`, the pointers must be properly aligned. +/// +/// [`read`]: crate::ptr::read +/// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value +/// [valid]: crate::ptr#safety +/// +/// # Examples +/// +/// Manually implement [`Vec::append`]: +/// +/// ``` +/// use std::ptr; +/// +/// /// Moves all the elements of `src` into `dst`, leaving `src` empty. +/// fn append<T>(dst: &mut Vec<T>, src: &mut Vec<T>) { +/// let src_len = src.len(); +/// let dst_len = dst.len(); +/// +/// // Ensure that `dst` has enough capacity to hold all of `src`. +/// dst.reserve(src_len); +/// +/// unsafe { +/// // The call to add is always safe because `Vec` will never +/// // allocate more than `isize::MAX` bytes. +/// let dst_ptr = dst.as_mut_ptr().add(dst_len); +/// let src_ptr = src.as_ptr(); +/// +/// // Truncate `src` without dropping its contents. We do this first, +/// // to avoid problems in case something further down panics. +/// src.set_len(0); +/// +/// // The two regions cannot overlap because mutable references do +/// // not alias, and two different vectors cannot own the same +/// // memory. +/// ptr::copy_nonoverlapping(src_ptr, dst_ptr, src_len); +/// +/// // Notify `dst` that it now holds the contents of `src`. +/// dst.set_len(dst_len + src_len); +/// } +/// } +/// +/// let mut a = vec!['r']; +/// let mut b = vec!['u', 's', 't']; +/// +/// append(&mut a, &mut b); +/// +/// assert_eq!(a, &['r', 'u', 's', 't']); +/// assert!(b.is_empty()); +/// ``` +/// +/// [`Vec::append`]: ../../std/vec/struct.Vec.html#method.append +#[doc(alias = "memcpy")] +#[stable(feature = "rust1", since = "1.0.0")] +#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")] +#[inline(always)] +#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces +#[rustc_diagnostic_item = "ptr_copy_nonoverlapping"] +pub const unsafe fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize) { + ub_checks::assert_unsafe_precondition!( + check_language_ub, + "ptr::copy_nonoverlapping requires that both pointer arguments are aligned and non-null \ + and the specified memory ranges do not overlap", + ( + src: *const () = src as *const (), + dst: *mut () = dst as *mut (), + size: usize = size_of::<T>(), + align: usize = align_of::<T>(), + count: usize = count, + ) => { + let zero_size = count == 0 || size == 0; + ub_checks::maybe_is_aligned_and_not_null(src, align, zero_size) + && ub_checks::maybe_is_aligned_and_not_null(dst, align, zero_size) + && ub_checks::maybe_is_nonoverlapping(src, dst, size, count) + } + ); + + // SAFETY: the safety contract for `copy_nonoverlapping` must be + // upheld by the caller. + unsafe { crate::intrinsics::copy_nonoverlapping(src, dst, count) } +} + +/// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source +/// and destination may overlap. +/// +/// If the source and destination will *never* overlap, +/// [`copy_nonoverlapping`] can be used instead. +/// +/// `copy` is semantically equivalent to C's [`memmove`], but +/// with the source and destination arguments swapped, +/// and `count` counting the number of `T`s instead of bytes. +/// Copying takes place as if the bytes were copied from `src` +/// to a temporary array and then copied from the array to `dst`. +/// +/// The copy is "untyped" in the sense that data may be uninitialized or otherwise violate the +/// requirements of `T`. The initialization state is preserved exactly. +/// +/// [`memmove`]: https://en.cppreference.com/w/c/string/byte/memmove +/// +/// # Safety +/// +/// Behavior is undefined if any of the following conditions are violated: +/// +/// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes. +/// +/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes, and must remain valid even +/// when `src` is read for `count * size_of::<T>()` bytes. (This means if the memory ranges +/// overlap, the `dst` pointer must not be invalidated by `src` reads.) +/// +/// * Both `src` and `dst` must be properly aligned. +/// +/// Like [`read`], `copy` creates a bitwise copy of `T`, regardless of +/// whether `T` is [`Copy`]. If `T` is not [`Copy`], using both the values +/// in the region beginning at `*src` and the region beginning at `*dst` can +/// [violate memory safety][read-ownership]. +/// +/// Note that even if the effectively copied size (`count * size_of::<T>()`) is +/// `0`, the pointers must be properly aligned. +/// +/// [`read`]: crate::ptr::read +/// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value +/// [valid]: crate::ptr#safety +/// +/// # Examples +/// +/// Efficiently create a Rust vector from an unsafe buffer: +/// +/// ``` +/// use std::ptr; +/// +/// /// # Safety +/// /// +/// /// * `ptr` must be correctly aligned for its type and non-zero. +/// /// * `ptr` must be valid for reads of `elts` contiguous elements of type `T`. +/// /// * Those elements must not be used after calling this function unless `T: Copy`. +/// # #[allow(dead_code)] +/// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> { +/// let mut dst = Vec::with_capacity(elts); +/// +/// // SAFETY: Our precondition ensures the source is aligned and valid, +/// // and `Vec::with_capacity` ensures that we have usable space to write them. +/// unsafe { ptr::copy(ptr, dst.as_mut_ptr(), elts); } +/// +/// // SAFETY: We created it with this much capacity earlier, +/// // and the previous `copy` has initialized these elements. +/// unsafe { dst.set_len(elts); } +/// dst +/// } +/// ``` +#[doc(alias = "memmove")] +#[stable(feature = "rust1", since = "1.0.0")] +#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")] +#[inline(always)] +#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces +#[rustc_diagnostic_item = "ptr_copy"] +pub const unsafe fn copy<T>(src: *const T, dst: *mut T, count: usize) { + // SAFETY: the safety contract for `copy` must be upheld by the caller. + unsafe { + ub_checks::assert_unsafe_precondition!( + check_language_ub, + "ptr::copy requires that both pointer arguments are aligned and non-null", + ( + src: *const () = src as *const (), + dst: *mut () = dst as *mut (), + align: usize = align_of::<T>(), + zero_size: bool = T::IS_ZST || count == 0, + ) => + ub_checks::maybe_is_aligned_and_not_null(src, align, zero_size) + && ub_checks::maybe_is_aligned_and_not_null(dst, align, zero_size) + ); + crate::intrinsics::copy(src, dst, count) + } +} + +/// Sets `count * size_of::<T>()` bytes of memory starting at `dst` to +/// `val`. +/// +/// `write_bytes` is similar to C's [`memset`], but sets `count * +/// size_of::<T>()` bytes to `val`. +/// +/// [`memset`]: https://en.cppreference.com/w/c/string/byte/memset +/// +/// # Safety +/// +/// Behavior is undefined if any of the following conditions are violated: +/// +/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes. +/// +/// * `dst` must be properly aligned. +/// +/// Note that even if the effectively copied size (`count * size_of::<T>()`) is +/// `0`, the pointer must be properly aligned. +/// +/// Additionally, note that changing `*dst` in this way can easily lead to undefined behavior (UB) +/// later if the written bytes are not a valid representation of some `T`. For instance, the +/// following is an **incorrect** use of this function: +/// +/// ```rust,no_run +/// unsafe { +/// let mut value: u8 = 0; +/// let ptr: *mut bool = &mut value as *mut u8 as *mut bool; +/// let _bool = ptr.read(); // This is fine, `ptr` points to a valid `bool`. +/// ptr.write_bytes(42u8, 1); // This function itself does not cause UB... +/// let _bool = ptr.read(); // ...but it makes this operation UB! ⚠️ +/// } +/// ``` +/// +/// [valid]: crate::ptr#safety +/// +/// # Examples +/// +/// Basic usage: +/// +/// ``` +/// use std::ptr; +/// +/// let mut vec = vec![0u32; 4]; +/// unsafe { +/// let vec_ptr = vec.as_mut_ptr(); +/// ptr::write_bytes(vec_ptr, 0xfe, 2); +/// } +/// assert_eq!(vec, [0xfefefefe, 0xfefefefe, 0, 0]); +/// ``` +#[doc(alias = "memset")] +#[stable(feature = "rust1", since = "1.0.0")] +#[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")] +#[inline(always)] +#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces +#[rustc_diagnostic_item = "ptr_write_bytes"] +pub const unsafe fn write_bytes<T>(dst: *mut T, val: u8, count: usize) { + // SAFETY: the safety contract for `write_bytes` must be upheld by the caller. + unsafe { + ub_checks::assert_unsafe_precondition!( + check_language_ub, + "ptr::write_bytes requires that the destination pointer is aligned and non-null", + ( + addr: *const () = dst as *const (), + align: usize = align_of::<T>(), + zero_size: bool = T::IS_ZST || count == 0, + ) => ub_checks::maybe_is_aligned_and_not_null(addr, align, zero_size) + ); + crate::intrinsics::write_bytes(dst, val, count) + } +} + /// Executes the destructor (if any) of the pointed-to value. /// /// This is almost the same as calling [`ptr::read`] and discarding  | 
