about summary refs log tree commit diff
path: root/library/core/src/slice/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/core/src/slice/mod.rs')
-rw-r--r--library/core/src/slice/mod.rs6453
1 files changed, 6453 insertions, 0 deletions
diff --git a/library/core/src/slice/mod.rs b/library/core/src/slice/mod.rs
new file mode 100644
index 00000000000..9ed5a1f9622
--- /dev/null
+++ b/library/core/src/slice/mod.rs
@@ -0,0 +1,6453 @@
+// ignore-tidy-filelength
+// ignore-tidy-undocumented-unsafe
+
+//! Slice management and manipulation.
+//!
+//! For more details see [`std::slice`].
+//!
+//! [`std::slice`]: ../../std/slice/index.html
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+// How this module is organized.
+//
+// The library infrastructure for slices is fairly messy. There's
+// a lot of stuff defined here. Let's keep it clean.
+//
+// The layout of this file is thus:
+//
+// * Inherent methods. This is where most of the slice API resides.
+// * Implementations of a few common traits with important slice ops.
+// * Definitions of a bunch of iterators.
+// * Free functions.
+// * The `raw` and `bytes` submodules.
+// * Boilerplate trait implementations.
+
+use crate::cmp;
+use crate::cmp::Ordering::{self, Equal, Greater, Less};
+use crate::fmt;
+use crate::intrinsics::{assume, exact_div, is_aligned_and_not_null, unchecked_sub};
+use crate::iter::*;
+use crate::marker::{self, Copy, Send, Sized, Sync};
+use crate::mem;
+use crate::ops::{self, FnMut, Range};
+use crate::option::Option;
+use crate::option::Option::{None, Some};
+use crate::ptr::{self, NonNull};
+use crate::result::Result;
+use crate::result::Result::{Err, Ok};
+
+#[unstable(
+    feature = "slice_internals",
+    issue = "none",
+    reason = "exposed from core to be reused in std; use the memchr crate"
+)]
+/// Pure rust memchr implementation, taken from rust-memchr
+pub mod memchr;
+
+mod rotate;
+mod sort;
+
+//
+// Extension traits
+//
+
+#[lang = "slice"]
+#[cfg(not(test))]
+impl<T> [T] {
+    /// Returns the number of elements in the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let a = [1, 2, 3];
+    /// assert_eq!(a.len(), 3);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[rustc_const_stable(feature = "const_slice_len", since = "1.32.0")]
+    #[inline]
+    // SAFETY: const sound because we transmute out the length field as a usize (which it must be)
+    #[allow(unused_attributes)]
+    #[allow_internal_unstable(const_fn_union)]
+    pub const fn len(&self) -> usize {
+        unsafe { crate::ptr::Repr { rust: self }.raw.len }
+    }
+
+    /// Returns `true` if the slice has a length of 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let a = [1, 2, 3];
+    /// assert!(!a.is_empty());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.32.0")]
+    #[inline]
+    pub const fn is_empty(&self) -> bool {
+        self.len() == 0
+    }
+
+    /// Returns the first element of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert_eq!(Some(&10), v.first());
+    ///
+    /// let w: &[i32] = &[];
+    /// assert_eq!(None, w.first());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn first(&self) -> Option<&T> {
+        if let [first, ..] = self { Some(first) } else { None }
+    }
+
+    /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some(first) = x.first_mut() {
+    ///     *first = 5;
+    /// }
+    /// assert_eq!(x, &[5, 1, 2]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn first_mut(&mut self) -> Option<&mut T> {
+        if let [first, ..] = self { Some(first) } else { None }
+    }
+
+    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[0, 1, 2];
+    ///
+    /// if let Some((first, elements)) = x.split_first() {
+    ///     assert_eq!(first, &0);
+    ///     assert_eq!(elements, &[1, 2]);
+    /// }
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_first(&self) -> Option<(&T, &[T])> {
+        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
+    }
+
+    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some((first, elements)) = x.split_first_mut() {
+    ///     *first = 3;
+    ///     elements[0] = 4;
+    ///     elements[1] = 5;
+    /// }
+    /// assert_eq!(x, &[3, 4, 5]);
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
+        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
+    }
+
+    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[0, 1, 2];
+    ///
+    /// if let Some((last, elements)) = x.split_last() {
+    ///     assert_eq!(last, &2);
+    ///     assert_eq!(elements, &[0, 1]);
+    /// }
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_last(&self) -> Option<(&T, &[T])> {
+        if let [init @ .., last] = self { Some((last, init)) } else { None }
+    }
+
+    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some((last, elements)) = x.split_last_mut() {
+    ///     *last = 3;
+    ///     elements[0] = 4;
+    ///     elements[1] = 5;
+    /// }
+    /// assert_eq!(x, &[4, 5, 3]);
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
+        if let [init @ .., last] = self { Some((last, init)) } else { None }
+    }
+
+    /// Returns the last element of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert_eq!(Some(&30), v.last());
+    ///
+    /// let w: &[i32] = &[];
+    /// assert_eq!(None, w.last());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn last(&self) -> Option<&T> {
+        if let [.., last] = self { Some(last) } else { None }
+    }
+
+    /// Returns a mutable pointer to the last item in the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some(last) = x.last_mut() {
+    ///     *last = 10;
+    /// }
+    /// assert_eq!(x, &[0, 1, 10]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn last_mut(&mut self) -> Option<&mut T> {
+        if let [.., last] = self { Some(last) } else { None }
+    }
+
+    /// Returns a reference to an element or subslice depending on the type of
+    /// index.
+    ///
+    /// - If given a position, returns a reference to the element at that
+    ///   position or `None` if out of bounds.
+    /// - If given a range, returns the subslice corresponding to that range,
+    ///   or `None` if out of bounds.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert_eq!(Some(&40), v.get(1));
+    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
+    /// assert_eq!(None, v.get(3));
+    /// assert_eq!(None, v.get(0..4));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn get<I>(&self, index: I) -> Option<&I::Output>
+    where
+        I: SliceIndex<Self>,
+    {
+        index.get(self)
+    }
+
+    /// Returns a mutable reference to an element or subslice depending on the
+    /// type of index (see [`get`]) or `None` if the index is out of bounds.
+    ///
+    /// [`get`]: #method.get
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some(elem) = x.get_mut(1) {
+    ///     *elem = 42;
+    /// }
+    /// assert_eq!(x, &[0, 42, 2]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
+    where
+        I: SliceIndex<Self>,
+    {
+        index.get_mut(self)
+    }
+
+    /// Returns a reference to an element or subslice, without doing bounds
+    /// checking.
+    ///
+    /// This is generally not recommended, use with caution!
+    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
+    /// even if the resulting reference is not used.
+    /// For a safe alternative see [`get`].
+    ///
+    /// [`get`]: #method.get
+    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[1, 2, 4];
+    ///
+    /// unsafe {
+    ///     assert_eq!(x.get_unchecked(1), &2);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
+    where
+        I: SliceIndex<Self>,
+    {
+        // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
+        // the slice is dereferencable because `self` is a safe reference.
+        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
+        unsafe { &*index.get_unchecked(self) }
+    }
+
+    /// Returns a mutable reference to an element or subslice, without doing
+    /// bounds checking.
+    ///
+    /// This is generally not recommended, use with caution!
+    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
+    /// even if the resulting reference is not used.
+    /// For a safe alternative see [`get_mut`].
+    ///
+    /// [`get_mut`]: #method.get_mut
+    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [1, 2, 4];
+    ///
+    /// unsafe {
+    ///     let elem = x.get_unchecked_mut(1);
+    ///     *elem = 13;
+    /// }
+    /// assert_eq!(x, &[1, 13, 4]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
+    where
+        I: SliceIndex<Self>,
+    {
+        // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
+        // the slice is dereferencable because `self` is a safe reference.
+        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
+        unsafe { &mut *index.get_unchecked_mut(self) }
+    }
+
+    /// Returns a raw pointer to the slice's buffer.
+    ///
+    /// The caller must ensure that the slice outlives the pointer this
+    /// function returns, or else it will end up pointing to garbage.
+    ///
+    /// The caller must also ensure that the memory the pointer (non-transitively) points to
+    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
+    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
+    ///
+    /// Modifying the container referenced by this slice may cause its buffer
+    /// to be reallocated, which would also make any pointers to it invalid.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[1, 2, 4];
+    /// let x_ptr = x.as_ptr();
+    ///
+    /// unsafe {
+    ///     for i in 0..x.len() {
+    ///         assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
+    ///     }
+    /// }
+    /// ```
+    ///
+    /// [`as_mut_ptr`]: #method.as_mut_ptr
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
+    #[inline]
+    pub const fn as_ptr(&self) -> *const T {
+        self as *const [T] as *const T
+    }
+
+    /// Returns an unsafe mutable pointer to the slice's buffer.
+    ///
+    /// The caller must ensure that the slice outlives the pointer this
+    /// function returns, or else it will end up pointing to garbage.
+    ///
+    /// Modifying the container referenced by this slice may cause its buffer
+    /// to be reallocated, which would also make any pointers to it invalid.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [1, 2, 4];
+    /// let x_ptr = x.as_mut_ptr();
+    ///
+    /// unsafe {
+    ///     for i in 0..x.len() {
+    ///         *x_ptr.add(i) += 2;
+    ///     }
+    /// }
+    /// assert_eq!(x, &[3, 4, 6]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn as_mut_ptr(&mut self) -> *mut T {
+        self as *mut [T] as *mut T
+    }
+
+    /// Returns the two raw pointers spanning the slice.
+    ///
+    /// The returned range is half-open, which means that the end pointer
+    /// points *one past* the last element of the slice. This way, an empty
+    /// slice is represented by two equal pointers, and the difference between
+    /// the two pointers represents the size of the slice.
+    ///
+    /// See [`as_ptr`] for warnings on using these pointers. The end pointer
+    /// requires extra caution, as it does not point to a valid element in the
+    /// slice.
+    ///
+    /// This function is useful for interacting with foreign interfaces which
+    /// use two pointers to refer to a range of elements in memory, as is
+    /// common in C++.
+    ///
+    /// It can also be useful to check if a pointer to an element refers to an
+    /// element of this slice:
+    ///
+    /// ```
+    /// #![feature(slice_ptr_range)]
+    ///
+    /// let a = [1, 2, 3];
+    /// let x = &a[1] as *const _;
+    /// let y = &5 as *const _;
+    ///
+    /// assert!(a.as_ptr_range().contains(&x));
+    /// assert!(!a.as_ptr_range().contains(&y));
+    /// ```
+    ///
+    /// [`as_ptr`]: #method.as_ptr
+    #[unstable(feature = "slice_ptr_range", issue = "65807")]
+    #[inline]
+    pub fn as_ptr_range(&self) -> Range<*const T> {
+        // The `add` here is safe, because:
+        //
+        //   - Both pointers are part of the same object, as pointing directly
+        //     past the object also counts.
+        //
+        //   - The size of the slice is never larger than isize::MAX bytes, as
+        //     noted here:
+        //       - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
+        //       - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+        //       - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
+        //     (This doesn't seem normative yet, but the very same assumption is
+        //     made in many places, including the Index implementation of slices.)
+        //
+        //   - There is no wrapping around involved, as slices do not wrap past
+        //     the end of the address space.
+        //
+        // See the documentation of pointer::add.
+        let start = self.as_ptr();
+        let end = unsafe { start.add(self.len()) };
+        start..end
+    }
+
+    /// Returns the two unsafe mutable pointers spanning the slice.
+    ///
+    /// The returned range is half-open, which means that the end pointer
+    /// points *one past* the last element of the slice. This way, an empty
+    /// slice is represented by two equal pointers, and the difference between
+    /// the two pointers represents the size of the slice.
+    ///
+    /// See [`as_mut_ptr`] for warnings on using these pointers. The end
+    /// pointer requires extra caution, as it does not point to a valid element
+    /// in the slice.
+    ///
+    /// This function is useful for interacting with foreign interfaces which
+    /// use two pointers to refer to a range of elements in memory, as is
+    /// common in C++.
+    ///
+    /// [`as_mut_ptr`]: #method.as_mut_ptr
+    #[unstable(feature = "slice_ptr_range", issue = "65807")]
+    #[inline]
+    pub fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
+        // See as_ptr_range() above for why `add` here is safe.
+        let start = self.as_mut_ptr();
+        let end = unsafe { start.add(self.len()) };
+        start..end
+    }
+
+    /// Swaps two elements in the slice.
+    ///
+    /// # Arguments
+    ///
+    /// * a - The index of the first element
+    /// * b - The index of the second element
+    ///
+    /// # Panics
+    ///
+    /// Panics if `a` or `b` are out of bounds.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = ["a", "b", "c", "d"];
+    /// v.swap(1, 3);
+    /// assert!(v == ["a", "d", "c", "b"]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn swap(&mut self, a: usize, b: usize) {
+        unsafe {
+            // Can't take two mutable loans from one vector, so instead just cast
+            // them to their raw pointers to do the swap
+            let pa: *mut T = &mut self[a];
+            let pb: *mut T = &mut self[b];
+            ptr::swap(pa, pb);
+        }
+    }
+
+    /// Reverses the order of elements in the slice, in place.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [1, 2, 3];
+    /// v.reverse();
+    /// assert!(v == [3, 2, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn reverse(&mut self) {
+        let mut i: usize = 0;
+        let ln = self.len();
+
+        // For very small types, all the individual reads in the normal
+        // path perform poorly.  We can do better, given efficient unaligned
+        // load/store, by loading a larger chunk and reversing a register.
+
+        // Ideally LLVM would do this for us, as it knows better than we do
+        // whether unaligned reads are efficient (since that changes between
+        // different ARM versions, for example) and what the best chunk size
+        // would be.  Unfortunately, as of LLVM 4.0 (2017-05) it only unrolls
+        // the loop, so we need to do this ourselves.  (Hypothesis: reverse
+        // is troublesome because the sides can be aligned differently --
+        // will be, when the length is odd -- so there's no way of emitting
+        // pre- and postludes to use fully-aligned SIMD in the middle.)
+
+        let fast_unaligned = cfg!(any(target_arch = "x86", target_arch = "x86_64"));
+
+        if fast_unaligned && mem::size_of::<T>() == 1 {
+            // Use the llvm.bswap intrinsic to reverse u8s in a usize
+            let chunk = mem::size_of::<usize>();
+            while i + chunk - 1 < ln / 2 {
+                unsafe {
+                    let pa: *mut T = self.get_unchecked_mut(i);
+                    let pb: *mut T = self.get_unchecked_mut(ln - i - chunk);
+                    let va = ptr::read_unaligned(pa as *mut usize);
+                    let vb = ptr::read_unaligned(pb as *mut usize);
+                    ptr::write_unaligned(pa as *mut usize, vb.swap_bytes());
+                    ptr::write_unaligned(pb as *mut usize, va.swap_bytes());
+                }
+                i += chunk;
+            }
+        }
+
+        if fast_unaligned && mem::size_of::<T>() == 2 {
+            // Use rotate-by-16 to reverse u16s in a u32
+            let chunk = mem::size_of::<u32>() / 2;
+            while i + chunk - 1 < ln / 2 {
+                unsafe {
+                    let pa: *mut T = self.get_unchecked_mut(i);
+                    let pb: *mut T = self.get_unchecked_mut(ln - i - chunk);
+                    let va = ptr::read_unaligned(pa as *mut u32);
+                    let vb = ptr::read_unaligned(pb as *mut u32);
+                    ptr::write_unaligned(pa as *mut u32, vb.rotate_left(16));
+                    ptr::write_unaligned(pb as *mut u32, va.rotate_left(16));
+                }
+                i += chunk;
+            }
+        }
+
+        while i < ln / 2 {
+            // Unsafe swap to avoid the bounds check in safe swap.
+            unsafe {
+                let pa: *mut T = self.get_unchecked_mut(i);
+                let pb: *mut T = self.get_unchecked_mut(ln - i - 1);
+                ptr::swap(pa, pb);
+            }
+            i += 1;
+        }
+    }
+
+    /// Returns an iterator over the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[1, 2, 4];
+    /// let mut iterator = x.iter();
+    ///
+    /// assert_eq!(iterator.next(), Some(&1));
+    /// assert_eq!(iterator.next(), Some(&2));
+    /// assert_eq!(iterator.next(), Some(&4));
+    /// assert_eq!(iterator.next(), None);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn iter(&self) -> Iter<'_, T> {
+        unsafe {
+            let ptr = self.as_ptr();
+            assume(!ptr.is_null());
+
+            let end = if mem::size_of::<T>() == 0 {
+                (ptr as *const u8).wrapping_add(self.len()) as *const T
+            } else {
+                ptr.add(self.len())
+            };
+
+            Iter { ptr: NonNull::new_unchecked(ptr as *mut T), end, _marker: marker::PhantomData }
+        }
+    }
+
+    /// Returns an iterator that allows modifying each value.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [1, 2, 4];
+    /// for elem in x.iter_mut() {
+    ///     *elem += 2;
+    /// }
+    /// assert_eq!(x, &[3, 4, 6]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
+        unsafe {
+            let ptr = self.as_mut_ptr();
+            assume(!ptr.is_null());
+
+            let end = if mem::size_of::<T>() == 0 {
+                (ptr as *mut u8).wrapping_add(self.len()) as *mut T
+            } else {
+                ptr.add(self.len())
+            };
+
+            IterMut { ptr: NonNull::new_unchecked(ptr), end, _marker: marker::PhantomData }
+        }
+    }
+
+    /// Returns an iterator over all contiguous windows of length
+    /// `size`. The windows overlap. If the slice is shorter than
+    /// `size`, the iterator returns no values.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = ['r', 'u', 's', 't'];
+    /// let mut iter = slice.windows(2);
+    /// assert_eq!(iter.next().unwrap(), &['r', 'u']);
+    /// assert_eq!(iter.next().unwrap(), &['u', 's']);
+    /// assert_eq!(iter.next().unwrap(), &['s', 't']);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If the slice is shorter than `size`:
+    ///
+    /// ```
+    /// let slice = ['f', 'o', 'o'];
+    /// let mut iter = slice.windows(4);
+    /// assert!(iter.next().is_none());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn windows(&self, size: usize) -> Windows<'_, T> {
+        assert!(size != 0);
+        Windows { v: self, size }
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+    /// beginning of the slice.
+    ///
+    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
+    /// slice, then the last chunk will not have length `chunk_size`.
+    ///
+    /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
+    /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
+    /// slice.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = ['l', 'o', 'r', 'e', 'm'];
+    /// let mut iter = slice.chunks(2);
+    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
+    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
+    /// assert_eq!(iter.next().unwrap(), &['m']);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// [`chunks_exact`]: #method.chunks_exact
+    /// [`rchunks`]: #method.rchunks
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
+        assert!(chunk_size != 0);
+        Chunks { v: self, chunk_size }
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+    /// beginning of the slice.
+    ///
+    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
+    /// length of the slice, then the last chunk will not have length `chunk_size`.
+    ///
+    /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
+    /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
+    /// the end of the slice.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = &mut [0, 0, 0, 0, 0];
+    /// let mut count = 1;
+    ///
+    /// for chunk in v.chunks_mut(2) {
+    ///     for elem in chunk.iter_mut() {
+    ///         *elem += count;
+    ///     }
+    ///     count += 1;
+    /// }
+    /// assert_eq!(v, &[1, 1, 2, 2, 3]);
+    /// ```
+    ///
+    /// [`chunks_exact_mut`]: #method.chunks_exact_mut
+    /// [`rchunks_mut`]: #method.rchunks_mut
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
+        assert!(chunk_size != 0);
+        ChunksMut { v: self, chunk_size }
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+    /// beginning of the slice.
+    ///
+    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
+    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
+    /// from the `remainder` function of the iterator.
+    ///
+    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
+    /// resulting code better than in the case of [`chunks`].
+    ///
+    /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
+    /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = ['l', 'o', 'r', 'e', 'm'];
+    /// let mut iter = slice.chunks_exact(2);
+    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
+    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
+    /// assert!(iter.next().is_none());
+    /// assert_eq!(iter.remainder(), &['m']);
+    /// ```
+    ///
+    /// [`chunks`]: #method.chunks
+    /// [`rchunks_exact`]: #method.rchunks_exact
+    #[stable(feature = "chunks_exact", since = "1.31.0")]
+    #[inline]
+    pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
+        assert!(chunk_size != 0);
+        let rem = self.len() % chunk_size;
+        let len = self.len() - rem;
+        let (fst, snd) = self.split_at(len);
+        ChunksExact { v: fst, rem: snd, chunk_size }
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+    /// beginning of the slice.
+    ///
+    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
+    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
+    /// retrieved from the `into_remainder` function of the iterator.
+    ///
+    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
+    /// resulting code better than in the case of [`chunks_mut`].
+    ///
+    /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
+    /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
+    /// the slice.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = &mut [0, 0, 0, 0, 0];
+    /// let mut count = 1;
+    ///
+    /// for chunk in v.chunks_exact_mut(2) {
+    ///     for elem in chunk.iter_mut() {
+    ///         *elem += count;
+    ///     }
+    ///     count += 1;
+    /// }
+    /// assert_eq!(v, &[1, 1, 2, 2, 0]);
+    /// ```
+    ///
+    /// [`chunks_mut`]: #method.chunks_mut
+    /// [`rchunks_exact_mut`]: #method.rchunks_exact_mut
+    #[stable(feature = "chunks_exact", since = "1.31.0")]
+    #[inline]
+    pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
+        assert!(chunk_size != 0);
+        let rem = self.len() % chunk_size;
+        let len = self.len() - rem;
+        let (fst, snd) = self.split_at_mut(len);
+        ChunksExactMut { v: fst, rem: snd, chunk_size }
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
+    /// of the slice.
+    ///
+    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
+    /// slice, then the last chunk will not have length `chunk_size`.
+    ///
+    /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
+    /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
+    /// of the slice.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = ['l', 'o', 'r', 'e', 'm'];
+    /// let mut iter = slice.rchunks(2);
+    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
+    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
+    /// assert_eq!(iter.next().unwrap(), &['l']);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// [`rchunks_exact`]: #method.rchunks_exact
+    /// [`chunks`]: #method.chunks
+    #[stable(feature = "rchunks", since = "1.31.0")]
+    #[inline]
+    pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
+        assert!(chunk_size != 0);
+        RChunks { v: self, chunk_size }
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
+    /// of the slice.
+    ///
+    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
+    /// length of the slice, then the last chunk will not have length `chunk_size`.
+    ///
+    /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
+    /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
+    /// beginning of the slice.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = &mut [0, 0, 0, 0, 0];
+    /// let mut count = 1;
+    ///
+    /// for chunk in v.rchunks_mut(2) {
+    ///     for elem in chunk.iter_mut() {
+    ///         *elem += count;
+    ///     }
+    ///     count += 1;
+    /// }
+    /// assert_eq!(v, &[3, 2, 2, 1, 1]);
+    /// ```
+    ///
+    /// [`rchunks_exact_mut`]: #method.rchunks_exact_mut
+    /// [`chunks_mut`]: #method.chunks_mut
+    #[stable(feature = "rchunks", since = "1.31.0")]
+    #[inline]
+    pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
+        assert!(chunk_size != 0);
+        RChunksMut { v: self, chunk_size }
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+    /// end of the slice.
+    ///
+    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
+    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
+    /// from the `remainder` function of the iterator.
+    ///
+    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
+    /// resulting code better than in the case of [`chunks`].
+    ///
+    /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
+    /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
+    /// slice.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = ['l', 'o', 'r', 'e', 'm'];
+    /// let mut iter = slice.rchunks_exact(2);
+    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
+    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
+    /// assert!(iter.next().is_none());
+    /// assert_eq!(iter.remainder(), &['l']);
+    /// ```
+    ///
+    /// [`chunks`]: #method.chunks
+    /// [`rchunks`]: #method.rchunks
+    /// [`chunks_exact`]: #method.chunks_exact
+    #[stable(feature = "rchunks", since = "1.31.0")]
+    #[inline]
+    pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
+        assert!(chunk_size != 0);
+        let rem = self.len() % chunk_size;
+        let (fst, snd) = self.split_at(rem);
+        RChunksExact { v: snd, rem: fst, chunk_size }
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
+    /// of the slice.
+    ///
+    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
+    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
+    /// retrieved from the `into_remainder` function of the iterator.
+    ///
+    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
+    /// resulting code better than in the case of [`chunks_mut`].
+    ///
+    /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
+    /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
+    /// of the slice.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = &mut [0, 0, 0, 0, 0];
+    /// let mut count = 1;
+    ///
+    /// for chunk in v.rchunks_exact_mut(2) {
+    ///     for elem in chunk.iter_mut() {
+    ///         *elem += count;
+    ///     }
+    ///     count += 1;
+    /// }
+    /// assert_eq!(v, &[0, 2, 2, 1, 1]);
+    /// ```
+    ///
+    /// [`chunks_mut`]: #method.chunks_mut
+    /// [`rchunks_mut`]: #method.rchunks_mut
+    /// [`chunks_exact_mut`]: #method.chunks_exact_mut
+    #[stable(feature = "rchunks", since = "1.31.0")]
+    #[inline]
+    pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
+        assert!(chunk_size != 0);
+        let rem = self.len() % chunk_size;
+        let (fst, snd) = self.split_at_mut(rem);
+        RChunksExactMut { v: snd, rem: fst, chunk_size }
+    }
+
+    /// Divides one slice into two at an index.
+    ///
+    /// The first will contain all indices from `[0, mid)` (excluding
+    /// the index `mid` itself) and the second will contain all
+    /// indices from `[mid, len)` (excluding the index `len` itself).
+    ///
+    /// # Panics
+    ///
+    /// Panics if `mid > len`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [1, 2, 3, 4, 5, 6];
+    ///
+    /// {
+    ///    let (left, right) = v.split_at(0);
+    ///    assert!(left == []);
+    ///    assert!(right == [1, 2, 3, 4, 5, 6]);
+    /// }
+    ///
+    /// {
+    ///     let (left, right) = v.split_at(2);
+    ///     assert!(left == [1, 2]);
+    ///     assert!(right == [3, 4, 5, 6]);
+    /// }
+    ///
+    /// {
+    ///     let (left, right) = v.split_at(6);
+    ///     assert!(left == [1, 2, 3, 4, 5, 6]);
+    ///     assert!(right == []);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split_at(&self, mid: usize) -> (&[T], &[T]) {
+        (&self[..mid], &self[mid..])
+    }
+
+    /// Divides one mutable slice into two at an index.
+    ///
+    /// The first will contain all indices from `[0, mid)` (excluding
+    /// the index `mid` itself) and the second will contain all
+    /// indices from `[mid, len)` (excluding the index `len` itself).
+    ///
+    /// # Panics
+    ///
+    /// Panics if `mid > len`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [1, 0, 3, 0, 5, 6];
+    /// // scoped to restrict the lifetime of the borrows
+    /// {
+    ///     let (left, right) = v.split_at_mut(2);
+    ///     assert!(left == [1, 0]);
+    ///     assert!(right == [3, 0, 5, 6]);
+    ///     left[1] = 2;
+    ///     right[1] = 4;
+    /// }
+    /// assert!(v == [1, 2, 3, 4, 5, 6]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
+        let len = self.len();
+        let ptr = self.as_mut_ptr();
+
+        unsafe {
+            assert!(mid <= len);
+
+            (from_raw_parts_mut(ptr, mid), from_raw_parts_mut(ptr.add(mid), len - mid))
+        }
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`. The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = [10, 40, 33, 20];
+    /// let mut iter = slice.split(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
+    /// assert_eq!(iter.next().unwrap(), &[20]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If the first element is matched, an empty slice will be the first item
+    /// returned by the iterator. Similarly, if the last element in the slice
+    /// is matched, an empty slice will be the last item returned by the
+    /// iterator:
+    ///
+    /// ```
+    /// let slice = [10, 40, 33];
+    /// let mut iter = slice.split(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
+    /// assert_eq!(iter.next().unwrap(), &[]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If two matched elements are directly adjacent, an empty slice will be
+    /// present between them:
+    ///
+    /// ```
+    /// let slice = [10, 6, 33, 20];
+    /// let mut iter = slice.split(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10]);
+    /// assert_eq!(iter.next().unwrap(), &[]);
+    /// assert_eq!(iter.next().unwrap(), &[20]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        Split { v: self, pred, finished: false }
+    }
+
+    /// Returns an iterator over mutable subslices separated by elements that
+    /// match `pred`. The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.split_mut(|num| *num % 3 == 0) {
+    ///     group[0] = 1;
+    /// }
+    /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        SplitMut { v: self, pred, finished: false }
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`. The matched element is contained in the end of the previous
+    /// subslice as a terminator.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(split_inclusive)]
+    /// let slice = [10, 40, 33, 20];
+    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
+    /// assert_eq!(iter.next().unwrap(), &[20]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If the last element of the slice is matched,
+    /// that element will be considered the terminator of the preceding slice.
+    /// That slice will be the last item returned by the iterator.
+    ///
+    /// ```
+    /// #![feature(split_inclusive)]
+    /// let slice = [3, 10, 40, 33];
+    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[3]);
+    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    #[unstable(feature = "split_inclusive", issue = "72360")]
+    #[inline]
+    pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        SplitInclusive { v: self, pred, finished: false }
+    }
+
+    /// Returns an iterator over mutable subslices separated by elements that
+    /// match `pred`. The matched element is contained in the previous
+    /// subslice as a terminator.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(split_inclusive)]
+    /// let mut v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
+    ///     let terminator_idx = group.len()-1;
+    ///     group[terminator_idx] = 1;
+    /// }
+    /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
+    /// ```
+    #[unstable(feature = "split_inclusive", issue = "72360")]
+    #[inline]
+    pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        SplitInclusiveMut { v: self, pred, finished: false }
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`, starting at the end of the slice and working backwards.
+    /// The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = [11, 22, 33, 0, 44, 55];
+    /// let mut iter = slice.rsplit(|num| *num == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[44, 55]);
+    /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
+    /// assert_eq!(iter.next(), None);
+    /// ```
+    ///
+    /// As with `split()`, if the first or last element is matched, an empty
+    /// slice will be the first (or last) item returned by the iterator.
+    ///
+    /// ```
+    /// let v = &[0, 1, 1, 2, 3, 5, 8];
+    /// let mut it = v.rsplit(|n| *n % 2 == 0);
+    /// assert_eq!(it.next().unwrap(), &[]);
+    /// assert_eq!(it.next().unwrap(), &[3, 5]);
+    /// assert_eq!(it.next().unwrap(), &[1, 1]);
+    /// assert_eq!(it.next().unwrap(), &[]);
+    /// assert_eq!(it.next(), None);
+    /// ```
+    #[stable(feature = "slice_rsplit", since = "1.27.0")]
+    #[inline]
+    pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        RSplit { inner: self.split(pred) }
+    }
+
+    /// Returns an iterator over mutable subslices separated by elements that
+    /// match `pred`, starting at the end of the slice and working
+    /// backwards. The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [100, 400, 300, 200, 600, 500];
+    ///
+    /// let mut count = 0;
+    /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
+    ///     count += 1;
+    ///     group[0] = count;
+    /// }
+    /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
+    /// ```
+    ///
+    #[stable(feature = "slice_rsplit", since = "1.27.0")]
+    #[inline]
+    pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        RSplitMut { inner: self.split_mut(pred) }
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`, limited to returning at most `n` items. The matched element is
+    /// not contained in the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
+    /// `[20, 60, 50]`):
+    ///
+    /// ```
+    /// let v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.splitn(2, |num| *num % 3 == 0) {
+    ///     println!("{:?}", group);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        SplitN { inner: GenericSplitN { iter: self.split(pred), count: n } }
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`, limited to returning at most `n` items. The matched element is
+    /// not contained in the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
+    ///     group[0] = 1;
+    /// }
+    /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        SplitNMut { inner: GenericSplitN { iter: self.split_mut(pred), count: n } }
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred` limited to returning at most `n` items. This starts at the end of
+    /// the slice and works backwards. The matched element is not contained in
+    /// the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// Print the slice split once, starting from the end, by numbers divisible
+    /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
+    ///
+    /// ```
+    /// let v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
+    ///     println!("{:?}", group);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        RSplitN { inner: GenericSplitN { iter: self.rsplit(pred), count: n } }
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred` limited to returning at most `n` items. This starts at the end of
+    /// the slice and works backwards. The matched element is not contained in
+    /// the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut s = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
+    ///     group[0] = 1;
+    /// }
+    /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
+    where
+        F: FnMut(&T) -> bool,
+    {
+        RSplitNMut { inner: GenericSplitN { iter: self.rsplit_mut(pred), count: n } }
+    }
+
+    /// Returns `true` if the slice contains an element with the given value.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert!(v.contains(&30));
+    /// assert!(!v.contains(&50));
+    /// ```
+    ///
+    /// If you do not have an `&T`, but just an `&U` such that `T: Borrow<U>`
+    /// (e.g. `String: Borrow<str>`), you can use `iter().any`:
+    ///
+    /// ```
+    /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
+    /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
+    /// assert!(!v.iter().any(|e| e == "hi"));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn contains(&self, x: &T) -> bool
+    where
+        T: PartialEq,
+    {
+        x.slice_contains(self)
+    }
+
+    /// Returns `true` if `needle` is a prefix of the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert!(v.starts_with(&[10]));
+    /// assert!(v.starts_with(&[10, 40]));
+    /// assert!(!v.starts_with(&[50]));
+    /// assert!(!v.starts_with(&[10, 50]));
+    /// ```
+    ///
+    /// Always returns `true` if `needle` is an empty slice:
+    ///
+    /// ```
+    /// let v = &[10, 40, 30];
+    /// assert!(v.starts_with(&[]));
+    /// let v: &[u8] = &[];
+    /// assert!(v.starts_with(&[]));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn starts_with(&self, needle: &[T]) -> bool
+    where
+        T: PartialEq,
+    {
+        let n = needle.len();
+        self.len() >= n && needle == &self[..n]
+    }
+
+    /// Returns `true` if `needle` is a suffix of the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert!(v.ends_with(&[30]));
+    /// assert!(v.ends_with(&[40, 30]));
+    /// assert!(!v.ends_with(&[50]));
+    /// assert!(!v.ends_with(&[50, 30]));
+    /// ```
+    ///
+    /// Always returns `true` if `needle` is an empty slice:
+    ///
+    /// ```
+    /// let v = &[10, 40, 30];
+    /// assert!(v.ends_with(&[]));
+    /// let v: &[u8] = &[];
+    /// assert!(v.ends_with(&[]));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn ends_with(&self, needle: &[T]) -> bool
+    where
+        T: PartialEq,
+    {
+        let (m, n) = (self.len(), needle.len());
+        m >= n && needle == &self[m - n..]
+    }
+
+    /// Returns a subslice with the prefix removed.
+    ///
+    /// This method returns [`None`] if slice does not start with `prefix`.
+    /// Also it returns the original slice if `prefix` is an empty slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_strip)]
+    /// let v = &[10, 40, 30];
+    /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
+    /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
+    /// assert_eq!(v.strip_prefix(&[50]), None);
+    /// assert_eq!(v.strip_prefix(&[10, 50]), None);
+    /// ```
+    #[must_use = "returns the subslice without modifying the original"]
+    #[unstable(feature = "slice_strip", issue = "73413")]
+    pub fn strip_prefix(&self, prefix: &[T]) -> Option<&[T]>
+    where
+        T: PartialEq,
+    {
+        let n = prefix.len();
+        if n <= self.len() {
+            let (head, tail) = self.split_at(n);
+            if head == prefix {
+                return Some(tail);
+            }
+        }
+        None
+    }
+
+    /// Returns a subslice with the suffix removed.
+    ///
+    /// This method returns [`None`] if slice does not end with `suffix`.
+    /// Also it returns the original slice if `suffix` is an empty slice
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_strip)]
+    /// let v = &[10, 40, 30];
+    /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
+    /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
+    /// assert_eq!(v.strip_suffix(&[50]), None);
+    /// assert_eq!(v.strip_suffix(&[50, 30]), None);
+    /// ```
+    #[must_use = "returns the subslice without modifying the original"]
+    #[unstable(feature = "slice_strip", issue = "73413")]
+    pub fn strip_suffix(&self, suffix: &[T]) -> Option<&[T]>
+    where
+        T: PartialEq,
+    {
+        let (len, n) = (self.len(), suffix.len());
+        if n <= len {
+            let (head, tail) = self.split_at(len - n);
+            if tail == suffix {
+                return Some(head);
+            }
+        }
+        None
+    }
+
+    /// Binary searches this sorted slice for a given element.
+    ///
+    /// If the value is found then [`Result::Ok`] is returned, containing the
+    /// index of the matching element. If there are multiple matches, then any
+    /// one of the matches could be returned. If the value is not found then
+    /// [`Result::Err`] is returned, containing the index where a matching
+    /// element could be inserted while maintaining sorted order.
+    ///
+    /// # Examples
+    ///
+    /// Looks up a series of four elements. The first is found, with a
+    /// uniquely determined position; the second and third are not
+    /// found; the fourth could match any position in `[1, 4]`.
+    ///
+    /// ```
+    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+    ///
+    /// assert_eq!(s.binary_search(&13),  Ok(9));
+    /// assert_eq!(s.binary_search(&4),   Err(7));
+    /// assert_eq!(s.binary_search(&100), Err(13));
+    /// let r = s.binary_search(&1);
+    /// assert!(match r { Ok(1..=4) => true, _ => false, });
+    /// ```
+    ///
+    /// If you want to insert an item to a sorted vector, while maintaining
+    /// sort order:
+    ///
+    /// ```
+    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+    /// let num = 42;
+    /// let idx = s.binary_search(&num).unwrap_or_else(|x| x);
+    /// s.insert(idx, num);
+    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
+    where
+        T: Ord,
+    {
+        self.binary_search_by(|p| p.cmp(x))
+    }
+
+    /// Binary searches this sorted slice with a comparator function.
+    ///
+    /// The comparator function should implement an order consistent
+    /// with the sort order of the underlying slice, returning an
+    /// order code that indicates whether its argument is `Less`,
+    /// `Equal` or `Greater` the desired target.
+    ///
+    /// If the value is found then [`Result::Ok`] is returned, containing the
+    /// index of the matching element. If there are multiple matches, then any
+    /// one of the matches could be returned. If the value is not found then
+    /// [`Result::Err`] is returned, containing the index where a matching
+    /// element could be inserted while maintaining sorted order.
+    ///
+    /// # Examples
+    ///
+    /// Looks up a series of four elements. The first is found, with a
+    /// uniquely determined position; the second and third are not
+    /// found; the fourth could match any position in `[1, 4]`.
+    ///
+    /// ```
+    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+    ///
+    /// let seek = 13;
+    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
+    /// let seek = 4;
+    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
+    /// let seek = 100;
+    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
+    /// let seek = 1;
+    /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
+    /// assert!(match r { Ok(1..=4) => true, _ => false, });
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
+    where
+        F: FnMut(&'a T) -> Ordering,
+    {
+        let s = self;
+        let mut size = s.len();
+        if size == 0 {
+            return Err(0);
+        }
+        let mut base = 0usize;
+        while size > 1 {
+            let half = size / 2;
+            let mid = base + half;
+            // mid is always in [0, size), that means mid is >= 0 and < size.
+            // mid >= 0: by definition
+            // mid < size: mid = size / 2 + size / 4 + size / 8 ...
+            let cmp = f(unsafe { s.get_unchecked(mid) });
+            base = if cmp == Greater { base } else { mid };
+            size -= half;
+        }
+        // base is always in [0, size) because base <= mid.
+        let cmp = f(unsafe { s.get_unchecked(base) });
+        if cmp == Equal { Ok(base) } else { Err(base + (cmp == Less) as usize) }
+    }
+
+    /// Binary searches this sorted slice with a key extraction function.
+    ///
+    /// Assumes that the slice is sorted by the key, for instance with
+    /// [`sort_by_key`] using the same key extraction function.
+    ///
+    /// If the value is found then [`Result::Ok`] is returned, containing the
+    /// index of the matching element. If there are multiple matches, then any
+    /// one of the matches could be returned. If the value is not found then
+    /// [`Result::Err`] is returned, containing the index where a matching
+    /// element could be inserted while maintaining sorted order.
+    ///
+    /// [`sort_by_key`]: #method.sort_by_key
+    ///
+    /// # Examples
+    ///
+    /// Looks up a series of four elements in a slice of pairs sorted by
+    /// their second elements. The first is found, with a uniquely
+    /// determined position; the second and third are not found; the
+    /// fourth could match any position in `[1, 4]`.
+    ///
+    /// ```
+    /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
+    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
+    ///          (1, 21), (2, 34), (4, 55)];
+    ///
+    /// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
+    /// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
+    /// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
+    /// let r = s.binary_search_by_key(&1, |&(a,b)| b);
+    /// assert!(match r { Ok(1..=4) => true, _ => false, });
+    /// ```
+    #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
+    #[inline]
+    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
+    where
+        F: FnMut(&'a T) -> B,
+        B: Ord,
+    {
+        self.binary_search_by(|k| f(k).cmp(b))
+    }
+
+    /// Sorts the slice, but may not preserve the order of equal elements.
+    ///
+    /// This sort is unstable (i.e., may reorder equal elements), in-place
+    /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+    /// which combines the fast average case of randomized quicksort with the fast worst case of
+    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+    /// deterministic behavior.
+    ///
+    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
+    /// slice consists of several concatenated sorted sequences.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [-5, 4, 1, -3, 2];
+    ///
+    /// v.sort_unstable();
+    /// assert!(v == [-5, -3, 1, 2, 4]);
+    /// ```
+    ///
+    /// [pdqsort]: https://github.com/orlp/pdqsort
+    #[stable(feature = "sort_unstable", since = "1.20.0")]
+    #[inline]
+    pub fn sort_unstable(&mut self)
+    where
+        T: Ord,
+    {
+        sort::quicksort(self, |a, b| a.lt(b));
+    }
+
+    /// Sorts the slice with a comparator function, but may not preserve the order of equal
+    /// elements.
+    ///
+    /// This sort is unstable (i.e., may reorder equal elements), in-place
+    /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
+    ///
+    /// The comparator function must define a total ordering for the elements in the slice. If
+    /// the ordering is not total, the order of the elements is unspecified. An order is a
+    /// total order if it is (for all a, b and c):
+    ///
+    /// * total and antisymmetric: exactly one of a < b, a == b or a > b is true; and
+    /// * transitive, a < b and b < c implies a < c. The same must hold for both == and >.
+    ///
+    /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
+    /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
+    ///
+    /// ```
+    /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
+    /// floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
+    /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
+    /// ```
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+    /// which combines the fast average case of randomized quicksort with the fast worst case of
+    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+    /// deterministic behavior.
+    ///
+    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
+    /// slice consists of several concatenated sorted sequences.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [5, 4, 1, 3, 2];
+    /// v.sort_unstable_by(|a, b| a.cmp(b));
+    /// assert!(v == [1, 2, 3, 4, 5]);
+    ///
+    /// // reverse sorting
+    /// v.sort_unstable_by(|a, b| b.cmp(a));
+    /// assert!(v == [5, 4, 3, 2, 1]);
+    /// ```
+    ///
+    /// [pdqsort]: https://github.com/orlp/pdqsort
+    #[stable(feature = "sort_unstable", since = "1.20.0")]
+    #[inline]
+    pub fn sort_unstable_by<F>(&mut self, mut compare: F)
+    where
+        F: FnMut(&T, &T) -> Ordering,
+    {
+        sort::quicksort(self, |a, b| compare(a, b) == Ordering::Less);
+    }
+
+    /// Sorts the slice with a key extraction function, but may not preserve the order of equal
+    /// elements.
+    ///
+    /// This sort is unstable (i.e., may reorder equal elements), in-place
+    /// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case, where the key function is
+    /// *O*(*m*).
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+    /// which combines the fast average case of randomized quicksort with the fast worst case of
+    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+    /// deterministic behavior.
+    ///
+    /// Due to its key calling strategy, [`sort_unstable_by_key`](#method.sort_unstable_by_key)
+    /// is likely to be slower than [`sort_by_cached_key`](#method.sort_by_cached_key) in
+    /// cases where the key function is expensive.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [-5i32, 4, 1, -3, 2];
+    ///
+    /// v.sort_unstable_by_key(|k| k.abs());
+    /// assert!(v == [1, 2, -3, 4, -5]);
+    /// ```
+    ///
+    /// [pdqsort]: https://github.com/orlp/pdqsort
+    #[stable(feature = "sort_unstable", since = "1.20.0")]
+    #[inline]
+    pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
+    where
+        F: FnMut(&T) -> K,
+        K: Ord,
+    {
+        sort::quicksort(self, |a, b| f(a).lt(&f(b)));
+    }
+
+    /// Reorder the slice such that the element at `index` is at its final sorted position.
+    ///
+    /// This reordering has the additional property that any value at position `i < index` will be
+    /// less than or equal to any value at a position `j > index`. Additionally, this reordering is
+    /// unstable (i.e. any number of equal elements may end up at position `index`), in-place
+    /// (i.e. does not allocate), and *O*(*n*) worst-case. This function is also/ known as "kth
+    /// element" in other libraries. It returns a triplet of the following values: all elements less
+    /// than the one at the given index, the value at the given index, and all elements greater than
+    /// the one at the given index.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on the quickselect portion of the same quicksort algorithm
+    /// used for [`sort_unstable`].
+    ///
+    /// [`sort_unstable`]: #method.sort_unstable
+    ///
+    /// # Panics
+    ///
+    /// Panics when `index >= len()`, meaning it always panics on empty slices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_partition_at_index)]
+    ///
+    /// let mut v = [-5i32, 4, 1, -3, 2];
+    ///
+    /// // Find the median
+    /// v.partition_at_index(2);
+    ///
+    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
+    /// // about the specified index.
+    /// assert!(v == [-3, -5, 1, 2, 4] ||
+    ///         v == [-5, -3, 1, 2, 4] ||
+    ///         v == [-3, -5, 1, 4, 2] ||
+    ///         v == [-5, -3, 1, 4, 2]);
+    /// ```
+    #[unstable(feature = "slice_partition_at_index", issue = "55300")]
+    #[inline]
+    pub fn partition_at_index(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
+    where
+        T: Ord,
+    {
+        let mut f = |a: &T, b: &T| a.lt(b);
+        sort::partition_at_index(self, index, &mut f)
+    }
+
+    /// Reorder the slice with a comparator function such that the element at `index` is at its
+    /// final sorted position.
+    ///
+    /// This reordering has the additional property that any value at position `i < index` will be
+    /// less than or equal to any value at a position `j > index` using the comparator function.
+    /// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
+    /// position `index`), in-place (i.e. does not allocate), and *O*(*n*) worst-case. This function
+    /// is also known as "kth element" in other libraries. It returns a triplet of the following
+    /// values: all elements less than the one at the given index, the value at the given index,
+    /// and all elements greater than the one at the given index, using the provided comparator
+    /// function.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on the quickselect portion of the same quicksort algorithm
+    /// used for [`sort_unstable`].
+    ///
+    /// [`sort_unstable`]: #method.sort_unstable
+    ///
+    /// # Panics
+    ///
+    /// Panics when `index >= len()`, meaning it always panics on empty slices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_partition_at_index)]
+    ///
+    /// let mut v = [-5i32, 4, 1, -3, 2];
+    ///
+    /// // Find the median as if the slice were sorted in descending order.
+    /// v.partition_at_index_by(2, |a, b| b.cmp(a));
+    ///
+    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
+    /// // about the specified index.
+    /// assert!(v == [2, 4, 1, -5, -3] ||
+    ///         v == [2, 4, 1, -3, -5] ||
+    ///         v == [4, 2, 1, -5, -3] ||
+    ///         v == [4, 2, 1, -3, -5]);
+    /// ```
+    #[unstable(feature = "slice_partition_at_index", issue = "55300")]
+    #[inline]
+    pub fn partition_at_index_by<F>(
+        &mut self,
+        index: usize,
+        mut compare: F,
+    ) -> (&mut [T], &mut T, &mut [T])
+    where
+        F: FnMut(&T, &T) -> Ordering,
+    {
+        let mut f = |a: &T, b: &T| compare(a, b) == Less;
+        sort::partition_at_index(self, index, &mut f)
+    }
+
+    /// Reorder the slice with a key extraction function such that the element at `index` is at its
+    /// final sorted position.
+    ///
+    /// This reordering has the additional property that any value at position `i < index` will be
+    /// less than or equal to any value at a position `j > index` using the key extraction function.
+    /// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
+    /// position `index`), in-place (i.e. does not allocate), and *O*(*n*) worst-case. This function
+    /// is also known as "kth element" in other libraries. It returns a triplet of the following
+    /// values: all elements less than the one at the given index, the value at the given index, and
+    /// all elements greater than the one at the given index, using the provided key extraction
+    /// function.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on the quickselect portion of the same quicksort algorithm
+    /// used for [`sort_unstable`].
+    ///
+    /// [`sort_unstable`]: #method.sort_unstable
+    ///
+    /// # Panics
+    ///
+    /// Panics when `index >= len()`, meaning it always panics on empty slices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_partition_at_index)]
+    ///
+    /// let mut v = [-5i32, 4, 1, -3, 2];
+    ///
+    /// // Return the median as if the array were sorted according to absolute value.
+    /// v.partition_at_index_by_key(2, |a| a.abs());
+    ///
+    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
+    /// // about the specified index.
+    /// assert!(v == [1, 2, -3, 4, -5] ||
+    ///         v == [1, 2, -3, -5, 4] ||
+    ///         v == [2, 1, -3, 4, -5] ||
+    ///         v == [2, 1, -3, -5, 4]);
+    /// ```
+    #[unstable(feature = "slice_partition_at_index", issue = "55300")]
+    #[inline]
+    pub fn partition_at_index_by_key<K, F>(
+        &mut self,
+        index: usize,
+        mut f: F,
+    ) -> (&mut [T], &mut T, &mut [T])
+    where
+        F: FnMut(&T) -> K,
+        K: Ord,
+    {
+        let mut g = |a: &T, b: &T| f(a).lt(&f(b));
+        sort::partition_at_index(self, index, &mut g)
+    }
+
+    /// Moves all consecutive repeated elements to the end of the slice according to the
+    /// [`PartialEq`] trait implementation.
+    ///
+    /// Returns two slices. The first contains no consecutive repeated elements.
+    /// The second contains all the duplicates in no specified order.
+    ///
+    /// If the slice is sorted, the first returned slice contains no duplicates.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_partition_dedup)]
+    ///
+    /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
+    ///
+    /// let (dedup, duplicates) = slice.partition_dedup();
+    ///
+    /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
+    /// assert_eq!(duplicates, [2, 3, 1]);
+    /// ```
+    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
+    #[inline]
+    pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
+    where
+        T: PartialEq,
+    {
+        self.partition_dedup_by(|a, b| a == b)
+    }
+
+    /// Moves all but the first of consecutive elements to the end of the slice satisfying
+    /// a given equality relation.
+    ///
+    /// Returns two slices. The first contains no consecutive repeated elements.
+    /// The second contains all the duplicates in no specified order.
+    ///
+    /// The `same_bucket` function is passed references to two elements from the slice and
+    /// must determine if the elements compare equal. The elements are passed in opposite order
+    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
+    /// at the end of the slice.
+    ///
+    /// If the slice is sorted, the first returned slice contains no duplicates.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_partition_dedup)]
+    ///
+    /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
+    ///
+    /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
+    ///
+    /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
+    /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
+    /// ```
+    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
+    #[inline]
+    pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
+    where
+        F: FnMut(&mut T, &mut T) -> bool,
+    {
+        // Although we have a mutable reference to `self`, we cannot make
+        // *arbitrary* changes. The `same_bucket` calls could panic, so we
+        // must ensure that the slice is in a valid state at all times.
+        //
+        // The way that we handle this is by using swaps; we iterate
+        // over all the elements, swapping as we go so that at the end
+        // the elements we wish to keep are in the front, and those we
+        // wish to reject are at the back. We can then split the slice.
+        // This operation is still `O(n)`.
+        //
+        // Example: We start in this state, where `r` represents "next
+        // read" and `w` represents "next_write`.
+        //
+        //           r
+        //     +---+---+---+---+---+---+
+        //     | 0 | 1 | 1 | 2 | 3 | 3 |
+        //     +---+---+---+---+---+---+
+        //           w
+        //
+        // Comparing self[r] against self[w-1], this is not a duplicate, so
+        // we swap self[r] and self[w] (no effect as r==w) and then increment both
+        // r and w, leaving us with:
+        //
+        //               r
+        //     +---+---+---+---+---+---+
+        //     | 0 | 1 | 1 | 2 | 3 | 3 |
+        //     +---+---+---+---+---+---+
+        //               w
+        //
+        // Comparing self[r] against self[w-1], this value is a duplicate,
+        // so we increment `r` but leave everything else unchanged:
+        //
+        //                   r
+        //     +---+---+---+---+---+---+
+        //     | 0 | 1 | 1 | 2 | 3 | 3 |
+        //     +---+---+---+---+---+---+
+        //               w
+        //
+        // Comparing self[r] against self[w-1], this is not a duplicate,
+        // so swap self[r] and self[w] and advance r and w:
+        //
+        //                       r
+        //     +---+---+---+---+---+---+
+        //     | 0 | 1 | 2 | 1 | 3 | 3 |
+        //     +---+---+---+---+---+---+
+        //                   w
+        //
+        // Not a duplicate, repeat:
+        //
+        //                           r
+        //     +---+---+---+---+---+---+
+        //     | 0 | 1 | 2 | 3 | 1 | 3 |
+        //     +---+---+---+---+---+---+
+        //                       w
+        //
+        // Duplicate, advance r. End of slice. Split at w.
+
+        let len = self.len();
+        if len <= 1 {
+            return (self, &mut []);
+        }
+
+        let ptr = self.as_mut_ptr();
+        let mut next_read: usize = 1;
+        let mut next_write: usize = 1;
+
+        unsafe {
+            // Avoid bounds checks by using raw pointers.
+            while next_read < len {
+                let ptr_read = ptr.add(next_read);
+                let prev_ptr_write = ptr.add(next_write - 1);
+                if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
+                    if next_read != next_write {
+                        let ptr_write = prev_ptr_write.offset(1);
+                        mem::swap(&mut *ptr_read, &mut *ptr_write);
+                    }
+                    next_write += 1;
+                }
+                next_read += 1;
+            }
+        }
+
+        self.split_at_mut(next_write)
+    }
+
+    /// Moves all but the first of consecutive elements to the end of the slice that resolve
+    /// to the same key.
+    ///
+    /// Returns two slices. The first contains no consecutive repeated elements.
+    /// The second contains all the duplicates in no specified order.
+    ///
+    /// If the slice is sorted, the first returned slice contains no duplicates.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_partition_dedup)]
+    ///
+    /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
+    ///
+    /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
+    ///
+    /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
+    /// assert_eq!(duplicates, [21, 30, 13]);
+    /// ```
+    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
+    #[inline]
+    pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
+    where
+        F: FnMut(&mut T) -> K,
+        K: PartialEq,
+    {
+        self.partition_dedup_by(|a, b| key(a) == key(b))
+    }
+
+    /// Rotates the slice in-place such that the first `mid` elements of the
+    /// slice move to the end while the last `self.len() - mid` elements move to
+    /// the front. After calling `rotate_left`, the element previously at index
+    /// `mid` will become the first element in the slice.
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if `mid` is greater than the length of the
+    /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
+    /// rotation.
+    ///
+    /// # Complexity
+    ///
+    /// Takes linear (in `self.len()`) time.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+    /// a.rotate_left(2);
+    /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
+    /// ```
+    ///
+    /// Rotating a subslice:
+    ///
+    /// ```
+    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+    /// a[1..5].rotate_left(1);
+    /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
+    /// ```
+    #[stable(feature = "slice_rotate", since = "1.26.0")]
+    pub fn rotate_left(&mut self, mid: usize) {
+        assert!(mid <= self.len());
+        let k = self.len() - mid;
+
+        unsafe {
+            let p = self.as_mut_ptr();
+            rotate::ptr_rotate(mid, p.add(mid), k);
+        }
+    }
+
+    /// Rotates the slice in-place such that the first `self.len() - k`
+    /// elements of the slice move to the end while the last `k` elements move
+    /// to the front. After calling `rotate_right`, the element previously at
+    /// index `self.len() - k` will become the first element in the slice.
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if `k` is greater than the length of the
+    /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
+    /// rotation.
+    ///
+    /// # Complexity
+    ///
+    /// Takes linear (in `self.len()`) time.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+    /// a.rotate_right(2);
+    /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
+    /// ```
+    ///
+    /// Rotate a subslice:
+    ///
+    /// ```
+    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+    /// a[1..5].rotate_right(1);
+    /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
+    /// ```
+    #[stable(feature = "slice_rotate", since = "1.26.0")]
+    pub fn rotate_right(&mut self, k: usize) {
+        assert!(k <= self.len());
+        let mid = self.len() - k;
+
+        unsafe {
+            let p = self.as_mut_ptr();
+            rotate::ptr_rotate(mid, p.add(mid), k);
+        }
+    }
+
+    /// Fills `self` with elements by cloning `value`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_fill)]
+    ///
+    /// let mut buf = vec![0; 10];
+    /// buf.fill(1);
+    /// assert_eq!(buf, vec![1; 10]);
+    /// ```
+    #[unstable(feature = "slice_fill", issue = "70758")]
+    pub fn fill(&mut self, value: T)
+    where
+        T: Clone,
+    {
+        if let Some((last, elems)) = self.split_last_mut() {
+            for el in elems {
+                el.clone_from(&value);
+            }
+
+            *last = value
+        }
+    }
+
+    /// Copies the elements from `src` into `self`.
+    ///
+    /// The length of `src` must be the same as `self`.
+    ///
+    /// If `T` implements `Copy`, it can be more performant to use
+    /// [`copy_from_slice`].
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if the two slices have different lengths.
+    ///
+    /// # Examples
+    ///
+    /// Cloning two elements from a slice into another:
+    ///
+    /// ```
+    /// let src = [1, 2, 3, 4];
+    /// let mut dst = [0, 0];
+    ///
+    /// // Because the slices have to be the same length,
+    /// // we slice the source slice from four elements
+    /// // to two. It will panic if we don't do this.
+    /// dst.clone_from_slice(&src[2..]);
+    ///
+    /// assert_eq!(src, [1, 2, 3, 4]);
+    /// assert_eq!(dst, [3, 4]);
+    /// ```
+    ///
+    /// Rust enforces that there can only be one mutable reference with no
+    /// immutable references to a particular piece of data in a particular
+    /// scope. Because of this, attempting to use `clone_from_slice` on a
+    /// single slice will result in a compile failure:
+    ///
+    /// ```compile_fail
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
+    /// ```
+    ///
+    /// To work around this, we can use [`split_at_mut`] to create two distinct
+    /// sub-slices from a slice:
+    ///
+    /// ```
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// {
+    ///     let (left, right) = slice.split_at_mut(2);
+    ///     left.clone_from_slice(&right[1..]);
+    /// }
+    ///
+    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
+    /// ```
+    ///
+    /// [`copy_from_slice`]: #method.copy_from_slice
+    /// [`split_at_mut`]: #method.split_at_mut
+    #[stable(feature = "clone_from_slice", since = "1.7.0")]
+    pub fn clone_from_slice(&mut self, src: &[T])
+    where
+        T: Clone,
+    {
+        assert!(self.len() == src.len(), "destination and source slices have different lengths");
+        // NOTE: We need to explicitly slice them to the same length
+        // for bounds checking to be elided, and the optimizer will
+        // generate memcpy for simple cases (for example T = u8).
+        let len = self.len();
+        let src = &src[..len];
+        for i in 0..len {
+            self[i].clone_from(&src[i]);
+        }
+    }
+
+    /// Copies all elements from `src` into `self`, using a memcpy.
+    ///
+    /// The length of `src` must be the same as `self`.
+    ///
+    /// If `T` does not implement `Copy`, use [`clone_from_slice`].
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if the two slices have different lengths.
+    ///
+    /// # Examples
+    ///
+    /// Copying two elements from a slice into another:
+    ///
+    /// ```
+    /// let src = [1, 2, 3, 4];
+    /// let mut dst = [0, 0];
+    ///
+    /// // Because the slices have to be the same length,
+    /// // we slice the source slice from four elements
+    /// // to two. It will panic if we don't do this.
+    /// dst.copy_from_slice(&src[2..]);
+    ///
+    /// assert_eq!(src, [1, 2, 3, 4]);
+    /// assert_eq!(dst, [3, 4]);
+    /// ```
+    ///
+    /// Rust enforces that there can only be one mutable reference with no
+    /// immutable references to a particular piece of data in a particular
+    /// scope. Because of this, attempting to use `copy_from_slice` on a
+    /// single slice will result in a compile failure:
+    ///
+    /// ```compile_fail
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
+    /// ```
+    ///
+    /// To work around this, we can use [`split_at_mut`] to create two distinct
+    /// sub-slices from a slice:
+    ///
+    /// ```
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// {
+    ///     let (left, right) = slice.split_at_mut(2);
+    ///     left.copy_from_slice(&right[1..]);
+    /// }
+    ///
+    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
+    /// ```
+    ///
+    /// [`clone_from_slice`]: #method.clone_from_slice
+    /// [`split_at_mut`]: #method.split_at_mut
+    #[stable(feature = "copy_from_slice", since = "1.9.0")]
+    pub fn copy_from_slice(&mut self, src: &[T])
+    where
+        T: Copy,
+    {
+        assert_eq!(self.len(), src.len(), "destination and source slices have different lengths");
+        unsafe {
+            ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len());
+        }
+    }
+
+    /// Copies elements from one part of the slice to another part of itself,
+    /// using a memmove.
+    ///
+    /// `src` is the range within `self` to copy from. `dest` is the starting
+    /// index of the range within `self` to copy to, which will have the same
+    /// length as `src`. The two ranges may overlap. The ends of the two ranges
+    /// must be less than or equal to `self.len()`.
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if either range exceeds the end of the slice,
+    /// or if the end of `src` is before the start.
+    ///
+    /// # Examples
+    ///
+    /// Copying four bytes within a slice:
+    ///
+    /// ```
+    /// let mut bytes = *b"Hello, World!";
+    ///
+    /// bytes.copy_within(1..5, 8);
+    ///
+    /// assert_eq!(&bytes, b"Hello, Wello!");
+    /// ```
+    #[stable(feature = "copy_within", since = "1.37.0")]
+    #[track_caller]
+    pub fn copy_within<R: ops::RangeBounds<usize>>(&mut self, src: R, dest: usize)
+    where
+        T: Copy,
+    {
+        let src_start = match src.start_bound() {
+            ops::Bound::Included(&n) => n,
+            ops::Bound::Excluded(&n) => {
+                n.checked_add(1).unwrap_or_else(|| slice_index_overflow_fail())
+            }
+            ops::Bound::Unbounded => 0,
+        };
+        let src_end = match src.end_bound() {
+            ops::Bound::Included(&n) => {
+                n.checked_add(1).unwrap_or_else(|| slice_index_overflow_fail())
+            }
+            ops::Bound::Excluded(&n) => n,
+            ops::Bound::Unbounded => self.len(),
+        };
+        assert!(src_start <= src_end, "src end is before src start");
+        assert!(src_end <= self.len(), "src is out of bounds");
+        let count = src_end - src_start;
+        assert!(dest <= self.len() - count, "dest is out of bounds");
+        unsafe {
+            ptr::copy(self.as_ptr().add(src_start), self.as_mut_ptr().add(dest), count);
+        }
+    }
+
+    /// Swaps all elements in `self` with those in `other`.
+    ///
+    /// The length of `other` must be the same as `self`.
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if the two slices have different lengths.
+    ///
+    /// # Example
+    ///
+    /// Swapping two elements across slices:
+    ///
+    /// ```
+    /// let mut slice1 = [0, 0];
+    /// let mut slice2 = [1, 2, 3, 4];
+    ///
+    /// slice1.swap_with_slice(&mut slice2[2..]);
+    ///
+    /// assert_eq!(slice1, [3, 4]);
+    /// assert_eq!(slice2, [1, 2, 0, 0]);
+    /// ```
+    ///
+    /// Rust enforces that there can only be one mutable reference to a
+    /// particular piece of data in a particular scope. Because of this,
+    /// attempting to use `swap_with_slice` on a single slice will result in
+    /// a compile failure:
+    ///
+    /// ```compile_fail
+    /// let mut slice = [1, 2, 3, 4, 5];
+    /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
+    /// ```
+    ///
+    /// To work around this, we can use [`split_at_mut`] to create two distinct
+    /// mutable sub-slices from a slice:
+    ///
+    /// ```
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// {
+    ///     let (left, right) = slice.split_at_mut(2);
+    ///     left.swap_with_slice(&mut right[1..]);
+    /// }
+    ///
+    /// assert_eq!(slice, [4, 5, 3, 1, 2]);
+    /// ```
+    ///
+    /// [`split_at_mut`]: #method.split_at_mut
+    #[stable(feature = "swap_with_slice", since = "1.27.0")]
+    pub fn swap_with_slice(&mut self, other: &mut [T]) {
+        assert!(self.len() == other.len(), "destination and source slices have different lengths");
+        unsafe {
+            ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
+        }
+    }
+
+    /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
+    fn align_to_offsets<U>(&self) -> (usize, usize) {
+        // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
+        // lowest number of `T`s. And how many `T`s we need for each such "multiple".
+        //
+        // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
+        // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
+        // place of every 3 Ts in the `rest` slice. A bit more complicated.
+        //
+        // Formula to calculate this is:
+        //
+        // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
+        // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
+        //
+        // Expanded and simplified:
+        //
+        // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
+        // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
+        //
+        // Luckily since all this is constant-evaluated... performance here matters not!
+        #[inline]
+        fn gcd(a: usize, b: usize) -> usize {
+            use crate::intrinsics;
+            // iterative stein’s algorithm
+            // We should still make this `const fn` (and revert to recursive algorithm if we do)
+            // because relying on llvm to consteval all this is… well, it makes me uncomfortable.
+            let (ctz_a, mut ctz_b) = unsafe {
+                if a == 0 {
+                    return b;
+                }
+                if b == 0 {
+                    return a;
+                }
+                (intrinsics::cttz_nonzero(a), intrinsics::cttz_nonzero(b))
+            };
+            let k = ctz_a.min(ctz_b);
+            let mut a = a >> ctz_a;
+            let mut b = b;
+            loop {
+                // remove all factors of 2 from b
+                b >>= ctz_b;
+                if a > b {
+                    mem::swap(&mut a, &mut b);
+                }
+                b = b - a;
+                unsafe {
+                    if b == 0 {
+                        break;
+                    }
+                    ctz_b = intrinsics::cttz_nonzero(b);
+                }
+            }
+            a << k
+        }
+        let gcd: usize = gcd(mem::size_of::<T>(), mem::size_of::<U>());
+        let ts: usize = mem::size_of::<U>() / gcd;
+        let us: usize = mem::size_of::<T>() / gcd;
+
+        // Armed with this knowledge, we can find how many `U`s we can fit!
+        let us_len = self.len() / ts * us;
+        // And how many `T`s will be in the trailing slice!
+        let ts_len = self.len() % ts;
+        (us_len, ts_len)
+    }
+
+    /// Transmute the slice to a slice of another type, ensuring alignment of the types is
+    /// maintained.
+    ///
+    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
+    /// slice of a new type, and the suffix slice. The method may make the middle slice the greatest
+    /// length possible for a given type and input slice, but only your algorithm's performance
+    /// should depend on that, not its correctness. It is permissible for all of the input data to
+    /// be returned as the prefix or suffix slice.
+    ///
+    /// This method has no purpose when either input element `T` or output element `U` are
+    /// zero-sized and will return the original slice without splitting anything.
+    ///
+    /// # Safety
+    ///
+    /// This method is essentially a `transmute` with respect to the elements in the returned
+    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
+    ///
+    /// # Examples
+    ///
+    /// Basic usage:
+    ///
+    /// ```
+    /// unsafe {
+    ///     let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
+    ///     let (prefix, shorts, suffix) = bytes.align_to::<u16>();
+    ///     // less_efficient_algorithm_for_bytes(prefix);
+    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
+    ///     // less_efficient_algorithm_for_bytes(suffix);
+    /// }
+    /// ```
+    #[stable(feature = "slice_align_to", since = "1.30.0")]
+    pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
+        // Note that most of this function will be constant-evaluated,
+        if mem::size_of::<U>() == 0 || mem::size_of::<T>() == 0 {
+            // handle ZSTs specially, which is – don't handle them at all.
+            return (self, &[], &[]);
+        }
+
+        // First, find at what point do we split between the first and 2nd slice. Easy with
+        // ptr.align_offset.
+        let ptr = self.as_ptr();
+        let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
+        if offset > self.len() {
+            (self, &[], &[])
+        } else {
+            let (left, rest) = self.split_at(offset);
+            let (us_len, ts_len) = rest.align_to_offsets::<U>();
+            // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
+            // since the caller guarantees that we can transmute `T` to `U` safely.
+            unsafe {
+                (
+                    left,
+                    from_raw_parts(rest.as_ptr() as *const U, us_len),
+                    from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
+                )
+            }
+        }
+    }
+
+    /// Transmute the slice to a slice of another type, ensuring alignment of the types is
+    /// maintained.
+    ///
+    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
+    /// slice of a new type, and the suffix slice. The method may make the middle slice the greatest
+    /// length possible for a given type and input slice, but only your algorithm's performance
+    /// should depend on that, not its correctness. It is permissible for all of the input data to
+    /// be returned as the prefix or suffix slice.
+    ///
+    /// This method has no purpose when either input element `T` or output element `U` are
+    /// zero-sized and will return the original slice without splitting anything.
+    ///
+    /// # Safety
+    ///
+    /// This method is essentially a `transmute` with respect to the elements in the returned
+    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
+    ///
+    /// # Examples
+    ///
+    /// Basic usage:
+    ///
+    /// ```
+    /// unsafe {
+    ///     let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
+    ///     let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
+    ///     // less_efficient_algorithm_for_bytes(prefix);
+    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
+    ///     // less_efficient_algorithm_for_bytes(suffix);
+    /// }
+    /// ```
+    #[stable(feature = "slice_align_to", since = "1.30.0")]
+    pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
+        // Note that most of this function will be constant-evaluated,
+        if mem::size_of::<U>() == 0 || mem::size_of::<T>() == 0 {
+            // handle ZSTs specially, which is – don't handle them at all.
+            return (self, &mut [], &mut []);
+        }
+
+        // First, find at what point do we split between the first and 2nd slice. Easy with
+        // ptr.align_offset.
+        let ptr = self.as_ptr();
+        let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
+        if offset > self.len() {
+            (self, &mut [], &mut [])
+        } else {
+            let (left, rest) = self.split_at_mut(offset);
+            let (us_len, ts_len) = rest.align_to_offsets::<U>();
+            let rest_len = rest.len();
+            let mut_ptr = rest.as_mut_ptr();
+            // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
+            // SAFETY: see comments for `align_to`.
+            unsafe {
+                (
+                    left,
+                    from_raw_parts_mut(mut_ptr as *mut U, us_len),
+                    from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
+                )
+            }
+        }
+    }
+
+    /// Checks if the elements of this slice are sorted.
+    ///
+    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
+    /// slice yields exactly zero or one element, `true` is returned.
+    ///
+    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
+    /// implies that this function returns `false` if any two consecutive items are not
+    /// comparable.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(is_sorted)]
+    /// let empty: [i32; 0] = [];
+    ///
+    /// assert!([1, 2, 2, 9].is_sorted());
+    /// assert!(![1, 3, 2, 4].is_sorted());
+    /// assert!([0].is_sorted());
+    /// assert!(empty.is_sorted());
+    /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
+    /// ```
+    #[inline]
+    #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
+    pub fn is_sorted(&self) -> bool
+    where
+        T: PartialOrd,
+    {
+        self.is_sorted_by(|a, b| a.partial_cmp(b))
+    }
+
+    /// Checks if the elements of this slice are sorted using the given comparator function.
+    ///
+    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
+    /// function to determine the ordering of two elements. Apart from that, it's equivalent to
+    /// [`is_sorted`]; see its documentation for more information.
+    ///
+    /// [`is_sorted`]: #method.is_sorted
+    #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
+    pub fn is_sorted_by<F>(&self, mut compare: F) -> bool
+    where
+        F: FnMut(&T, &T) -> Option<Ordering>,
+    {
+        self.iter().is_sorted_by(|a, b| compare(*a, *b))
+    }
+
+    /// Checks if the elements of this slice are sorted using the given key extraction function.
+    ///
+    /// Instead of comparing the slice's elements directly, this function compares the keys of the
+    /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
+    /// documentation for more information.
+    ///
+    /// [`is_sorted`]: #method.is_sorted
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(is_sorted)]
+    ///
+    /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
+    /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
+    /// ```
+    #[inline]
+    #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
+    pub fn is_sorted_by_key<F, K>(&self, f: F) -> bool
+    where
+        F: FnMut(&T) -> K,
+        K: PartialOrd,
+    {
+        self.iter().is_sorted_by_key(f)
+    }
+
+    /// Returns the index of the partition point according to the given predicate
+    /// (the index of the first element of the second partition).
+    ///
+    /// The slice is assumed to be partitioned according to the given predicate.
+    /// This means that all elements for which the predicate returns true are at the start of the slice
+    /// and all elements for which the predicate returns false are at the end.
+    /// For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0
+    /// (all odd numbers are at the start, all even at the end).
+    ///
+    /// If this slice is not partitioned, the returned result is unspecified and meaningless,
+    /// as this method performs a kind of binary search.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(partition_point)]
+    ///
+    /// let v = [1, 2, 3, 3, 5, 6, 7];
+    /// let i = v.partition_point(|&x| x < 5);
+    ///
+    /// assert_eq!(i, 4);
+    /// assert!(v[..i].iter().all(|&x| x < 5));
+    /// assert!(v[i..].iter().all(|&x| !(x < 5)));
+    /// ```
+    #[unstable(feature = "partition_point", reason = "new API", issue = "73831")]
+    pub fn partition_point<P>(&self, mut pred: P) -> usize
+    where
+        P: FnMut(&T) -> bool,
+    {
+        let mut left = 0;
+        let mut right = self.len();
+
+        while left != right {
+            let mid = left + (right - left) / 2;
+            // SAFETY:
+            // When left < right, left <= mid < right.
+            // Therefore left always increases and right always decreases,
+            // and eigher of them is selected.
+            // In both cases left <= right is satisfied.
+            // Therefore if left < right in a step,
+            // left <= right is satisfied in the next step.
+            // Therefore as long as left != right, 0 <= left < right <= len is satisfied
+            // and if this case 0 <= mid < len is satisfied too.
+            let value = unsafe { self.get_unchecked(mid) };
+            if pred(value) {
+                left = mid + 1;
+            } else {
+                right = mid;
+            }
+        }
+
+        left
+    }
+}
+
+#[lang = "slice_u8"]
+#[cfg(not(test))]
+impl [u8] {
+    /// Checks if all bytes in this slice are within the ASCII range.
+    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+    #[inline]
+    pub fn is_ascii(&self) -> bool {
+        is_ascii(self)
+    }
+
+    /// Checks that two slices are an ASCII case-insensitive match.
+    ///
+    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
+    /// but without allocating and copying temporaries.
+    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+    #[inline]
+    pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool {
+        self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a.eq_ignore_ascii_case(b))
+    }
+
+    /// Converts this slice to its ASCII upper case equivalent in-place.
+    ///
+    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
+    /// but non-ASCII letters are unchanged.
+    ///
+    /// To return a new uppercased value without modifying the existing one, use
+    /// [`to_ascii_uppercase`].
+    ///
+    /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase
+    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+    #[inline]
+    pub fn make_ascii_uppercase(&mut self) {
+        for byte in self {
+            byte.make_ascii_uppercase();
+        }
+    }
+
+    /// Converts this slice to its ASCII lower case equivalent in-place.
+    ///
+    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
+    /// but non-ASCII letters are unchanged.
+    ///
+    /// To return a new lowercased value without modifying the existing one, use
+    /// [`to_ascii_lowercase`].
+    ///
+    /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase
+    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+    #[inline]
+    pub fn make_ascii_lowercase(&mut self) {
+        for byte in self {
+            byte.make_ascii_lowercase();
+        }
+    }
+}
+
+/// Returns `true` if any byte in the word `v` is nonascii (>= 128). Snarfed
+/// from `../str/mod.rs`, which does something similar for utf8 validation.
+#[inline]
+fn contains_nonascii(v: usize) -> bool {
+    const NONASCII_MASK: usize = 0x80808080_80808080u64 as usize;
+    (NONASCII_MASK & v) != 0
+}
+
+/// Optimized ASCII test that will use usize-at-a-time operations instead of
+/// byte-at-a-time operations (when possible).
+///
+/// The algorithm we use here is pretty simple. If `s` is too short, we just
+/// check each byte and be done with it. Otherwise:
+///
+/// - Read the first word with an unaligned load.
+/// - Align the pointer, read subsequent words until end with aligned loads.
+/// - If there's a tail, the last `usize` from `s` with an unaligned load.
+///
+/// If any of these loads produces something for which `contains_nonascii`
+/// (above) returns true, then we know the answer is false.
+#[inline]
+fn is_ascii(s: &[u8]) -> bool {
+    const USIZE_SIZE: usize = mem::size_of::<usize>();
+
+    let len = s.len();
+    let align_offset = s.as_ptr().align_offset(USIZE_SIZE);
+
+    // If we wouldn't gain anything from the word-at-a-time implementation, fall
+    // back to a scalar loop.
+    //
+    // We also do this for architectures where `size_of::<usize>()` isn't
+    // sufficient alignment for `usize`, because it's a weird edge case.
+    if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < mem::align_of::<usize>() {
+        return s.iter().all(|b| b.is_ascii());
+    }
+
+    // We always read the first word unaligned, which means `align_offset` is
+    // 0, we'd read the same value again for the aligned read.
+    let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset };
+
+    let start = s.as_ptr();
+    // SAFETY: We verify `len < USIZE_SIZE` above.
+    let first_word = unsafe { (start as *const usize).read_unaligned() };
+
+    if contains_nonascii(first_word) {
+        return false;
+    }
+    // We checked this above, somewhat implicitly. Note that `offset_to_aligned`
+    // is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked
+    // above.
+    debug_assert!(offset_to_aligned <= len);
+
+    // word_ptr is the (properly aligned) usize ptr we use to read the middle chunk of the slice.
+    let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize };
+
+    // `byte_pos` is the byte index of `word_ptr`, used for loop end checks.
+    let mut byte_pos = offset_to_aligned;
+
+    // Paranoia check about alignment, since we're about to do a bunch of
+    // unaligned loads. In practice this should be impossible barring a bug in
+    // `align_offset` though.
+    debug_assert_eq!((word_ptr as usize) % mem::align_of::<usize>(), 0);
+
+    while byte_pos <= len - USIZE_SIZE {
+        debug_assert!(
+            // Sanity check that the read is in bounds
+            (word_ptr as usize + USIZE_SIZE) <= (start.wrapping_add(len) as usize) &&
+            // And that our assumptions about `byte_pos` hold.
+            (word_ptr as usize) - (start as usize) == byte_pos
+        );
+
+        // Safety: We know `word_ptr` is properly aligned (because of
+        // `align_offset`), and we know that we have enough bytes between `word_ptr` and the end
+        let word = unsafe { word_ptr.read() };
+        if contains_nonascii(word) {
+            return false;
+        }
+
+        byte_pos += USIZE_SIZE;
+        // SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that
+        // after this `add`, `word_ptr` will be at most one-past-the-end.
+        word_ptr = unsafe { word_ptr.add(1) };
+    }
+
+    // If we have anything left over, it should be at-most 1 usize worth of bytes,
+    // which we check with a read_unaligned.
+    if byte_pos == len {
+        return true;
+    }
+
+    // Sanity check to ensure there really is only one `usize` left. This should
+    // be guaranteed by our loop condition.
+    debug_assert!(byte_pos < len && len - byte_pos < USIZE_SIZE);
+
+    // SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start.
+    let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() };
+
+    !contains_nonascii(last_word)
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, I> ops::Index<I> for [T]
+where
+    I: SliceIndex<[T]>,
+{
+    type Output = I::Output;
+
+    #[inline]
+    fn index(&self, index: I) -> &I::Output {
+        index.index(self)
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, I> ops::IndexMut<I> for [T]
+where
+    I: SliceIndex<[T]>,
+{
+    #[inline]
+    fn index_mut(&mut self, index: I) -> &mut I::Output {
+        index.index_mut(self)
+    }
+}
+
+#[inline(never)]
+#[cold]
+#[track_caller]
+fn slice_start_index_len_fail(index: usize, len: usize) -> ! {
+    panic!("range start index {} out of range for slice of length {}", index, len);
+}
+
+#[inline(never)]
+#[cold]
+#[track_caller]
+fn slice_end_index_len_fail(index: usize, len: usize) -> ! {
+    panic!("range end index {} out of range for slice of length {}", index, len);
+}
+
+#[inline(never)]
+#[cold]
+#[track_caller]
+fn slice_index_order_fail(index: usize, end: usize) -> ! {
+    panic!("slice index starts at {} but ends at {}", index, end);
+}
+
+#[inline(never)]
+#[cold]
+#[track_caller]
+fn slice_index_overflow_fail() -> ! {
+    panic!("attempted to index slice up to maximum usize");
+}
+
+mod private_slice_index {
+    use super::ops;
+    #[stable(feature = "slice_get_slice", since = "1.28.0")]
+    pub trait Sealed {}
+
+    #[stable(feature = "slice_get_slice", since = "1.28.0")]
+    impl Sealed for usize {}
+    #[stable(feature = "slice_get_slice", since = "1.28.0")]
+    impl Sealed for ops::Range<usize> {}
+    #[stable(feature = "slice_get_slice", since = "1.28.0")]
+    impl Sealed for ops::RangeTo<usize> {}
+    #[stable(feature = "slice_get_slice", since = "1.28.0")]
+    impl Sealed for ops::RangeFrom<usize> {}
+    #[stable(feature = "slice_get_slice", since = "1.28.0")]
+    impl Sealed for ops::RangeFull {}
+    #[stable(feature = "slice_get_slice", since = "1.28.0")]
+    impl Sealed for ops::RangeInclusive<usize> {}
+    #[stable(feature = "slice_get_slice", since = "1.28.0")]
+    impl Sealed for ops::RangeToInclusive<usize> {}
+}
+
+/// A helper trait used for indexing operations.
+///
+/// Implementations of this trait have to promise that if the argument
+/// to `get_(mut_)unchecked` is a safe reference, then so is the result.
+#[stable(feature = "slice_get_slice", since = "1.28.0")]
+#[rustc_on_unimplemented(
+    on(T = "str", label = "string indices are ranges of `usize`",),
+    on(
+        all(any(T = "str", T = "&str", T = "std::string::String"), _Self = "{integer}"),
+        note = "you can use `.chars().nth()` or `.bytes().nth()`
+see chapter in The Book <https://doc.rust-lang.org/book/ch08-02-strings.html#indexing-into-strings>"
+    ),
+    message = "the type `{T}` cannot be indexed by `{Self}`",
+    label = "slice indices are of type `usize` or ranges of `usize`"
+)]
+pub unsafe trait SliceIndex<T: ?Sized>: private_slice_index::Sealed {
+    /// The output type returned by methods.
+    #[stable(feature = "slice_get_slice", since = "1.28.0")]
+    type Output: ?Sized;
+
+    /// Returns a shared reference to the output at this location, if in
+    /// bounds.
+    #[unstable(feature = "slice_index_methods", issue = "none")]
+    fn get(self, slice: &T) -> Option<&Self::Output>;
+
+    /// Returns a mutable reference to the output at this location, if in
+    /// bounds.
+    #[unstable(feature = "slice_index_methods", issue = "none")]
+    fn get_mut(self, slice: &mut T) -> Option<&mut Self::Output>;
+
+    /// Returns a shared reference to the output at this location, without
+    /// performing any bounds checking.
+    /// Calling this method with an out-of-bounds index or a dangling `slice` pointer
+    /// is *[undefined behavior]* even if the resulting reference is not used.
+    ///
+    /// [undefined behavior]: ../../reference/behavior-considered-undefined.html
+    #[unstable(feature = "slice_index_methods", issue = "none")]
+    unsafe fn get_unchecked(self, slice: *const T) -> *const Self::Output;
+
+    /// Returns a mutable reference to the output at this location, without
+    /// performing any bounds checking.
+    /// Calling this method with an out-of-bounds index or a dangling `slice` pointer
+    /// is *[undefined behavior]* even if the resulting reference is not used.
+    ///
+    /// [undefined behavior]: ../../reference/behavior-considered-undefined.html
+    #[unstable(feature = "slice_index_methods", issue = "none")]
+    unsafe fn get_unchecked_mut(self, slice: *mut T) -> *mut Self::Output;
+
+    /// Returns a shared reference to the output at this location, panicking
+    /// if out of bounds.
+    #[unstable(feature = "slice_index_methods", issue = "none")]
+    #[track_caller]
+    fn index(self, slice: &T) -> &Self::Output;
+
+    /// Returns a mutable reference to the output at this location, panicking
+    /// if out of bounds.
+    #[unstable(feature = "slice_index_methods", issue = "none")]
+    #[track_caller]
+    fn index_mut(self, slice: &mut T) -> &mut Self::Output;
+}
+
+#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
+unsafe impl<T> SliceIndex<[T]> for usize {
+    type Output = T;
+
+    #[inline]
+    fn get(self, slice: &[T]) -> Option<&T> {
+        if self < slice.len() { unsafe { Some(&*self.get_unchecked(slice)) } } else { None }
+    }
+
+    #[inline]
+    fn get_mut(self, slice: &mut [T]) -> Option<&mut T> {
+        if self < slice.len() { unsafe { Some(&mut *self.get_unchecked_mut(slice)) } } else { None }
+    }
+
+    #[inline]
+    unsafe fn get_unchecked(self, slice: *const [T]) -> *const T {
+        // SAFETY: the caller guarantees that `slice` is not dangling, so it
+        // cannot be longer than `isize::MAX`. They also guarantee that
+        // `self` is in bounds of `slice` so `self` cannot overflow an `isize`,
+        // so the call to `add` is safe.
+        unsafe { slice.as_ptr().add(self) }
+    }
+
+    #[inline]
+    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut T {
+        // SAFETY: see comments for `get_unchecked` above.
+        unsafe { slice.as_mut_ptr().add(self) }
+    }
+
+    #[inline]
+    fn index(self, slice: &[T]) -> &T {
+        // N.B., use intrinsic indexing
+        &(*slice)[self]
+    }
+
+    #[inline]
+    fn index_mut(self, slice: &mut [T]) -> &mut T {
+        // N.B., use intrinsic indexing
+        &mut (*slice)[self]
+    }
+}
+
+#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
+unsafe impl<T> SliceIndex<[T]> for ops::Range<usize> {
+    type Output = [T];
+
+    #[inline]
+    fn get(self, slice: &[T]) -> Option<&[T]> {
+        if self.start > self.end || self.end > slice.len() {
+            None
+        } else {
+            unsafe { Some(&*self.get_unchecked(slice)) }
+        }
+    }
+
+    #[inline]
+    fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
+        if self.start > self.end || self.end > slice.len() {
+            None
+        } else {
+            unsafe { Some(&mut *self.get_unchecked_mut(slice)) }
+        }
+    }
+
+    #[inline]
+    unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
+        // SAFETY: the caller guarantees that `slice` is not dangling, so it
+        // cannot be longer than `isize::MAX`. They also guarantee that
+        // `self` is in bounds of `slice` so `self` cannot overflow an `isize`,
+        // so the call to `add` is safe.
+        unsafe { ptr::slice_from_raw_parts(slice.as_ptr().add(self.start), self.end - self.start) }
+    }
+
+    #[inline]
+    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
+        // SAFETY: see comments for `get_unchecked` above.
+        unsafe {
+            ptr::slice_from_raw_parts_mut(slice.as_mut_ptr().add(self.start), self.end - self.start)
+        }
+    }
+
+    #[inline]
+    fn index(self, slice: &[T]) -> &[T] {
+        if self.start > self.end {
+            slice_index_order_fail(self.start, self.end);
+        } else if self.end > slice.len() {
+            slice_end_index_len_fail(self.end, slice.len());
+        }
+        unsafe { &*self.get_unchecked(slice) }
+    }
+
+    #[inline]
+    fn index_mut(self, slice: &mut [T]) -> &mut [T] {
+        if self.start > self.end {
+            slice_index_order_fail(self.start, self.end);
+        } else if self.end > slice.len() {
+            slice_end_index_len_fail(self.end, slice.len());
+        }
+        unsafe { &mut *self.get_unchecked_mut(slice) }
+    }
+}
+
+#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
+unsafe impl<T> SliceIndex<[T]> for ops::RangeTo<usize> {
+    type Output = [T];
+
+    #[inline]
+    fn get(self, slice: &[T]) -> Option<&[T]> {
+        (0..self.end).get(slice)
+    }
+
+    #[inline]
+    fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
+        (0..self.end).get_mut(slice)
+    }
+
+    #[inline]
+    unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
+        // SAFETY: the caller has to uphold the safety contract for `get_unchecked`.
+        unsafe { (0..self.end).get_unchecked(slice) }
+    }
+
+    #[inline]
+    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
+        // SAFETY: the caller has to uphold the safety contract for `get_unchecked_mut`.
+        unsafe { (0..self.end).get_unchecked_mut(slice) }
+    }
+
+    #[inline]
+    fn index(self, slice: &[T]) -> &[T] {
+        (0..self.end).index(slice)
+    }
+
+    #[inline]
+    fn index_mut(self, slice: &mut [T]) -> &mut [T] {
+        (0..self.end).index_mut(slice)
+    }
+}
+
+#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
+unsafe impl<T> SliceIndex<[T]> for ops::RangeFrom<usize> {
+    type Output = [T];
+
+    #[inline]
+    fn get(self, slice: &[T]) -> Option<&[T]> {
+        (self.start..slice.len()).get(slice)
+    }
+
+    #[inline]
+    fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
+        (self.start..slice.len()).get_mut(slice)
+    }
+
+    #[inline]
+    unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
+        // SAFETY: the caller has to uphold the safety contract for `get_unchecked`.
+        unsafe { (self.start..slice.len()).get_unchecked(slice) }
+    }
+
+    #[inline]
+    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
+        // SAFETY: the caller has to uphold the safety contract for `get_unchecked_mut`.
+        unsafe { (self.start..slice.len()).get_unchecked_mut(slice) }
+    }
+
+    #[inline]
+    fn index(self, slice: &[T]) -> &[T] {
+        if self.start > slice.len() {
+            slice_start_index_len_fail(self.start, slice.len());
+        }
+        unsafe { &*self.get_unchecked(slice) }
+    }
+
+    #[inline]
+    fn index_mut(self, slice: &mut [T]) -> &mut [T] {
+        if self.start > slice.len() {
+            slice_start_index_len_fail(self.start, slice.len());
+        }
+        unsafe { &mut *self.get_unchecked_mut(slice) }
+    }
+}
+
+#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
+unsafe impl<T> SliceIndex<[T]> for ops::RangeFull {
+    type Output = [T];
+
+    #[inline]
+    fn get(self, slice: &[T]) -> Option<&[T]> {
+        Some(slice)
+    }
+
+    #[inline]
+    fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
+        Some(slice)
+    }
+
+    #[inline]
+    unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
+        slice
+    }
+
+    #[inline]
+    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
+        slice
+    }
+
+    #[inline]
+    fn index(self, slice: &[T]) -> &[T] {
+        slice
+    }
+
+    #[inline]
+    fn index_mut(self, slice: &mut [T]) -> &mut [T] {
+        slice
+    }
+}
+
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+unsafe impl<T> SliceIndex<[T]> for ops::RangeInclusive<usize> {
+    type Output = [T];
+
+    #[inline]
+    fn get(self, slice: &[T]) -> Option<&[T]> {
+        if *self.end() == usize::MAX { None } else { (*self.start()..self.end() + 1).get(slice) }
+    }
+
+    #[inline]
+    fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
+        if *self.end() == usize::MAX {
+            None
+        } else {
+            (*self.start()..self.end() + 1).get_mut(slice)
+        }
+    }
+
+    #[inline]
+    unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
+        // SAFETY: the caller has to uphold the safety contract for `get_unchecked`.
+        unsafe { (*self.start()..self.end() + 1).get_unchecked(slice) }
+    }
+
+    #[inline]
+    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
+        // SAFETY: the caller has to uphold the safety contract for `get_unchecked_mut`.
+        unsafe { (*self.start()..self.end() + 1).get_unchecked_mut(slice) }
+    }
+
+    #[inline]
+    fn index(self, slice: &[T]) -> &[T] {
+        if *self.end() == usize::MAX {
+            slice_index_overflow_fail();
+        }
+        (*self.start()..self.end() + 1).index(slice)
+    }
+
+    #[inline]
+    fn index_mut(self, slice: &mut [T]) -> &mut [T] {
+        if *self.end() == usize::MAX {
+            slice_index_overflow_fail();
+        }
+        (*self.start()..self.end() + 1).index_mut(slice)
+    }
+}
+
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+unsafe impl<T> SliceIndex<[T]> for ops::RangeToInclusive<usize> {
+    type Output = [T];
+
+    #[inline]
+    fn get(self, slice: &[T]) -> Option<&[T]> {
+        (0..=self.end).get(slice)
+    }
+
+    #[inline]
+    fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
+        (0..=self.end).get_mut(slice)
+    }
+
+    #[inline]
+    unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
+        // SAFETY: the caller has to uphold the safety contract for `get_unchecked`.
+        unsafe { (0..=self.end).get_unchecked(slice) }
+    }
+
+    #[inline]
+    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
+        // SAFETY: the caller has to uphold the safety contract for `get_unchecked_mut`.
+        unsafe { (0..=self.end).get_unchecked_mut(slice) }
+    }
+
+    #[inline]
+    fn index(self, slice: &[T]) -> &[T] {
+        (0..=self.end).index(slice)
+    }
+
+    #[inline]
+    fn index_mut(self, slice: &mut [T]) -> &mut [T] {
+        (0..=self.end).index_mut(slice)
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Common traits
+////////////////////////////////////////////////////////////////////////////////
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Default for &[T] {
+    /// Creates an empty slice.
+    fn default() -> Self {
+        &[]
+    }
+}
+
+#[stable(feature = "mut_slice_default", since = "1.5.0")]
+impl<T> Default for &mut [T] {
+    /// Creates a mutable empty slice.
+    fn default() -> Self {
+        &mut []
+    }
+}
+
+//
+// Iterators
+//
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> IntoIterator for &'a [T] {
+    type Item = &'a T;
+    type IntoIter = Iter<'a, T>;
+
+    fn into_iter(self) -> Iter<'a, T> {
+        self.iter()
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> IntoIterator for &'a mut [T] {
+    type Item = &'a mut T;
+    type IntoIter = IterMut<'a, T>;
+
+    fn into_iter(self) -> IterMut<'a, T> {
+        self.iter_mut()
+    }
+}
+
+// Macro helper functions
+#[inline(always)]
+fn size_from_ptr<T>(_: *const T) -> usize {
+    mem::size_of::<T>()
+}
+
+// Inlining is_empty and len makes a huge performance difference
+macro_rules! is_empty {
+    // The way we encode the length of a ZST iterator, this works both for ZST
+    // and non-ZST.
+    ($self: ident) => {
+        $self.ptr.as_ptr() as *const T == $self.end
+    };
+}
+
+// To get rid of some bounds checks (see `position`), we compute the length in a somewhat
+// unexpected way. (Tested by `codegen/slice-position-bounds-check`.)
+macro_rules! len {
+    ($self: ident) => {{
+        #![allow(unused_unsafe)] // we're sometimes used within an unsafe block
+
+        let start = $self.ptr;
+        let size = size_from_ptr(start.as_ptr());
+        if size == 0 {
+            // This _cannot_ use `unchecked_sub` because we depend on wrapping
+            // to represent the length of long ZST slice iterators.
+            ($self.end as usize).wrapping_sub(start.as_ptr() as usize)
+        } else {
+            // We know that `start <= end`, so can do better than `offset_from`,
+            // which needs to deal in signed.  By setting appropriate flags here
+            // we can tell LLVM this, which helps it remove bounds checks.
+            // SAFETY: By the type invariant, `start <= end`
+            let diff = unsafe { unchecked_sub($self.end as usize, start.as_ptr() as usize) };
+            // By also telling LLVM that the pointers are apart by an exact
+            // multiple of the type size, it can optimize `len() == 0` down to
+            // `start == end` instead of `(end - start) < size`.
+            // SAFETY: By the type invariant, the pointers are aligned so the
+            //         distance between them must be a multiple of pointee size
+            unsafe { exact_div(diff, size) }
+        }
+    }};
+}
+
+// The shared definition of the `Iter` and `IterMut` iterators
+macro_rules! iterator {
+    (
+        struct $name:ident -> $ptr:ty,
+        $elem:ty,
+        $raw_mut:tt,
+        {$( $mut_:tt )*},
+        {$($extra:tt)*}
+    ) => {
+        // Returns the first element and moves the start of the iterator forwards by 1.
+        // Greatly improves performance compared to an inlined function. The iterator
+        // must not be empty.
+        macro_rules! next_unchecked {
+            ($self: ident) => {& $( $mut_ )* *$self.post_inc_start(1)}
+        }
+
+        // Returns the last element and moves the end of the iterator backwards by 1.
+        // Greatly improves performance compared to an inlined function. The iterator
+        // must not be empty.
+        macro_rules! next_back_unchecked {
+            ($self: ident) => {& $( $mut_ )* *$self.pre_dec_end(1)}
+        }
+
+        // Shrinks the iterator when T is a ZST, by moving the end of the iterator
+        // backwards by `n`. `n` must not exceed `self.len()`.
+        macro_rules! zst_shrink {
+            ($self: ident, $n: ident) => {
+                $self.end = ($self.end as * $raw_mut u8).wrapping_offset(-$n) as * $raw_mut T;
+            }
+        }
+
+        impl<'a, T> $name<'a, T> {
+            // Helper function for creating a slice from the iterator.
+            #[inline(always)]
+            fn make_slice(&self) -> &'a [T] {
+                unsafe { from_raw_parts(self.ptr.as_ptr(), len!(self)) }
+            }
+
+            // Helper function for moving the start of the iterator forwards by `offset` elements,
+            // returning the old start.
+            // Unsafe because the offset must not exceed `self.len()`.
+            #[inline(always)]
+            unsafe fn post_inc_start(&mut self, offset: isize) -> * $raw_mut T {
+                if mem::size_of::<T>() == 0 {
+                    zst_shrink!(self, offset);
+                    self.ptr.as_ptr()
+                } else {
+                    let old = self.ptr.as_ptr();
+                    // SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`,
+                    // so this new pointer is inside `self` and thus guaranteed to be non-null.
+                    self.ptr = unsafe { NonNull::new_unchecked(self.ptr.as_ptr().offset(offset)) };
+                    old
+                }
+            }
+
+            // Helper function for moving the end of the iterator backwards by `offset` elements,
+            // returning the new end.
+            // Unsafe because the offset must not exceed `self.len()`.
+            #[inline(always)]
+            unsafe fn pre_dec_end(&mut self, offset: isize) -> * $raw_mut T {
+                if mem::size_of::<T>() == 0 {
+                    zst_shrink!(self, offset);
+                    self.ptr.as_ptr()
+                } else {
+                    // SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`,
+                    // which is guaranteed to not overflow an `isize`. Also, the resulting pointer
+                    // is in bounds of `slice`, which fulfills the other requirements for `offset`.
+                    self.end = unsafe { self.end.offset(-offset) };
+                    self.end
+                }
+            }
+        }
+
+        #[stable(feature = "rust1", since = "1.0.0")]
+        impl<T> ExactSizeIterator for $name<'_, T> {
+            #[inline(always)]
+            fn len(&self) -> usize {
+                len!(self)
+            }
+
+            #[inline(always)]
+            fn is_empty(&self) -> bool {
+                is_empty!(self)
+            }
+        }
+
+        #[stable(feature = "rust1", since = "1.0.0")]
+        impl<'a, T> Iterator for $name<'a, T> {
+            type Item = $elem;
+
+            #[inline]
+            fn next(&mut self) -> Option<$elem> {
+                // could be implemented with slices, but this avoids bounds checks
+                unsafe {
+                    assume(!self.ptr.as_ptr().is_null());
+                    if mem::size_of::<T>() != 0 {
+                        assume(!self.end.is_null());
+                    }
+                    if is_empty!(self) {
+                        None
+                    } else {
+                        Some(next_unchecked!(self))
+                    }
+                }
+            }
+
+            #[inline]
+            fn size_hint(&self) -> (usize, Option<usize>) {
+                let exact = len!(self);
+                (exact, Some(exact))
+            }
+
+            #[inline]
+            fn count(self) -> usize {
+                len!(self)
+            }
+
+            #[inline]
+            fn nth(&mut self, n: usize) -> Option<$elem> {
+                if n >= len!(self) {
+                    // This iterator is now empty.
+                    if mem::size_of::<T>() == 0 {
+                        // We have to do it this way as `ptr` may never be 0, but `end`
+                        // could be (due to wrapping).
+                        self.end = self.ptr.as_ptr();
+                    } else {
+                        unsafe {
+                            // End can't be 0 if T isn't ZST because ptr isn't 0 and end >= ptr
+                            self.ptr = NonNull::new_unchecked(self.end as *mut T);
+                        }
+                    }
+                    return None;
+                }
+                // We are in bounds. `post_inc_start` does the right thing even for ZSTs.
+                unsafe {
+                    self.post_inc_start(n as isize);
+                    Some(next_unchecked!(self))
+                }
+            }
+
+            #[inline]
+            fn last(mut self) -> Option<$elem> {
+                self.next_back()
+            }
+
+            // We override the default implementation, which uses `try_fold`,
+            // because this simple implementation generates less LLVM IR and is
+            // faster to compile.
+            #[inline]
+            fn for_each<F>(mut self, mut f: F)
+            where
+                Self: Sized,
+                F: FnMut(Self::Item),
+            {
+                while let Some(x) = self.next() {
+                    f(x);
+                }
+            }
+
+            // We override the default implementation, which uses `try_fold`,
+            // because this simple implementation generates less LLVM IR and is
+            // faster to compile.
+            #[inline]
+            fn all<F>(&mut self, mut f: F) -> bool
+            where
+                Self: Sized,
+                F: FnMut(Self::Item) -> bool,
+            {
+                while let Some(x) = self.next() {
+                    if !f(x) {
+                        return false;
+                    }
+                }
+                true
+            }
+
+            // We override the default implementation, which uses `try_fold`,
+            // because this simple implementation generates less LLVM IR and is
+            // faster to compile.
+            #[inline]
+            fn any<F>(&mut self, mut f: F) -> bool
+            where
+                Self: Sized,
+                F: FnMut(Self::Item) -> bool,
+            {
+                while let Some(x) = self.next() {
+                    if f(x) {
+                        return true;
+                    }
+                }
+                false
+            }
+
+            // We override the default implementation, which uses `try_fold`,
+            // because this simple implementation generates less LLVM IR and is
+            // faster to compile.
+            #[inline]
+            fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item>
+            where
+                Self: Sized,
+                P: FnMut(&Self::Item) -> bool,
+            {
+                while let Some(x) = self.next() {
+                    if predicate(&x) {
+                        return Some(x);
+                    }
+                }
+                None
+            }
+
+            // We override the default implementation, which uses `try_fold`,
+            // because this simple implementation generates less LLVM IR and is
+            // faster to compile.
+            #[inline]
+            fn find_map<B, F>(&mut self, mut f: F) -> Option<B>
+            where
+                Self: Sized,
+                F: FnMut(Self::Item) -> Option<B>,
+            {
+                while let Some(x) = self.next() {
+                    if let Some(y) = f(x) {
+                        return Some(y);
+                    }
+                }
+                None
+            }
+
+            // We override the default implementation, which uses `try_fold`,
+            // because this simple implementation generates less LLVM IR and is
+            // faster to compile. Also, the `assume` avoids a bounds check.
+            #[inline]
+            #[rustc_inherit_overflow_checks]
+            fn position<P>(&mut self, mut predicate: P) -> Option<usize> where
+                Self: Sized,
+                P: FnMut(Self::Item) -> bool,
+            {
+                let n = len!(self);
+                let mut i = 0;
+                while let Some(x) = self.next() {
+                    if predicate(x) {
+                        unsafe { assume(i < n) };
+                        return Some(i);
+                    }
+                    i += 1;
+                }
+                None
+            }
+
+            // We override the default implementation, which uses `try_fold`,
+            // because this simple implementation generates less LLVM IR and is
+            // faster to compile. Also, the `assume` avoids a bounds check.
+            #[inline]
+            fn rposition<P>(&mut self, mut predicate: P) -> Option<usize> where
+                P: FnMut(Self::Item) -> bool,
+                Self: Sized + ExactSizeIterator + DoubleEndedIterator
+            {
+                let n = len!(self);
+                let mut i = n;
+                while let Some(x) = self.next_back() {
+                    i -= 1;
+                    if predicate(x) {
+                        unsafe { assume(i < n) };
+                        return Some(i);
+                    }
+                }
+                None
+            }
+
+            $($extra)*
+        }
+
+        #[stable(feature = "rust1", since = "1.0.0")]
+        impl<'a, T> DoubleEndedIterator for $name<'a, T> {
+            #[inline]
+            fn next_back(&mut self) -> Option<$elem> {
+                // could be implemented with slices, but this avoids bounds checks
+                unsafe {
+                    assume(!self.ptr.as_ptr().is_null());
+                    if mem::size_of::<T>() != 0 {
+                        assume(!self.end.is_null());
+                    }
+                    if is_empty!(self) {
+                        None
+                    } else {
+                        Some(next_back_unchecked!(self))
+                    }
+                }
+            }
+
+            #[inline]
+            fn nth_back(&mut self, n: usize) -> Option<$elem> {
+                if n >= len!(self) {
+                    // This iterator is now empty.
+                    self.end = self.ptr.as_ptr();
+                    return None;
+                }
+                // We are in bounds. `pre_dec_end` does the right thing even for ZSTs.
+                unsafe {
+                    self.pre_dec_end(n as isize);
+                    Some(next_back_unchecked!(self))
+                }
+            }
+        }
+
+        #[stable(feature = "fused", since = "1.26.0")]
+        impl<T> FusedIterator for $name<'_, T> {}
+
+        #[unstable(feature = "trusted_len", issue = "37572")]
+        unsafe impl<T> TrustedLen for $name<'_, T> {}
+    }
+}
+
+/// Immutable slice iterator
+///
+/// This struct is created by the [`iter`] method on [slices].
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// // First, we declare a type which has `iter` method to get the `Iter` struct (&[usize here]):
+/// let slice = &[1, 2, 3];
+///
+/// // Then, we iterate over it:
+/// for element in slice.iter() {
+///     println!("{}", element);
+/// }
+/// ```
+///
+/// [`iter`]: ../../std/primitive.slice.html#method.iter
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Iter<'a, T: 'a> {
+    ptr: NonNull<T>,
+    end: *const T, // If T is a ZST, this is actually ptr+len.  This encoding is picked so that
+    // ptr == end is a quick test for the Iterator being empty, that works
+    // for both ZST and non-ZST.
+    _marker: marker::PhantomData<&'a T>,
+}
+
+#[stable(feature = "core_impl_debug", since = "1.9.0")]
+impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_tuple("Iter").field(&self.as_slice()).finish()
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: Sync> Sync for Iter<'_, T> {}
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: Sync> Send for Iter<'_, T> {}
+
+impl<'a, T> Iter<'a, T> {
+    /// Views the underlying data as a subslice of the original data.
+    ///
+    /// This has the same lifetime as the original slice, and so the
+    /// iterator can continue to be used while this exists.
+    ///
+    /// # Examples
+    ///
+    /// Basic usage:
+    ///
+    /// ```
+    /// // First, we declare a type which has the `iter` method to get the `Iter`
+    /// // struct (&[usize here]):
+    /// let slice = &[1, 2, 3];
+    ///
+    /// // Then, we get the iterator:
+    /// let mut iter = slice.iter();
+    /// // So if we print what `as_slice` method returns here, we have "[1, 2, 3]":
+    /// println!("{:?}", iter.as_slice());
+    ///
+    /// // Next, we move to the second element of the slice:
+    /// iter.next();
+    /// // Now `as_slice` returns "[2, 3]":
+    /// println!("{:?}", iter.as_slice());
+    /// ```
+    #[stable(feature = "iter_to_slice", since = "1.4.0")]
+    pub fn as_slice(&self) -> &'a [T] {
+        self.make_slice()
+    }
+}
+
+iterator! {struct Iter -> *const T, &'a T, const, {/* no mut */}, {
+    fn is_sorted_by<F>(self, mut compare: F) -> bool
+    where
+        Self: Sized,
+        F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>,
+    {
+        self.as_slice().windows(2).all(|w| {
+            compare(&&w[0], &&w[1]).map(|o| o != Ordering::Greater).unwrap_or(false)
+        })
+    }
+}}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Clone for Iter<'_, T> {
+    fn clone(&self) -> Self {
+        Iter { ptr: self.ptr, end: self.end, _marker: self._marker }
+    }
+}
+
+#[stable(feature = "slice_iter_as_ref", since = "1.13.0")]
+impl<T> AsRef<[T]> for Iter<'_, T> {
+    fn as_ref(&self) -> &[T] {
+        self.as_slice()
+    }
+}
+
+/// Mutable slice iterator.
+///
+/// This struct is created by the [`iter_mut`] method on [slices].
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// // First, we declare a type which has `iter_mut` method to get the `IterMut`
+/// // struct (&[usize here]):
+/// let mut slice = &mut [1, 2, 3];
+///
+/// // Then, we iterate over it and increment each element value:
+/// for element in slice.iter_mut() {
+///     *element += 1;
+/// }
+///
+/// // We now have "[2, 3, 4]":
+/// println!("{:?}", slice);
+/// ```
+///
+/// [`iter_mut`]: ../../std/primitive.slice.html#method.iter_mut
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct IterMut<'a, T: 'a> {
+    ptr: NonNull<T>,
+    end: *mut T, // If T is a ZST, this is actually ptr+len.  This encoding is picked so that
+    // ptr == end is a quick test for the Iterator being empty, that works
+    // for both ZST and non-ZST.
+    _marker: marker::PhantomData<&'a mut T>,
+}
+
+#[stable(feature = "core_impl_debug", since = "1.9.0")]
+impl<T: fmt::Debug> fmt::Debug for IterMut<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_tuple("IterMut").field(&self.make_slice()).finish()
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: Sync> Sync for IterMut<'_, T> {}
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: Send> Send for IterMut<'_, T> {}
+
+impl<'a, T> IterMut<'a, T> {
+    /// Views the underlying data as a subslice of the original data.
+    ///
+    /// To avoid creating `&mut` references that alias, this is forced
+    /// to consume the iterator.
+    ///
+    /// # Examples
+    ///
+    /// Basic usage:
+    ///
+    /// ```
+    /// // First, we declare a type which has `iter_mut` method to get the `IterMut`
+    /// // struct (&[usize here]):
+    /// let mut slice = &mut [1, 2, 3];
+    ///
+    /// {
+    ///     // Then, we get the iterator:
+    ///     let mut iter = slice.iter_mut();
+    ///     // We move to next element:
+    ///     iter.next();
+    ///     // So if we print what `into_slice` method returns here, we have "[2, 3]":
+    ///     println!("{:?}", iter.into_slice());
+    /// }
+    ///
+    /// // Now let's modify a value of the slice:
+    /// {
+    ///     // First we get back the iterator:
+    ///     let mut iter = slice.iter_mut();
+    ///     // We change the value of the first element of the slice returned by the `next` method:
+    ///     *iter.next().unwrap() += 1;
+    /// }
+    /// // Now slice is "[2, 2, 3]":
+    /// println!("{:?}", slice);
+    /// ```
+    #[stable(feature = "iter_to_slice", since = "1.4.0")]
+    pub fn into_slice(self) -> &'a mut [T] {
+        unsafe { from_raw_parts_mut(self.ptr.as_ptr(), len!(self)) }
+    }
+
+    /// Views the underlying data as a subslice of the original data.
+    ///
+    /// To avoid creating `&mut [T]` references that alias, the returned slice
+    /// borrows its lifetime from the iterator the method is applied on.
+    ///
+    /// # Examples
+    ///
+    /// Basic usage:
+    ///
+    /// ```
+    /// # #![feature(slice_iter_mut_as_slice)]
+    /// let mut slice: &mut [usize] = &mut [1, 2, 3];
+    ///
+    /// // First, we get the iterator:
+    /// let mut iter = slice.iter_mut();
+    /// // So if we check what the `as_slice` method returns here, we have "[1, 2, 3]":
+    /// assert_eq!(iter.as_slice(), &[1, 2, 3]);
+    ///
+    /// // Next, we move to the second element of the slice:
+    /// iter.next();
+    /// // Now `as_slice` returns "[2, 3]":
+    /// assert_eq!(iter.as_slice(), &[2, 3]);
+    /// ```
+    #[unstable(feature = "slice_iter_mut_as_slice", reason = "recently added", issue = "58957")]
+    pub fn as_slice(&self) -> &[T] {
+        self.make_slice()
+    }
+}
+
+iterator! {struct IterMut -> *mut T, &'a mut T, mut, {mut}, {}}
+
+/// An internal abstraction over the splitting iterators, so that
+/// splitn, splitn_mut etc can be implemented once.
+#[doc(hidden)]
+trait SplitIter: DoubleEndedIterator {
+    /// Marks the underlying iterator as complete, extracting the remaining
+    /// portion of the slice.
+    fn finish(&mut self) -> Option<Self::Item>;
+}
+
+/// An iterator over subslices separated by elements that match a predicate
+/// function.
+///
+/// This struct is created by the [`split`] method on [slices].
+///
+/// [`split`]: ../../std/primitive.slice.html#method.split
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Split<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    v: &'a [T],
+    pred: P,
+    finished: bool,
+}
+
+#[stable(feature = "core_impl_debug", since = "1.9.0")]
+impl<T: fmt::Debug, P> fmt::Debug for Split<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("Split").field("v", &self.v).field("finished", &self.finished).finish()
+    }
+}
+
+// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, P> Clone for Split<'_, T, P>
+where
+    P: Clone + FnMut(&T) -> bool,
+{
+    fn clone(&self) -> Self {
+        Split { v: self.v, pred: self.pred.clone(), finished: self.finished }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T, P> Iterator for Split<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    type Item = &'a [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a [T]> {
+        if self.finished {
+            return None;
+        }
+
+        match self.v.iter().position(|x| (self.pred)(x)) {
+            None => self.finish(),
+            Some(idx) => {
+                let ret = Some(&self.v[..idx]);
+                self.v = &self.v[idx + 1..];
+                ret
+            }
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        if self.finished { (0, Some(0)) } else { (1, Some(self.v.len() + 1)) }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T, P> DoubleEndedIterator for Split<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a [T]> {
+        if self.finished {
+            return None;
+        }
+
+        match self.v.iter().rposition(|x| (self.pred)(x)) {
+            None => self.finish(),
+            Some(idx) => {
+                let ret = Some(&self.v[idx + 1..]);
+                self.v = &self.v[..idx];
+                ret
+            }
+        }
+    }
+}
+
+impl<'a, T, P> SplitIter for Split<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn finish(&mut self) -> Option<&'a [T]> {
+        if self.finished {
+            None
+        } else {
+            self.finished = true;
+            Some(self.v)
+        }
+    }
+}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T, P> FusedIterator for Split<'_, T, P> where P: FnMut(&T) -> bool {}
+
+/// An iterator over subslices separated by elements that match a predicate
+/// function. Unlike `Split`, it contains the matched part as a terminator
+/// of the subslice.
+///
+/// This struct is created by the [`split_inclusive`] method on [slices].
+///
+/// [`split_inclusive`]: ../../std/primitive.slice.html#method.split_inclusive
+/// [slices]: ../../std/primitive.slice.html
+#[unstable(feature = "split_inclusive", issue = "72360")]
+pub struct SplitInclusive<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    v: &'a [T],
+    pred: P,
+    finished: bool,
+}
+
+#[unstable(feature = "split_inclusive", issue = "72360")]
+impl<T: fmt::Debug, P> fmt::Debug for SplitInclusive<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("SplitInclusive")
+            .field("v", &self.v)
+            .field("finished", &self.finished)
+            .finish()
+    }
+}
+
+// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
+#[unstable(feature = "split_inclusive", issue = "72360")]
+impl<T, P> Clone for SplitInclusive<'_, T, P>
+where
+    P: Clone + FnMut(&T) -> bool,
+{
+    fn clone(&self) -> Self {
+        SplitInclusive { v: self.v, pred: self.pred.clone(), finished: self.finished }
+    }
+}
+
+#[unstable(feature = "split_inclusive", issue = "72360")]
+impl<'a, T, P> Iterator for SplitInclusive<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    type Item = &'a [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a [T]> {
+        if self.finished {
+            return None;
+        }
+
+        let idx =
+            self.v.iter().position(|x| (self.pred)(x)).map(|idx| idx + 1).unwrap_or(self.v.len());
+        if idx == self.v.len() {
+            self.finished = true;
+        }
+        let ret = Some(&self.v[..idx]);
+        self.v = &self.v[idx..];
+        ret
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        if self.finished { (0, Some(0)) } else { (1, Some(self.v.len() + 1)) }
+    }
+}
+
+#[unstable(feature = "split_inclusive", issue = "72360")]
+impl<'a, T, P> DoubleEndedIterator for SplitInclusive<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a [T]> {
+        if self.finished {
+            return None;
+        }
+
+        // The last index of self.v is already checked and found to match
+        // by the last iteration, so we start searching a new match
+        // one index to the left.
+        let remainder = if self.v.is_empty() { &[] } else { &self.v[..(self.v.len() - 1)] };
+        let idx = remainder.iter().rposition(|x| (self.pred)(x)).map(|idx| idx + 1).unwrap_or(0);
+        if idx == 0 {
+            self.finished = true;
+        }
+        let ret = Some(&self.v[idx..]);
+        self.v = &self.v[..idx];
+        ret
+    }
+}
+
+#[unstable(feature = "split_inclusive", issue = "72360")]
+impl<T, P> FusedIterator for SplitInclusive<'_, T, P> where P: FnMut(&T) -> bool {}
+
+/// An iterator over the mutable subslices of the vector which are separated
+/// by elements that match `pred`.
+///
+/// This struct is created by the [`split_mut`] method on [slices].
+///
+/// [`split_mut`]: ../../std/primitive.slice.html#method.split_mut
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct SplitMut<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    v: &'a mut [T],
+    pred: P,
+    finished: bool,
+}
+
+#[stable(feature = "core_impl_debug", since = "1.9.0")]
+impl<T: fmt::Debug, P> fmt::Debug for SplitMut<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("SplitMut").field("v", &self.v).field("finished", &self.finished).finish()
+    }
+}
+
+impl<'a, T, P> SplitIter for SplitMut<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn finish(&mut self) -> Option<&'a mut [T]> {
+        if self.finished {
+            None
+        } else {
+            self.finished = true;
+            Some(mem::replace(&mut self.v, &mut []))
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T, P> Iterator for SplitMut<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    type Item = &'a mut [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a mut [T]> {
+        if self.finished {
+            return None;
+        }
+
+        let idx_opt = {
+            // work around borrowck limitations
+            let pred = &mut self.pred;
+            self.v.iter().position(|x| (*pred)(x))
+        };
+        match idx_opt {
+            None => self.finish(),
+            Some(idx) => {
+                let tmp = mem::replace(&mut self.v, &mut []);
+                let (head, tail) = tmp.split_at_mut(idx);
+                self.v = &mut tail[1..];
+                Some(head)
+            }
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        if self.finished {
+            (0, Some(0))
+        } else {
+            // if the predicate doesn't match anything, we yield one slice
+            // if it matches every element, we yield len+1 empty slices.
+            (1, Some(self.v.len() + 1))
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T, P> DoubleEndedIterator for SplitMut<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a mut [T]> {
+        if self.finished {
+            return None;
+        }
+
+        let idx_opt = {
+            // work around borrowck limitations
+            let pred = &mut self.pred;
+            self.v.iter().rposition(|x| (*pred)(x))
+        };
+        match idx_opt {
+            None => self.finish(),
+            Some(idx) => {
+                let tmp = mem::replace(&mut self.v, &mut []);
+                let (head, tail) = tmp.split_at_mut(idx);
+                self.v = head;
+                Some(&mut tail[1..])
+            }
+        }
+    }
+}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T, P> FusedIterator for SplitMut<'_, T, P> where P: FnMut(&T) -> bool {}
+
+/// An iterator over the mutable subslices of the vector which are separated
+/// by elements that match `pred`. Unlike `SplitMut`, it contains the matched
+/// parts in the ends of the subslices.
+///
+/// This struct is created by the [`split_inclusive_mut`] method on [slices].
+///
+/// [`split_inclusive_mut`]: ../../std/primitive.slice.html#method.split_inclusive_mut
+/// [slices]: ../../std/primitive.slice.html
+#[unstable(feature = "split_inclusive", issue = "72360")]
+pub struct SplitInclusiveMut<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    v: &'a mut [T],
+    pred: P,
+    finished: bool,
+}
+
+#[unstable(feature = "split_inclusive", issue = "72360")]
+impl<T: fmt::Debug, P> fmt::Debug for SplitInclusiveMut<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("SplitInclusiveMut")
+            .field("v", &self.v)
+            .field("finished", &self.finished)
+            .finish()
+    }
+}
+
+#[unstable(feature = "split_inclusive", issue = "72360")]
+impl<'a, T, P> Iterator for SplitInclusiveMut<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    type Item = &'a mut [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a mut [T]> {
+        if self.finished {
+            return None;
+        }
+
+        let idx_opt = {
+            // work around borrowck limitations
+            let pred = &mut self.pred;
+            self.v.iter().position(|x| (*pred)(x))
+        };
+        let idx = idx_opt.map(|idx| idx + 1).unwrap_or(self.v.len());
+        if idx == self.v.len() {
+            self.finished = true;
+        }
+        let tmp = mem::replace(&mut self.v, &mut []);
+        let (head, tail) = tmp.split_at_mut(idx);
+        self.v = tail;
+        Some(head)
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        if self.finished {
+            (0, Some(0))
+        } else {
+            // if the predicate doesn't match anything, we yield one slice
+            // if it matches every element, we yield len+1 empty slices.
+            (1, Some(self.v.len() + 1))
+        }
+    }
+}
+
+#[unstable(feature = "split_inclusive", issue = "72360")]
+impl<'a, T, P> DoubleEndedIterator for SplitInclusiveMut<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a mut [T]> {
+        if self.finished {
+            return None;
+        }
+
+        let idx_opt = if self.v.is_empty() {
+            None
+        } else {
+            // work around borrowck limitations
+            let pred = &mut self.pred;
+
+            // The last index of self.v is already checked and found to match
+            // by the last iteration, so we start searching a new match
+            // one index to the left.
+            let remainder = &self.v[..(self.v.len() - 1)];
+            remainder.iter().rposition(|x| (*pred)(x))
+        };
+        let idx = idx_opt.map(|idx| idx + 1).unwrap_or(0);
+        if idx == 0 {
+            self.finished = true;
+        }
+        let tmp = mem::replace(&mut self.v, &mut []);
+        let (head, tail) = tmp.split_at_mut(idx);
+        self.v = head;
+        Some(tail)
+    }
+}
+
+#[unstable(feature = "split_inclusive", issue = "72360")]
+impl<T, P> FusedIterator for SplitInclusiveMut<'_, T, P> where P: FnMut(&T) -> bool {}
+
+/// An iterator over subslices separated by elements that match a predicate
+/// function, starting from the end of the slice.
+///
+/// This struct is created by the [`rsplit`] method on [slices].
+///
+/// [`rsplit`]: ../../std/primitive.slice.html#method.rsplit
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+#[derive(Clone)] // Is this correct, or does it incorrectly require `T: Clone`?
+pub struct RSplit<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    inner: Split<'a, T, P>,
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<T: fmt::Debug, P> fmt::Debug for RSplit<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("RSplit")
+            .field("v", &self.inner.v)
+            .field("finished", &self.inner.finished)
+            .finish()
+    }
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<'a, T, P> Iterator for RSplit<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    type Item = &'a [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a [T]> {
+        self.inner.next_back()
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        self.inner.size_hint()
+    }
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<'a, T, P> DoubleEndedIterator for RSplit<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a [T]> {
+        self.inner.next()
+    }
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<'a, T, P> SplitIter for RSplit<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn finish(&mut self) -> Option<&'a [T]> {
+        self.inner.finish()
+    }
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<T, P> FusedIterator for RSplit<'_, T, P> where P: FnMut(&T) -> bool {}
+
+/// An iterator over the subslices of the vector which are separated
+/// by elements that match `pred`, starting from the end of the slice.
+///
+/// This struct is created by the [`rsplit_mut`] method on [slices].
+///
+/// [`rsplit_mut`]: ../../std/primitive.slice.html#method.rsplit_mut
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+pub struct RSplitMut<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    inner: SplitMut<'a, T, P>,
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<T: fmt::Debug, P> fmt::Debug for RSplitMut<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("RSplitMut")
+            .field("v", &self.inner.v)
+            .field("finished", &self.inner.finished)
+            .finish()
+    }
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<'a, T, P> SplitIter for RSplitMut<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn finish(&mut self) -> Option<&'a mut [T]> {
+        self.inner.finish()
+    }
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<'a, T, P> Iterator for RSplitMut<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    type Item = &'a mut [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a mut [T]> {
+        self.inner.next_back()
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        self.inner.size_hint()
+    }
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<'a, T, P> DoubleEndedIterator for RSplitMut<'a, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a mut [T]> {
+        self.inner.next()
+    }
+}
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+impl<T, P> FusedIterator for RSplitMut<'_, T, P> where P: FnMut(&T) -> bool {}
+
+/// An private iterator over subslices separated by elements that
+/// match a predicate function, splitting at most a fixed number of
+/// times.
+#[derive(Debug)]
+struct GenericSplitN<I> {
+    iter: I,
+    count: usize,
+}
+
+impl<T, I: SplitIter<Item = T>> Iterator for GenericSplitN<I> {
+    type Item = T;
+
+    #[inline]
+    fn next(&mut self) -> Option<T> {
+        match self.count {
+            0 => None,
+            1 => {
+                self.count -= 1;
+                self.iter.finish()
+            }
+            _ => {
+                self.count -= 1;
+                self.iter.next()
+            }
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        let (lower, upper_opt) = self.iter.size_hint();
+        (lower, upper_opt.map(|upper| cmp::min(self.count, upper)))
+    }
+}
+
+/// An iterator over subslices separated by elements that match a predicate
+/// function, limited to a given number of splits.
+///
+/// This struct is created by the [`splitn`] method on [slices].
+///
+/// [`splitn`]: ../../std/primitive.slice.html#method.splitn
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct SplitN<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    inner: GenericSplitN<Split<'a, T, P>>,
+}
+
+#[stable(feature = "core_impl_debug", since = "1.9.0")]
+impl<T: fmt::Debug, P> fmt::Debug for SplitN<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("SplitN").field("inner", &self.inner).finish()
+    }
+}
+
+/// An iterator over subslices separated by elements that match a
+/// predicate function, limited to a given number of splits, starting
+/// from the end of the slice.
+///
+/// This struct is created by the [`rsplitn`] method on [slices].
+///
+/// [`rsplitn`]: ../../std/primitive.slice.html#method.rsplitn
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct RSplitN<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    inner: GenericSplitN<RSplit<'a, T, P>>,
+}
+
+#[stable(feature = "core_impl_debug", since = "1.9.0")]
+impl<T: fmt::Debug, P> fmt::Debug for RSplitN<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("RSplitN").field("inner", &self.inner).finish()
+    }
+}
+
+/// An iterator over subslices separated by elements that match a predicate
+/// function, limited to a given number of splits.
+///
+/// This struct is created by the [`splitn_mut`] method on [slices].
+///
+/// [`splitn_mut`]: ../../std/primitive.slice.html#method.splitn_mut
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct SplitNMut<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    inner: GenericSplitN<SplitMut<'a, T, P>>,
+}
+
+#[stable(feature = "core_impl_debug", since = "1.9.0")]
+impl<T: fmt::Debug, P> fmt::Debug for SplitNMut<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("SplitNMut").field("inner", &self.inner).finish()
+    }
+}
+
+/// An iterator over subslices separated by elements that match a
+/// predicate function, limited to a given number of splits, starting
+/// from the end of the slice.
+///
+/// This struct is created by the [`rsplitn_mut`] method on [slices].
+///
+/// [`rsplitn_mut`]: ../../std/primitive.slice.html#method.rsplitn_mut
+/// [slices]: ../../std/primitive.slice.html
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct RSplitNMut<'a, T: 'a, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    inner: GenericSplitN<RSplitMut<'a, T, P>>,
+}
+
+#[stable(feature = "core_impl_debug", since = "1.9.0")]
+impl<T: fmt::Debug, P> fmt::Debug for RSplitNMut<'_, T, P>
+where
+    P: FnMut(&T) -> bool,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.debug_struct("RSplitNMut").field("inner", &self.inner).finish()
+    }
+}
+
+macro_rules! forward_iterator {
+    ($name:ident: $elem:ident, $iter_of:ty) => {
+        #[stable(feature = "rust1", since = "1.0.0")]
+        impl<'a, $elem, P> Iterator for $name<'a, $elem, P>
+        where
+            P: FnMut(&T) -> bool,
+        {
+            type Item = $iter_of;
+
+            #[inline]
+            fn next(&mut self) -> Option<$iter_of> {
+                self.inner.next()
+            }
+
+            #[inline]
+            fn size_hint(&self) -> (usize, Option<usize>) {
+                self.inner.size_hint()
+            }
+        }
+
+        #[stable(feature = "fused", since = "1.26.0")]
+        impl<'a, $elem, P> FusedIterator for $name<'a, $elem, P> where P: FnMut(&T) -> bool {}
+    };
+}
+
+forward_iterator! { SplitN: T, &'a [T] }
+forward_iterator! { RSplitN: T, &'a [T] }
+forward_iterator! { SplitNMut: T, &'a mut [T] }
+forward_iterator! { RSplitNMut: T, &'a mut [T] }
+
+/// An iterator over overlapping subslices of length `size`.
+///
+/// This struct is created by the [`windows`] method on [slices].
+///
+/// [`windows`]: ../../std/primitive.slice.html#method.windows
+/// [slices]: ../../std/primitive.slice.html
+#[derive(Debug)]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Windows<'a, T: 'a> {
+    v: &'a [T],
+    size: usize,
+}
+
+// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Clone for Windows<'_, T> {
+    fn clone(&self) -> Self {
+        Windows { v: self.v, size: self.size }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> Iterator for Windows<'a, T> {
+    type Item = &'a [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a [T]> {
+        if self.size > self.v.len() {
+            None
+        } else {
+            let ret = Some(&self.v[..self.size]);
+            self.v = &self.v[1..];
+            ret
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        if self.size > self.v.len() {
+            (0, Some(0))
+        } else {
+            let size = self.v.len() - self.size + 1;
+            (size, Some(size))
+        }
+    }
+
+    #[inline]
+    fn count(self) -> usize {
+        self.len()
+    }
+
+    #[inline]
+    fn nth(&mut self, n: usize) -> Option<Self::Item> {
+        let (end, overflow) = self.size.overflowing_add(n);
+        if end > self.v.len() || overflow {
+            self.v = &[];
+            None
+        } else {
+            let nth = &self.v[n..end];
+            self.v = &self.v[n + 1..];
+            Some(nth)
+        }
+    }
+
+    #[inline]
+    fn last(self) -> Option<Self::Item> {
+        if self.size > self.v.len() {
+            None
+        } else {
+            let start = self.v.len() - self.size;
+            Some(&self.v[start..])
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> DoubleEndedIterator for Windows<'a, T> {
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a [T]> {
+        if self.size > self.v.len() {
+            None
+        } else {
+            let ret = Some(&self.v[self.v.len() - self.size..]);
+            self.v = &self.v[..self.v.len() - 1];
+            ret
+        }
+    }
+
+    #[inline]
+    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+        let (end, overflow) = self.v.len().overflowing_sub(n);
+        if end < self.size || overflow {
+            self.v = &[];
+            None
+        } else {
+            let ret = &self.v[end - self.size..end];
+            self.v = &self.v[..end - 1];
+            Some(ret)
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> ExactSizeIterator for Windows<'_, T> {}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T> TrustedLen for Windows<'_, T> {}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T> FusedIterator for Windows<'_, T> {}
+
+#[doc(hidden)]
+unsafe impl<'a, T> TrustedRandomAccess for Windows<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
+        // SAFETY: since the caller guarantees that `i` is in bounds,
+        // which means that `i` cannot overflow an `isize`, and the
+        // slice created by `from_raw_parts` is a subslice of `self.v`
+        // thus is guaranteed to be valid for the lifetime `'a` of `self.v`.
+        unsafe { from_raw_parts(self.v.as_ptr().add(i), self.size) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+/// An iterator over a slice in (non-overlapping) chunks (`chunk_size` elements at a
+/// time), starting at the beginning of the slice.
+///
+/// When the slice len is not evenly divided by the chunk size, the last slice
+/// of the iteration will be the remainder.
+///
+/// This struct is created by the [`chunks`] method on [slices].
+///
+/// [`chunks`]: ../../std/primitive.slice.html#method.chunks
+/// [slices]: ../../std/primitive.slice.html
+#[derive(Debug)]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Chunks<'a, T: 'a> {
+    v: &'a [T],
+    chunk_size: usize,
+}
+
+// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Clone for Chunks<'_, T> {
+    fn clone(&self) -> Self {
+        Chunks { v: self.v, chunk_size: self.chunk_size }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> Iterator for Chunks<'a, T> {
+    type Item = &'a [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a [T]> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let chunksz = cmp::min(self.v.len(), self.chunk_size);
+            let (fst, snd) = self.v.split_at(chunksz);
+            self.v = snd;
+            Some(fst)
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        if self.v.is_empty() {
+            (0, Some(0))
+        } else {
+            let n = self.v.len() / self.chunk_size;
+            let rem = self.v.len() % self.chunk_size;
+            let n = if rem > 0 { n + 1 } else { n };
+            (n, Some(n))
+        }
+    }
+
+    #[inline]
+    fn count(self) -> usize {
+        self.len()
+    }
+
+    #[inline]
+    fn nth(&mut self, n: usize) -> Option<Self::Item> {
+        let (start, overflow) = n.overflowing_mul(self.chunk_size);
+        if start >= self.v.len() || overflow {
+            self.v = &[];
+            None
+        } else {
+            let end = match start.checked_add(self.chunk_size) {
+                Some(sum) => cmp::min(self.v.len(), sum),
+                None => self.v.len(),
+            };
+            let nth = &self.v[start..end];
+            self.v = &self.v[end..];
+            Some(nth)
+        }
+    }
+
+    #[inline]
+    fn last(self) -> Option<Self::Item> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let start = (self.v.len() - 1) / self.chunk_size * self.chunk_size;
+            Some(&self.v[start..])
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> DoubleEndedIterator for Chunks<'a, T> {
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a [T]> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let remainder = self.v.len() % self.chunk_size;
+            let chunksz = if remainder != 0 { remainder } else { self.chunk_size };
+            let (fst, snd) = self.v.split_at(self.v.len() - chunksz);
+            self.v = fst;
+            Some(snd)
+        }
+    }
+
+    #[inline]
+    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+        let len = self.len();
+        if n >= len {
+            self.v = &[];
+            None
+        } else {
+            let start = (len - 1 - n) * self.chunk_size;
+            let end = match start.checked_add(self.chunk_size) {
+                Some(res) => cmp::min(res, self.v.len()),
+                None => self.v.len(),
+            };
+            let nth_back = &self.v[start..end];
+            self.v = &self.v[..start];
+            Some(nth_back)
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> ExactSizeIterator for Chunks<'_, T> {}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T> TrustedLen for Chunks<'_, T> {}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T> FusedIterator for Chunks<'_, T> {}
+
+#[doc(hidden)]
+unsafe impl<'a, T> TrustedRandomAccess for Chunks<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
+        let start = i * self.chunk_size;
+        let end = match start.checked_add(self.chunk_size) {
+            None => self.v.len(),
+            Some(end) => cmp::min(end, self.v.len()),
+        };
+        // SAFETY: the caller guarantees that `i` is in bounds,
+        // which means that `start` must be in bounds of the
+        // underlying `self.v` slice, and we made sure that `end`
+        // is also in bounds of `self.v`. Thus, `start` cannot overflow
+        // an `isize`, and the slice constructed by `from_raw_parts`
+        // is a subslice of `self.v` which is guaranteed to be valid
+        // for the lifetime `'a` of `self.v`.
+        unsafe { from_raw_parts(self.v.as_ptr().add(start), end - start) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+/// An iterator over a slice in (non-overlapping) mutable chunks (`chunk_size`
+/// elements at a time), starting at the beginning of the slice.
+///
+/// When the slice len is not evenly divided by the chunk size, the last slice
+/// of the iteration will be the remainder.
+///
+/// This struct is created by the [`chunks_mut`] method on [slices].
+///
+/// [`chunks_mut`]: ../../std/primitive.slice.html#method.chunks_mut
+/// [slices]: ../../std/primitive.slice.html
+#[derive(Debug)]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct ChunksMut<'a, T: 'a> {
+    v: &'a mut [T],
+    chunk_size: usize,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> Iterator for ChunksMut<'a, T> {
+    type Item = &'a mut [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a mut [T]> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let sz = cmp::min(self.v.len(), self.chunk_size);
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let (head, tail) = tmp.split_at_mut(sz);
+            self.v = tail;
+            Some(head)
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        if self.v.is_empty() {
+            (0, Some(0))
+        } else {
+            let n = self.v.len() / self.chunk_size;
+            let rem = self.v.len() % self.chunk_size;
+            let n = if rem > 0 { n + 1 } else { n };
+            (n, Some(n))
+        }
+    }
+
+    #[inline]
+    fn count(self) -> usize {
+        self.len()
+    }
+
+    #[inline]
+    fn nth(&mut self, n: usize) -> Option<&'a mut [T]> {
+        let (start, overflow) = n.overflowing_mul(self.chunk_size);
+        if start >= self.v.len() || overflow {
+            self.v = &mut [];
+            None
+        } else {
+            let end = match start.checked_add(self.chunk_size) {
+                Some(sum) => cmp::min(self.v.len(), sum),
+                None => self.v.len(),
+            };
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let (head, tail) = tmp.split_at_mut(end);
+            let (_, nth) = head.split_at_mut(start);
+            self.v = tail;
+            Some(nth)
+        }
+    }
+
+    #[inline]
+    fn last(self) -> Option<Self::Item> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let start = (self.v.len() - 1) / self.chunk_size * self.chunk_size;
+            Some(&mut self.v[start..])
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> DoubleEndedIterator for ChunksMut<'a, T> {
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a mut [T]> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let remainder = self.v.len() % self.chunk_size;
+            let sz = if remainder != 0 { remainder } else { self.chunk_size };
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let tmp_len = tmp.len();
+            let (head, tail) = tmp.split_at_mut(tmp_len - sz);
+            self.v = head;
+            Some(tail)
+        }
+    }
+
+    #[inline]
+    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+        let len = self.len();
+        if n >= len {
+            self.v = &mut [];
+            None
+        } else {
+            let start = (len - 1 - n) * self.chunk_size;
+            let end = match start.checked_add(self.chunk_size) {
+                Some(res) => cmp::min(res, self.v.len()),
+                None => self.v.len(),
+            };
+            let (temp, _tail) = mem::replace(&mut self.v, &mut []).split_at_mut(end);
+            let (head, nth_back) = temp.split_at_mut(start);
+            self.v = head;
+            Some(nth_back)
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> ExactSizeIterator for ChunksMut<'_, T> {}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T> TrustedLen for ChunksMut<'_, T> {}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T> FusedIterator for ChunksMut<'_, T> {}
+
+#[doc(hidden)]
+unsafe impl<'a, T> TrustedRandomAccess for ChunksMut<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut [T] {
+        let start = i * self.chunk_size;
+        let end = match start.checked_add(self.chunk_size) {
+            None => self.v.len(),
+            Some(end) => cmp::min(end, self.v.len()),
+        };
+        // SAFETY: see comments for `Chunks::get_unchecked`.
+        unsafe { from_raw_parts_mut(self.v.as_mut_ptr().add(start), end - start) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+/// An iterator over a slice in (non-overlapping) chunks (`chunk_size` elements at a
+/// time), starting at the beginning of the slice.
+///
+/// When the slice len is not evenly divided by the chunk size, the last
+/// up to `chunk_size-1` elements will be omitted but can be retrieved from
+/// the [`remainder`] function from the iterator.
+///
+/// This struct is created by the [`chunks_exact`] method on [slices].
+///
+/// [`chunks_exact`]: ../../std/primitive.slice.html#method.chunks_exact
+/// [`remainder`]: ../../std/slice/struct.ChunksExact.html#method.remainder
+/// [slices]: ../../std/primitive.slice.html
+#[derive(Debug)]
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+pub struct ChunksExact<'a, T: 'a> {
+    v: &'a [T],
+    rem: &'a [T],
+    chunk_size: usize,
+}
+
+impl<'a, T> ChunksExact<'a, T> {
+    /// Returns the remainder of the original slice that is not going to be
+    /// returned by the iterator. The returned slice has at most `chunk_size-1`
+    /// elements.
+    #[stable(feature = "chunks_exact", since = "1.31.0")]
+    pub fn remainder(&self) -> &'a [T] {
+        self.rem
+    }
+}
+
+// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+impl<T> Clone for ChunksExact<'_, T> {
+    fn clone(&self) -> Self {
+        ChunksExact { v: self.v, rem: self.rem, chunk_size: self.chunk_size }
+    }
+}
+
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+impl<'a, T> Iterator for ChunksExact<'a, T> {
+    type Item = &'a [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a [T]> {
+        if self.v.len() < self.chunk_size {
+            None
+        } else {
+            let (fst, snd) = self.v.split_at(self.chunk_size);
+            self.v = snd;
+            Some(fst)
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        let n = self.v.len() / self.chunk_size;
+        (n, Some(n))
+    }
+
+    #[inline]
+    fn count(self) -> usize {
+        self.len()
+    }
+
+    #[inline]
+    fn nth(&mut self, n: usize) -> Option<Self::Item> {
+        let (start, overflow) = n.overflowing_mul(self.chunk_size);
+        if start >= self.v.len() || overflow {
+            self.v = &[];
+            None
+        } else {
+            let (_, snd) = self.v.split_at(start);
+            self.v = snd;
+            self.next()
+        }
+    }
+
+    #[inline]
+    fn last(mut self) -> Option<Self::Item> {
+        self.next_back()
+    }
+}
+
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+impl<'a, T> DoubleEndedIterator for ChunksExact<'a, T> {
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a [T]> {
+        if self.v.len() < self.chunk_size {
+            None
+        } else {
+            let (fst, snd) = self.v.split_at(self.v.len() - self.chunk_size);
+            self.v = fst;
+            Some(snd)
+        }
+    }
+
+    #[inline]
+    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+        let len = self.len();
+        if n >= len {
+            self.v = &[];
+            None
+        } else {
+            let start = (len - 1 - n) * self.chunk_size;
+            let end = start + self.chunk_size;
+            let nth_back = &self.v[start..end];
+            self.v = &self.v[..start];
+            Some(nth_back)
+        }
+    }
+}
+
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+impl<T> ExactSizeIterator for ChunksExact<'_, T> {
+    fn is_empty(&self) -> bool {
+        self.v.is_empty()
+    }
+}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T> TrustedLen for ChunksExact<'_, T> {}
+
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+impl<T> FusedIterator for ChunksExact<'_, T> {}
+
+#[doc(hidden)]
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+unsafe impl<'a, T> TrustedRandomAccess for ChunksExact<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
+        let start = i * self.chunk_size;
+        // SAFETY: mostly identical to `Chunks::get_unchecked`.
+        unsafe { from_raw_parts(self.v.as_ptr().add(start), self.chunk_size) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+/// An iterator over a slice in (non-overlapping) mutable chunks (`chunk_size`
+/// elements at a time), starting at the beginning of the slice.
+///
+/// When the slice len is not evenly divided by the chunk size, the last up to
+/// `chunk_size-1` elements will be omitted but can be retrieved from the
+/// [`into_remainder`] function from the iterator.
+///
+/// This struct is created by the [`chunks_exact_mut`] method on [slices].
+///
+/// [`chunks_exact_mut`]: ../../std/primitive.slice.html#method.chunks_exact_mut
+/// [`into_remainder`]: ../../std/slice/struct.ChunksExactMut.html#method.into_remainder
+/// [slices]: ../../std/primitive.slice.html
+#[derive(Debug)]
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+pub struct ChunksExactMut<'a, T: 'a> {
+    v: &'a mut [T],
+    rem: &'a mut [T],
+    chunk_size: usize,
+}
+
+impl<'a, T> ChunksExactMut<'a, T> {
+    /// Returns the remainder of the original slice that is not going to be
+    /// returned by the iterator. The returned slice has at most `chunk_size-1`
+    /// elements.
+    #[stable(feature = "chunks_exact", since = "1.31.0")]
+    pub fn into_remainder(self) -> &'a mut [T] {
+        self.rem
+    }
+}
+
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+impl<'a, T> Iterator for ChunksExactMut<'a, T> {
+    type Item = &'a mut [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a mut [T]> {
+        if self.v.len() < self.chunk_size {
+            None
+        } else {
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let (head, tail) = tmp.split_at_mut(self.chunk_size);
+            self.v = tail;
+            Some(head)
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        let n = self.v.len() / self.chunk_size;
+        (n, Some(n))
+    }
+
+    #[inline]
+    fn count(self) -> usize {
+        self.len()
+    }
+
+    #[inline]
+    fn nth(&mut self, n: usize) -> Option<&'a mut [T]> {
+        let (start, overflow) = n.overflowing_mul(self.chunk_size);
+        if start >= self.v.len() || overflow {
+            self.v = &mut [];
+            None
+        } else {
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let (_, snd) = tmp.split_at_mut(start);
+            self.v = snd;
+            self.next()
+        }
+    }
+
+    #[inline]
+    fn last(mut self) -> Option<Self::Item> {
+        self.next_back()
+    }
+}
+
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+impl<'a, T> DoubleEndedIterator for ChunksExactMut<'a, T> {
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a mut [T]> {
+        if self.v.len() < self.chunk_size {
+            None
+        } else {
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let tmp_len = tmp.len();
+            let (head, tail) = tmp.split_at_mut(tmp_len - self.chunk_size);
+            self.v = head;
+            Some(tail)
+        }
+    }
+
+    #[inline]
+    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+        let len = self.len();
+        if n >= len {
+            self.v = &mut [];
+            None
+        } else {
+            let start = (len - 1 - n) * self.chunk_size;
+            let end = start + self.chunk_size;
+            let (temp, _tail) = mem::replace(&mut self.v, &mut []).split_at_mut(end);
+            let (head, nth_back) = temp.split_at_mut(start);
+            self.v = head;
+            Some(nth_back)
+        }
+    }
+}
+
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+impl<T> ExactSizeIterator for ChunksExactMut<'_, T> {
+    fn is_empty(&self) -> bool {
+        self.v.is_empty()
+    }
+}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T> TrustedLen for ChunksExactMut<'_, T> {}
+
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+impl<T> FusedIterator for ChunksExactMut<'_, T> {}
+
+#[doc(hidden)]
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+unsafe impl<'a, T> TrustedRandomAccess for ChunksExactMut<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut [T] {
+        let start = i * self.chunk_size;
+        // SAFETY: see comments for `ChunksExactMut::get_unchecked`.
+        unsafe { from_raw_parts_mut(self.v.as_mut_ptr().add(start), self.chunk_size) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+/// An iterator over a slice in (non-overlapping) chunks (`chunk_size` elements at a
+/// time), starting at the end of the slice.
+///
+/// When the slice len is not evenly divided by the chunk size, the last slice
+/// of the iteration will be the remainder.
+///
+/// This struct is created by the [`rchunks`] method on [slices].
+///
+/// [`rchunks`]: ../../std/primitive.slice.html#method.rchunks
+/// [slices]: ../../std/primitive.slice.html
+#[derive(Debug)]
+#[stable(feature = "rchunks", since = "1.31.0")]
+pub struct RChunks<'a, T: 'a> {
+    v: &'a [T],
+    chunk_size: usize,
+}
+
+// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<T> Clone for RChunks<'_, T> {
+    fn clone(&self) -> Self {
+        RChunks { v: self.v, chunk_size: self.chunk_size }
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> Iterator for RChunks<'a, T> {
+    type Item = &'a [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a [T]> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let chunksz = cmp::min(self.v.len(), self.chunk_size);
+            let (fst, snd) = self.v.split_at(self.v.len() - chunksz);
+            self.v = fst;
+            Some(snd)
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        if self.v.is_empty() {
+            (0, Some(0))
+        } else {
+            let n = self.v.len() / self.chunk_size;
+            let rem = self.v.len() % self.chunk_size;
+            let n = if rem > 0 { n + 1 } else { n };
+            (n, Some(n))
+        }
+    }
+
+    #[inline]
+    fn count(self) -> usize {
+        self.len()
+    }
+
+    #[inline]
+    fn nth(&mut self, n: usize) -> Option<Self::Item> {
+        let (end, overflow) = n.overflowing_mul(self.chunk_size);
+        if end >= self.v.len() || overflow {
+            self.v = &[];
+            None
+        } else {
+            // Can't underflow because of the check above
+            let end = self.v.len() - end;
+            let start = match end.checked_sub(self.chunk_size) {
+                Some(sum) => sum,
+                None => 0,
+            };
+            let nth = &self.v[start..end];
+            self.v = &self.v[0..start];
+            Some(nth)
+        }
+    }
+
+    #[inline]
+    fn last(self) -> Option<Self::Item> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let rem = self.v.len() % self.chunk_size;
+            let end = if rem == 0 { self.chunk_size } else { rem };
+            Some(&self.v[0..end])
+        }
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> DoubleEndedIterator for RChunks<'a, T> {
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a [T]> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let remainder = self.v.len() % self.chunk_size;
+            let chunksz = if remainder != 0 { remainder } else { self.chunk_size };
+            let (fst, snd) = self.v.split_at(chunksz);
+            self.v = snd;
+            Some(fst)
+        }
+    }
+
+    #[inline]
+    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+        let len = self.len();
+        if n >= len {
+            self.v = &[];
+            None
+        } else {
+            // can't underflow because `n < len`
+            let offset_from_end = (len - 1 - n) * self.chunk_size;
+            let end = self.v.len() - offset_from_end;
+            let start = end.saturating_sub(self.chunk_size);
+            let nth_back = &self.v[start..end];
+            self.v = &self.v[end..];
+            Some(nth_back)
+        }
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<T> ExactSizeIterator for RChunks<'_, T> {}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T> TrustedLen for RChunks<'_, T> {}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<T> FusedIterator for RChunks<'_, T> {}
+
+#[doc(hidden)]
+#[stable(feature = "rchunks", since = "1.31.0")]
+unsafe impl<'a, T> TrustedRandomAccess for RChunks<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
+        let end = self.v.len() - i * self.chunk_size;
+        let start = match end.checked_sub(self.chunk_size) {
+            None => 0,
+            Some(start) => start,
+        };
+        // SAFETY: mostly identical to `Chunks::get_unchecked`.
+        unsafe { from_raw_parts(self.v.as_ptr().add(start), end - start) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+/// An iterator over a slice in (non-overlapping) mutable chunks (`chunk_size`
+/// elements at a time), starting at the end of the slice.
+///
+/// When the slice len is not evenly divided by the chunk size, the last slice
+/// of the iteration will be the remainder.
+///
+/// This struct is created by the [`rchunks_mut`] method on [slices].
+///
+/// [`rchunks_mut`]: ../../std/primitive.slice.html#method.rchunks_mut
+/// [slices]: ../../std/primitive.slice.html
+#[derive(Debug)]
+#[stable(feature = "rchunks", since = "1.31.0")]
+pub struct RChunksMut<'a, T: 'a> {
+    v: &'a mut [T],
+    chunk_size: usize,
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> Iterator for RChunksMut<'a, T> {
+    type Item = &'a mut [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a mut [T]> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let sz = cmp::min(self.v.len(), self.chunk_size);
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let tmp_len = tmp.len();
+            let (head, tail) = tmp.split_at_mut(tmp_len - sz);
+            self.v = head;
+            Some(tail)
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        if self.v.is_empty() {
+            (0, Some(0))
+        } else {
+            let n = self.v.len() / self.chunk_size;
+            let rem = self.v.len() % self.chunk_size;
+            let n = if rem > 0 { n + 1 } else { n };
+            (n, Some(n))
+        }
+    }
+
+    #[inline]
+    fn count(self) -> usize {
+        self.len()
+    }
+
+    #[inline]
+    fn nth(&mut self, n: usize) -> Option<&'a mut [T]> {
+        let (end, overflow) = n.overflowing_mul(self.chunk_size);
+        if end >= self.v.len() || overflow {
+            self.v = &mut [];
+            None
+        } else {
+            // Can't underflow because of the check above
+            let end = self.v.len() - end;
+            let start = match end.checked_sub(self.chunk_size) {
+                Some(sum) => sum,
+                None => 0,
+            };
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let (head, tail) = tmp.split_at_mut(start);
+            let (nth, _) = tail.split_at_mut(end - start);
+            self.v = head;
+            Some(nth)
+        }
+    }
+
+    #[inline]
+    fn last(self) -> Option<Self::Item> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let rem = self.v.len() % self.chunk_size;
+            let end = if rem == 0 { self.chunk_size } else { rem };
+            Some(&mut self.v[0..end])
+        }
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> DoubleEndedIterator for RChunksMut<'a, T> {
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a mut [T]> {
+        if self.v.is_empty() {
+            None
+        } else {
+            let remainder = self.v.len() % self.chunk_size;
+            let sz = if remainder != 0 { remainder } else { self.chunk_size };
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let (head, tail) = tmp.split_at_mut(sz);
+            self.v = tail;
+            Some(head)
+        }
+    }
+
+    #[inline]
+    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+        let len = self.len();
+        if n >= len {
+            self.v = &mut [];
+            None
+        } else {
+            // can't underflow because `n < len`
+            let offset_from_end = (len - 1 - n) * self.chunk_size;
+            let end = self.v.len() - offset_from_end;
+            let start = end.saturating_sub(self.chunk_size);
+            let (tmp, tail) = mem::replace(&mut self.v, &mut []).split_at_mut(end);
+            let (_, nth_back) = tmp.split_at_mut(start);
+            self.v = tail;
+            Some(nth_back)
+        }
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<T> ExactSizeIterator for RChunksMut<'_, T> {}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T> TrustedLen for RChunksMut<'_, T> {}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<T> FusedIterator for RChunksMut<'_, T> {}
+
+#[doc(hidden)]
+#[stable(feature = "rchunks", since = "1.31.0")]
+unsafe impl<'a, T> TrustedRandomAccess for RChunksMut<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut [T] {
+        let end = self.v.len() - i * self.chunk_size;
+        let start = match end.checked_sub(self.chunk_size) {
+            None => 0,
+            Some(start) => start,
+        };
+        // SAFETY: see comments for `RChunks::get_unchecked`.
+        unsafe { from_raw_parts_mut(self.v.as_mut_ptr().add(start), end - start) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+/// An iterator over a slice in (non-overlapping) chunks (`chunk_size` elements at a
+/// time), starting at the end of the slice.
+///
+/// When the slice len is not evenly divided by the chunk size, the last
+/// up to `chunk_size-1` elements will be omitted but can be retrieved from
+/// the [`remainder`] function from the iterator.
+///
+/// This struct is created by the [`rchunks_exact`] method on [slices].
+///
+/// [`rchunks_exact`]: ../../std/primitive.slice.html#method.rchunks_exact
+/// [`remainder`]: ../../std/slice/struct.ChunksExact.html#method.remainder
+/// [slices]: ../../std/primitive.slice.html
+#[derive(Debug)]
+#[stable(feature = "rchunks", since = "1.31.0")]
+pub struct RChunksExact<'a, T: 'a> {
+    v: &'a [T],
+    rem: &'a [T],
+    chunk_size: usize,
+}
+
+impl<'a, T> RChunksExact<'a, T> {
+    /// Returns the remainder of the original slice that is not going to be
+    /// returned by the iterator. The returned slice has at most `chunk_size-1`
+    /// elements.
+    #[stable(feature = "rchunks", since = "1.31.0")]
+    pub fn remainder(&self) -> &'a [T] {
+        self.rem
+    }
+}
+
+// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> Clone for RChunksExact<'a, T> {
+    fn clone(&self) -> RChunksExact<'a, T> {
+        RChunksExact { v: self.v, rem: self.rem, chunk_size: self.chunk_size }
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> Iterator for RChunksExact<'a, T> {
+    type Item = &'a [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a [T]> {
+        if self.v.len() < self.chunk_size {
+            None
+        } else {
+            let (fst, snd) = self.v.split_at(self.v.len() - self.chunk_size);
+            self.v = fst;
+            Some(snd)
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        let n = self.v.len() / self.chunk_size;
+        (n, Some(n))
+    }
+
+    #[inline]
+    fn count(self) -> usize {
+        self.len()
+    }
+
+    #[inline]
+    fn nth(&mut self, n: usize) -> Option<Self::Item> {
+        let (end, overflow) = n.overflowing_mul(self.chunk_size);
+        if end >= self.v.len() || overflow {
+            self.v = &[];
+            None
+        } else {
+            let (fst, _) = self.v.split_at(self.v.len() - end);
+            self.v = fst;
+            self.next()
+        }
+    }
+
+    #[inline]
+    fn last(mut self) -> Option<Self::Item> {
+        self.next_back()
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> DoubleEndedIterator for RChunksExact<'a, T> {
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a [T]> {
+        if self.v.len() < self.chunk_size {
+            None
+        } else {
+            let (fst, snd) = self.v.split_at(self.chunk_size);
+            self.v = snd;
+            Some(fst)
+        }
+    }
+
+    #[inline]
+    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+        let len = self.len();
+        if n >= len {
+            self.v = &[];
+            None
+        } else {
+            // now that we know that `n` corresponds to a chunk,
+            // none of these operations can underflow/overflow
+            let offset = (len - n) * self.chunk_size;
+            let start = self.v.len() - offset;
+            let end = start + self.chunk_size;
+            let nth_back = &self.v[start..end];
+            self.v = &self.v[end..];
+            Some(nth_back)
+        }
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> ExactSizeIterator for RChunksExact<'a, T> {
+    fn is_empty(&self) -> bool {
+        self.v.is_empty()
+    }
+}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T> TrustedLen for RChunksExact<'_, T> {}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<T> FusedIterator for RChunksExact<'_, T> {}
+
+#[doc(hidden)]
+#[stable(feature = "rchunks", since = "1.31.0")]
+unsafe impl<'a, T> TrustedRandomAccess for RChunksExact<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
+        let end = self.v.len() - i * self.chunk_size;
+        let start = end - self.chunk_size;
+        // SAFETY: mostmy identical to `Chunks::get_unchecked`.
+        unsafe { from_raw_parts(self.v.as_ptr().add(start), self.chunk_size) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+/// An iterator over a slice in (non-overlapping) mutable chunks (`chunk_size`
+/// elements at a time), starting at the end of the slice.
+///
+/// When the slice len is not evenly divided by the chunk size, the last up to
+/// `chunk_size-1` elements will be omitted but can be retrieved from the
+/// [`into_remainder`] function from the iterator.
+///
+/// This struct is created by the [`rchunks_exact_mut`] method on [slices].
+///
+/// [`rchunks_exact_mut`]: ../../std/primitive.slice.html#method.rchunks_exact_mut
+/// [`into_remainder`]: ../../std/slice/struct.ChunksExactMut.html#method.into_remainder
+/// [slices]: ../../std/primitive.slice.html
+#[derive(Debug)]
+#[stable(feature = "rchunks", since = "1.31.0")]
+pub struct RChunksExactMut<'a, T: 'a> {
+    v: &'a mut [T],
+    rem: &'a mut [T],
+    chunk_size: usize,
+}
+
+impl<'a, T> RChunksExactMut<'a, T> {
+    /// Returns the remainder of the original slice that is not going to be
+    /// returned by the iterator. The returned slice has at most `chunk_size-1`
+    /// elements.
+    #[stable(feature = "rchunks", since = "1.31.0")]
+    pub fn into_remainder(self) -> &'a mut [T] {
+        self.rem
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> Iterator for RChunksExactMut<'a, T> {
+    type Item = &'a mut [T];
+
+    #[inline]
+    fn next(&mut self) -> Option<&'a mut [T]> {
+        if self.v.len() < self.chunk_size {
+            None
+        } else {
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let tmp_len = tmp.len();
+            let (head, tail) = tmp.split_at_mut(tmp_len - self.chunk_size);
+            self.v = head;
+            Some(tail)
+        }
+    }
+
+    #[inline]
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        let n = self.v.len() / self.chunk_size;
+        (n, Some(n))
+    }
+
+    #[inline]
+    fn count(self) -> usize {
+        self.len()
+    }
+
+    #[inline]
+    fn nth(&mut self, n: usize) -> Option<&'a mut [T]> {
+        let (end, overflow) = n.overflowing_mul(self.chunk_size);
+        if end >= self.v.len() || overflow {
+            self.v = &mut [];
+            None
+        } else {
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let tmp_len = tmp.len();
+            let (fst, _) = tmp.split_at_mut(tmp_len - end);
+            self.v = fst;
+            self.next()
+        }
+    }
+
+    #[inline]
+    fn last(mut self) -> Option<Self::Item> {
+        self.next_back()
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<'a, T> DoubleEndedIterator for RChunksExactMut<'a, T> {
+    #[inline]
+    fn next_back(&mut self) -> Option<&'a mut [T]> {
+        if self.v.len() < self.chunk_size {
+            None
+        } else {
+            let tmp = mem::replace(&mut self.v, &mut []);
+            let (head, tail) = tmp.split_at_mut(self.chunk_size);
+            self.v = tail;
+            Some(head)
+        }
+    }
+
+    #[inline]
+    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+        let len = self.len();
+        if n >= len {
+            self.v = &mut [];
+            None
+        } else {
+            // now that we know that `n` corresponds to a chunk,
+            // none of these operations can underflow/overflow
+            let offset = (len - n) * self.chunk_size;
+            let start = self.v.len() - offset;
+            let end = start + self.chunk_size;
+            let (tmp, tail) = mem::replace(&mut self.v, &mut []).split_at_mut(end);
+            let (_, nth_back) = tmp.split_at_mut(start);
+            self.v = tail;
+            Some(nth_back)
+        }
+    }
+}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<T> ExactSizeIterator for RChunksExactMut<'_, T> {
+    fn is_empty(&self) -> bool {
+        self.v.is_empty()
+    }
+}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T> TrustedLen for RChunksExactMut<'_, T> {}
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+impl<T> FusedIterator for RChunksExactMut<'_, T> {}
+
+#[doc(hidden)]
+#[stable(feature = "rchunks", since = "1.31.0")]
+unsafe impl<'a, T> TrustedRandomAccess for RChunksExactMut<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut [T] {
+        let end = self.v.len() - i * self.chunk_size;
+        let start = end - self.chunk_size;
+        // SAFETY: see comments for `RChunksExact::get_unchecked`.
+        unsafe { from_raw_parts_mut(self.v.as_mut_ptr().add(start), self.chunk_size) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+//
+// Free functions
+//
+
+/// Forms a slice from a pointer and a length.
+///
+/// The `len` argument is the number of **elements**, not the number of bytes.
+///
+/// # Safety
+///
+/// Behavior is undefined if any of the following conditions are violated:
+///
+/// * `data` must be [valid] for reads for `len * mem::size_of::<T>()` many bytes,
+///   and it must be properly aligned. This means in particular:
+///
+///     * The entire memory range of this slice must be contained within a single allocated object!
+///       Slices can never span across multiple allocated objects. See [below](#incorrect-usage)
+///       for an example incorrectly not taking this into account.
+///     * `data` must be non-null and aligned even for zero-length slices. One
+///       reason for this is that enum layout optimizations may rely on references
+///       (including slices of any length) being aligned and non-null to distinguish
+///       them from other data. You can obtain a pointer that is usable as `data`
+///       for zero-length slices using [`NonNull::dangling()`].
+///
+/// * The memory referenced by the returned slice must not be mutated for the duration
+///   of lifetime `'a`, except inside an `UnsafeCell`.
+///
+/// * The total size `len * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
+///   See the safety documentation of [`pointer::offset`].
+///
+/// # Caveat
+///
+/// The lifetime for the returned slice is inferred from its usage. To
+/// prevent accidental misuse, it's suggested to tie the lifetime to whichever
+/// source lifetime is safe in the context, such as by providing a helper
+/// function taking the lifetime of a host value for the slice, or by explicit
+/// annotation.
+///
+/// # Examples
+///
+/// ```
+/// use std::slice;
+///
+/// // manifest a slice for a single element
+/// let x = 42;
+/// let ptr = &x as *const _;
+/// let slice = unsafe { slice::from_raw_parts(ptr, 1) };
+/// assert_eq!(slice[0], 42);
+/// ```
+///
+/// ### Incorrect usage
+///
+/// The following `join_slices` function is **unsound** ⚠️
+///
+/// ```rust,no_run
+/// use std::slice;
+///
+/// fn join_slices<'a, T>(fst: &'a [T], snd: &'a [T]) -> &'a [T] {
+///     let fst_end = fst.as_ptr().wrapping_add(fst.len());
+///     let snd_start = snd.as_ptr();
+///     assert_eq!(fst_end, snd_start, "Slices must be contiguous!");
+///     unsafe {
+///         // The assertion above ensures `fst` and `snd` are contiguous, but they might
+///         // still be contained within _different allocated objects_, in which case
+///         // creating this slice is undefined behavior.
+///         slice::from_raw_parts(fst.as_ptr(), fst.len() + snd.len())
+///     }
+/// }
+///
+/// fn main() {
+///     // `a` and `b` are different allocated objects...
+///     let a = 42;
+///     let b = 27;
+///     // ... which may nevertheless be laid out contiguously in memory: | a | b |
+///     let _ = join_slices(slice::from_ref(&a), slice::from_ref(&b)); // UB
+/// }
+/// ```
+///
+/// [valid]: ../../std/ptr/index.html#safety
+/// [`NonNull::dangling()`]: ../../std/ptr/struct.NonNull.html#method.dangling
+/// [`pointer::offset`]: ../../std/primitive.pointer.html#method.offset
+#[inline]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub unsafe fn from_raw_parts<'a, T>(data: *const T, len: usize) -> &'a [T] {
+    debug_assert!(is_aligned_and_not_null(data), "attempt to create unaligned or null slice");
+    debug_assert!(
+        mem::size_of::<T>().saturating_mul(len) <= isize::MAX as usize,
+        "attempt to create slice covering at least half the address space"
+    );
+    // SAFETY: the caller must uphold the safety contract for `from_raw_parts`.
+    unsafe { &*ptr::slice_from_raw_parts(data, len) }
+}
+
+/// Performs the same functionality as [`from_raw_parts`], except that a
+/// mutable slice is returned.
+///
+/// # Safety
+///
+/// Behavior is undefined if any of the following conditions are violated:
+///
+/// * `data` must be [valid] for boths reads and writes for `len * mem::size_of::<T>()` many bytes,
+///   and it must be properly aligned. This means in particular:
+///
+///     * The entire memory range of this slice must be contained within a single allocated object!
+///       Slices can never span across multiple allocated objects.
+///     * `data` must be non-null and aligned even for zero-length slices. One
+///       reason for this is that enum layout optimizations may rely on references
+///       (including slices of any length) being aligned and non-null to distinguish
+///       them from other data. You can obtain a pointer that is usable as `data`
+///       for zero-length slices using [`NonNull::dangling()`].
+///
+/// * The memory referenced by the returned slice must not be accessed through any other pointer
+///   (not derived from the return value) for the duration of lifetime `'a`.
+///   Both read and write accesses are forbidden.
+///
+/// * The total size `len * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
+///   See the safety documentation of [`pointer::offset`].
+///
+/// [valid]: ../../std/ptr/index.html#safety
+/// [`NonNull::dangling()`]: ../../std/ptr/struct.NonNull.html#method.dangling
+/// [`pointer::offset`]: ../../std/primitive.pointer.html#method.offset
+/// [`from_raw_parts`]: ../../std/slice/fn.from_raw_parts.html
+#[inline]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub unsafe fn from_raw_parts_mut<'a, T>(data: *mut T, len: usize) -> &'a mut [T] {
+    debug_assert!(is_aligned_and_not_null(data), "attempt to create unaligned or null slice");
+    debug_assert!(
+        mem::size_of::<T>().saturating_mul(len) <= isize::MAX as usize,
+        "attempt to create slice covering at least half the address space"
+    );
+    // SAFETY: the caller must uphold the safety contract for `from_raw_parts_mut`.
+    unsafe { &mut *ptr::slice_from_raw_parts_mut(data, len) }
+}
+
+/// Converts a reference to T into a slice of length 1 (without copying).
+#[stable(feature = "from_ref", since = "1.28.0")]
+pub fn from_ref<T>(s: &T) -> &[T] {
+    unsafe { from_raw_parts(s, 1) }
+}
+
+/// Converts a reference to T into a slice of length 1 (without copying).
+#[stable(feature = "from_ref", since = "1.28.0")]
+pub fn from_mut<T>(s: &mut T) -> &mut [T] {
+    unsafe { from_raw_parts_mut(s, 1) }
+}
+
+// This function is public only because there is no other way to unit test heapsort.
+#[unstable(feature = "sort_internals", reason = "internal to sort module", issue = "none")]
+#[doc(hidden)]
+pub fn heapsort<T, F>(v: &mut [T], mut is_less: F)
+where
+    F: FnMut(&T, &T) -> bool,
+{
+    sort::heapsort(v, &mut is_less);
+}
+
+//
+// Comparison traits
+//
+
+extern "C" {
+    /// Calls implementation provided memcmp.
+    ///
+    /// Interprets the data as u8.
+    ///
+    /// Returns 0 for equal, < 0 for less than and > 0 for greater
+    /// than.
+    // FIXME(#32610): Return type should be c_int
+    fn memcmp(s1: *const u8, s2: *const u8, n: usize) -> i32;
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<A, B> PartialEq<[B]> for [A]
+where
+    A: PartialEq<B>,
+{
+    fn eq(&self, other: &[B]) -> bool {
+        SlicePartialEq::equal(self, other)
+    }
+
+    fn ne(&self, other: &[B]) -> bool {
+        SlicePartialEq::not_equal(self, other)
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Eq> Eq for [T] {}
+
+/// Implements comparison of vectors lexicographically.
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Ord> Ord for [T] {
+    fn cmp(&self, other: &[T]) -> Ordering {
+        SliceOrd::compare(self, other)
+    }
+}
+
+/// Implements comparison of vectors lexicographically.
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: PartialOrd> PartialOrd for [T] {
+    fn partial_cmp(&self, other: &[T]) -> Option<Ordering> {
+        SlicePartialOrd::partial_compare(self, other)
+    }
+}
+
+#[doc(hidden)]
+// intermediate trait for specialization of slice's PartialEq
+trait SlicePartialEq<B> {
+    fn equal(&self, other: &[B]) -> bool;
+
+    fn not_equal(&self, other: &[B]) -> bool {
+        !self.equal(other)
+    }
+}
+
+// Generic slice equality
+impl<A, B> SlicePartialEq<B> for [A]
+where
+    A: PartialEq<B>,
+{
+    default fn equal(&self, other: &[B]) -> bool {
+        if self.len() != other.len() {
+            return false;
+        }
+
+        self.iter().zip(other.iter()).all(|(x, y)| x == y)
+    }
+}
+
+// Use an equal-pointer optimization when types are `Eq`
+impl<A> SlicePartialEq<A> for [A]
+where
+    A: PartialEq<A> + Eq,
+{
+    default fn equal(&self, other: &[A]) -> bool {
+        if self.len() != other.len() {
+            return false;
+        }
+
+        // While performance would suffer if `guaranteed_eq` just returned `false`
+        // for all arguments, correctness and return value of this function are not affected.
+        if self.as_ptr().guaranteed_eq(other.as_ptr()) {
+            return true;
+        }
+
+        self.iter().zip(other.iter()).all(|(x, y)| x == y)
+    }
+}
+
+// Use memcmp for bytewise equality when the types allow
+impl<A> SlicePartialEq<A> for [A]
+where
+    A: PartialEq<A> + BytewiseEquality,
+{
+    fn equal(&self, other: &[A]) -> bool {
+        if self.len() != other.len() {
+            return false;
+        }
+
+        // While performance would suffer if `guaranteed_eq` just returned `false`
+        // for all arguments, correctness and return value of this function are not affected.
+        if self.as_ptr().guaranteed_eq(other.as_ptr()) {
+            return true;
+        }
+        unsafe {
+            let size = mem::size_of_val(self);
+            memcmp(self.as_ptr() as *const u8, other.as_ptr() as *const u8, size) == 0
+        }
+    }
+}
+
+#[doc(hidden)]
+// intermediate trait for specialization of slice's PartialOrd
+trait SlicePartialOrd: Sized {
+    fn partial_compare(left: &[Self], right: &[Self]) -> Option<Ordering>;
+}
+
+impl<A: PartialOrd> SlicePartialOrd for A {
+    default fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
+        let l = cmp::min(left.len(), right.len());
+
+        // Slice to the loop iteration range to enable bound check
+        // elimination in the compiler
+        let lhs = &left[..l];
+        let rhs = &right[..l];
+
+        for i in 0..l {
+            match lhs[i].partial_cmp(&rhs[i]) {
+                Some(Ordering::Equal) => (),
+                non_eq => return non_eq,
+            }
+        }
+
+        left.len().partial_cmp(&right.len())
+    }
+}
+
+// This is the impl that we would like to have. Unfortunately it's not sound.
+// See `partial_ord_slice.rs`.
+/*
+impl<A> SlicePartialOrd for A
+where
+    A: Ord,
+{
+    default fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
+        Some(SliceOrd::compare(left, right))
+    }
+}
+*/
+
+impl<A: AlwaysApplicableOrd> SlicePartialOrd for A {
+    fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
+        Some(SliceOrd::compare(left, right))
+    }
+}
+
+trait AlwaysApplicableOrd: SliceOrd + Ord {}
+
+macro_rules! always_applicable_ord {
+    ($([$($p:tt)*] $t:ty,)*) => {
+        $(impl<$($p)*> AlwaysApplicableOrd for $t {})*
+    }
+}
+
+always_applicable_ord! {
+    [] u8, [] u16, [] u32, [] u64, [] u128, [] usize,
+    [] i8, [] i16, [] i32, [] i64, [] i128, [] isize,
+    [] bool, [] char,
+    [T: ?Sized] *const T, [T: ?Sized] *mut T,
+    [T: AlwaysApplicableOrd] &T,
+    [T: AlwaysApplicableOrd] &mut T,
+    [T: AlwaysApplicableOrd] Option<T>,
+}
+
+#[doc(hidden)]
+// intermediate trait for specialization of slice's Ord
+trait SliceOrd: Sized {
+    fn compare(left: &[Self], right: &[Self]) -> Ordering;
+}
+
+impl<A: Ord> SliceOrd for A {
+    default fn compare(left: &[Self], right: &[Self]) -> Ordering {
+        let l = cmp::min(left.len(), right.len());
+
+        // Slice to the loop iteration range to enable bound check
+        // elimination in the compiler
+        let lhs = &left[..l];
+        let rhs = &right[..l];
+
+        for i in 0..l {
+            match lhs[i].cmp(&rhs[i]) {
+                Ordering::Equal => (),
+                non_eq => return non_eq,
+            }
+        }
+
+        left.len().cmp(&right.len())
+    }
+}
+
+// memcmp compares a sequence of unsigned bytes lexicographically.
+// this matches the order we want for [u8], but no others (not even [i8]).
+impl SliceOrd for u8 {
+    #[inline]
+    fn compare(left: &[Self], right: &[Self]) -> Ordering {
+        let order =
+            unsafe { memcmp(left.as_ptr(), right.as_ptr(), cmp::min(left.len(), right.len())) };
+        if order == 0 {
+            left.len().cmp(&right.len())
+        } else if order < 0 {
+            Less
+        } else {
+            Greater
+        }
+    }
+}
+
+#[doc(hidden)]
+/// Trait implemented for types that can be compared for equality using
+/// their bytewise representation
+trait BytewiseEquality: Eq + Copy {}
+
+macro_rules! impl_marker_for {
+    ($traitname:ident, $($ty:ty)*) => {
+        $(
+            impl $traitname for $ty { }
+        )*
+    }
+}
+
+impl_marker_for!(BytewiseEquality,
+                 u8 i8 u16 i16 u32 i32 u64 i64 u128 i128 usize isize char bool);
+
+#[doc(hidden)]
+unsafe impl<'a, T> TrustedRandomAccess for Iter<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a T {
+        // SAFETY: the caller must guarantee that `i` is in bounds
+        // of the underlying slice, so `i` cannot overflow an `isize`,
+        // and the returned references is guaranteed to refer to an element
+        // of the slice and thus guaranteed to be valid.
+        unsafe { &*self.ptr.as_ptr().add(i) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+#[doc(hidden)]
+unsafe impl<'a, T> TrustedRandomAccess for IterMut<'a, T> {
+    unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut T {
+        // SAFETY: see comments for `Iter::get_unchecked`.
+        unsafe { &mut *self.ptr.as_ptr().add(i) }
+    }
+    fn may_have_side_effect() -> bool {
+        false
+    }
+}
+
+trait SliceContains: Sized {
+    fn slice_contains(&self, x: &[Self]) -> bool;
+}
+
+impl<T> SliceContains for T
+where
+    T: PartialEq,
+{
+    default fn slice_contains(&self, x: &[Self]) -> bool {
+        x.iter().any(|y| *y == *self)
+    }
+}
+
+impl SliceContains for u8 {
+    fn slice_contains(&self, x: &[Self]) -> bool {
+        memchr::memchr(*self, x).is_some()
+    }
+}
+
+impl SliceContains for i8 {
+    fn slice_contains(&self, x: &[Self]) -> bool {
+        let byte = *self as u8;
+        let bytes: &[u8] = unsafe { from_raw_parts(x.as_ptr() as *const u8, x.len()) };
+        memchr::memchr(byte, bytes).is_some()
+    }
+}