about summary refs log tree commit diff
path: root/library/core/src
diff options
context:
space:
mode:
Diffstat (limited to 'library/core/src')
-rw-r--r--library/core/src/num/f128.rs410
-rw-r--r--library/core/src/num/f16.rs445
-rw-r--r--library/core/src/num/f32.rs413
-rw-r--r--library/core/src/num/f64.rs406
-rw-r--r--library/core/src/num/libm.rs11
-rw-r--r--library/core/src/num/mod.rs1
6 files changed, 1684 insertions, 2 deletions
diff --git a/library/core/src/num/f128.rs b/library/core/src/num/f128.rs
index 7e470185c86..0c2c4155d66 100644
--- a/library/core/src/num/f128.rs
+++ b/library/core/src/num/f128.rs
@@ -1415,3 +1415,413 @@ impl f128 {
         intrinsics::frem_algebraic(self, rhs)
     }
 }
+
+// Functions in this module fall into `core_float_math`
+// FIXME(f16_f128): all doctests must be gated to platforms that have `long double` === `_Float128`
+// due to https://github.com/llvm/llvm-project/issues/44744. aarch64 linux matches this.
+// #[unstable(feature = "core_float_math", issue = "137578")]
+#[cfg(not(test))]
+impl f128 {
+    /// Returns the largest integer less than or equal to `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let f = 3.7_f128;
+    /// let g = 3.0_f128;
+    /// let h = -3.7_f128;
+    ///
+    /// assert_eq!(f.floor(), 3.0);
+    /// assert_eq!(g.floor(), 3.0);
+    /// assert_eq!(h.floor(), -4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn floor(self) -> f128 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::floorf128(self) }
+    }
+
+    /// Returns the smallest integer greater than or equal to `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let f = 3.01_f128;
+    /// let g = 4.0_f128;
+    ///
+    /// assert_eq!(f.ceil(), 4.0);
+    /// assert_eq!(g.ceil(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "ceiling")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ceil(self) -> f128 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::ceilf128(self) }
+    }
+
+    /// Returns the nearest integer to `self`. If a value is half-way between two
+    /// integers, round away from `0.0`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let f = 3.3_f128;
+    /// let g = -3.3_f128;
+    /// let h = -3.7_f128;
+    /// let i = 3.5_f128;
+    /// let j = 4.5_f128;
+    ///
+    /// assert_eq!(f.round(), 3.0);
+    /// assert_eq!(g.round(), -3.0);
+    /// assert_eq!(h.round(), -4.0);
+    /// assert_eq!(i.round(), 4.0);
+    /// assert_eq!(j.round(), 5.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round(self) -> f128 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::roundf128(self) }
+    }
+
+    /// Returns the nearest integer to a number. Rounds half-way cases to the number
+    /// with an even least significant digit.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let f = 3.3_f128;
+    /// let g = -3.3_f128;
+    /// let h = 3.5_f128;
+    /// let i = 4.5_f128;
+    ///
+    /// assert_eq!(f.round_ties_even(), 3.0);
+    /// assert_eq!(g.round_ties_even(), -3.0);
+    /// assert_eq!(h.round_ties_even(), 4.0);
+    /// assert_eq!(i.round_ties_even(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round_ties_even(self) -> f128 {
+        intrinsics::round_ties_even_f128(self)
+    }
+
+    /// Returns the integer part of `self`.
+    /// This means that non-integer numbers are always truncated towards zero.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let f = 3.7_f128;
+    /// let g = 3.0_f128;
+    /// let h = -3.7_f128;
+    ///
+    /// assert_eq!(f.trunc(), 3.0);
+    /// assert_eq!(g.trunc(), 3.0);
+    /// assert_eq!(h.trunc(), -3.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "truncate")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn trunc(self) -> f128 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::truncf128(self) }
+    }
+
+    /// Returns the fractional part of `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let x = 3.6_f128;
+    /// let y = -3.6_f128;
+    /// let abs_difference_x = (x.fract() - 0.6).abs();
+    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
+    ///
+    /// assert!(abs_difference_x <= f128::EPSILON);
+    /// assert!(abs_difference_y <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn fract(self) -> f128 {
+        self - self.trunc()
+    }
+
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error, yielding a more accurate result than an unfused multiply-add.
+    ///
+    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
+    /// the target architecture has a dedicated `fma` CPU instruction. However,
+    /// this is not always true, and will be heavily dependant on designing
+    /// algorithms with specific target hardware in mind.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as
+    /// `fusedMultiplyAdd` and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let m = 10.0_f128;
+    /// let x = 4.0_f128;
+    /// let b = 60.0_f128;
+    ///
+    /// assert_eq!(m.mul_add(x, b), 100.0);
+    /// assert_eq!(m * x + b, 100.0);
+    ///
+    /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
+    /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
+    /// let minus_one = -1.0_f128;
+    ///
+    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
+    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
+    /// // Different rounding with the non-fused multiply and add.
+    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn mul_add(self, a: f128, b: f128) -> f128 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::fmaf128(self, a, b) }
+    }
+
+    /// Calculates Euclidean division, the matching method for `rem_euclid`.
+    ///
+    /// This computes the integer `n` such that
+    /// `self = n * rhs + self.rem_euclid(rhs)`.
+    /// In other words, the result is `self / rhs` rounded to the integer `n`
+    /// such that `self >= n * rhs`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let a: f128 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
+    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
+    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
+    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn div_euclid(self, rhs: f128) -> f128 {
+        let q = (self / rhs).trunc();
+        if self % rhs < 0.0 {
+            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
+        }
+        q
+    }
+
+    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
+    ///
+    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
+    /// most cases. However, due to a floating point round-off error it can
+    /// result in `r == rhs.abs()`, violating the mathematical definition, if
+    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
+    /// This result is not an element of the function's codomain, but it is the
+    /// closest floating point number in the real numbers and thus fulfills the
+    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
+    /// approximately.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let a: f128 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.rem_euclid(b), 3.0);
+    /// assert_eq!((-a).rem_euclid(b), 1.0);
+    /// assert_eq!(a.rem_euclid(-b), 3.0);
+    /// assert_eq!((-a).rem_euclid(-b), 1.0);
+    /// // limitation due to round-off error
+    /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[doc(alias = "modulo", alias = "mod")]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn rem_euclid(self, rhs: f128) -> f128 {
+        let r = self % rhs;
+        if r < 0.0 { r + rhs.abs() } else { r }
+    }
+
+    /// Raises a number to an integer power.
+    ///
+    /// Using this function is generally faster than using `powf`.
+    /// It might have a different sequence of rounding operations than `powf`,
+    /// so the results are not guaranteed to agree.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let x = 2.0_f128;
+    /// let abs_difference = (x.powi(2) - (x * x)).abs();
+    /// assert!(abs_difference <= f128::EPSILON);
+    ///
+    /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn powi(self, n: i32) -> f128 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::powif128(self, n) }
+    }
+
+    /// Returns the square root of a number.
+    ///
+    /// Returns NaN if `self` is a negative number other than `-0.0`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
+    /// and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f128_math)] {
+    ///
+    /// let positive = 4.0_f128;
+    /// let negative = -4.0_f128;
+    /// let negative_zero = -0.0_f128;
+    ///
+    /// assert_eq!(positive.sqrt(), 2.0);
+    /// assert!(negative.sqrt().is_nan());
+    /// assert!(negative_zero.sqrt() == negative_zero);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "squareRoot")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sqrt(self) -> f128 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::sqrtf128(self) }
+    }
+}
diff --git a/library/core/src/num/f16.rs b/library/core/src/num/f16.rs
index e47900cba55..1a859f2277f 100644
--- a/library/core/src/num/f16.rs
+++ b/library/core/src/num/f16.rs
@@ -13,6 +13,8 @@
 
 use crate::convert::FloatToInt;
 use crate::num::FpCategory;
+#[cfg(not(test))]
+use crate::num::libm;
 use crate::panic::const_assert;
 use crate::{intrinsics, mem};
 
@@ -1391,3 +1393,446 @@ impl f16 {
         intrinsics::frem_algebraic(self, rhs)
     }
 }
+
+// Functions in this module fall into `core_float_math`
+// #[unstable(feature = "core_float_math", issue = "137578")]
+#[cfg(not(test))]
+impl f16 {
+    /// Returns the largest integer less than or equal to `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let f = 3.7_f16;
+    /// let g = 3.0_f16;
+    /// let h = -3.7_f16;
+    ///
+    /// assert_eq!(f.floor(), 3.0);
+    /// assert_eq!(g.floor(), 3.0);
+    /// assert_eq!(h.floor(), -4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn floor(self) -> f16 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::floorf16(self) }
+    }
+
+    /// Returns the smallest integer greater than or equal to `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let f = 3.01_f16;
+    /// let g = 4.0_f16;
+    ///
+    /// assert_eq!(f.ceil(), 4.0);
+    /// assert_eq!(g.ceil(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "ceiling")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ceil(self) -> f16 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::ceilf16(self) }
+    }
+
+    /// Returns the nearest integer to `self`. If a value is half-way between two
+    /// integers, round away from `0.0`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let f = 3.3_f16;
+    /// let g = -3.3_f16;
+    /// let h = -3.7_f16;
+    /// let i = 3.5_f16;
+    /// let j = 4.5_f16;
+    ///
+    /// assert_eq!(f.round(), 3.0);
+    /// assert_eq!(g.round(), -3.0);
+    /// assert_eq!(h.round(), -4.0);
+    /// assert_eq!(i.round(), 4.0);
+    /// assert_eq!(j.round(), 5.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round(self) -> f16 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::roundf16(self) }
+    }
+
+    /// Returns the nearest integer to a number. Rounds half-way cases to the number
+    /// with an even least significant digit.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let f = 3.3_f16;
+    /// let g = -3.3_f16;
+    /// let h = 3.5_f16;
+    /// let i = 4.5_f16;
+    ///
+    /// assert_eq!(f.round_ties_even(), 3.0);
+    /// assert_eq!(g.round_ties_even(), -3.0);
+    /// assert_eq!(h.round_ties_even(), 4.0);
+    /// assert_eq!(i.round_ties_even(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round_ties_even(self) -> f16 {
+        intrinsics::round_ties_even_f16(self)
+    }
+
+    /// Returns the integer part of `self`.
+    /// This means that non-integer numbers are always truncated towards zero.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let f = 3.7_f16;
+    /// let g = 3.0_f16;
+    /// let h = -3.7_f16;
+    ///
+    /// assert_eq!(f.trunc(), 3.0);
+    /// assert_eq!(g.trunc(), 3.0);
+    /// assert_eq!(h.trunc(), -3.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "truncate")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn trunc(self) -> f16 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::truncf16(self) }
+    }
+
+    /// Returns the fractional part of `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let x = 3.6_f16;
+    /// let y = -3.6_f16;
+    /// let abs_difference_x = (x.fract() - 0.6).abs();
+    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
+    ///
+    /// assert!(abs_difference_x <= f16::EPSILON);
+    /// assert!(abs_difference_y <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn fract(self) -> f16 {
+        self - self.trunc()
+    }
+
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error, yielding a more accurate result than an unfused multiply-add.
+    ///
+    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
+    /// the target architecture has a dedicated `fma` CPU instruction. However,
+    /// this is not always true, and will be heavily dependant on designing
+    /// algorithms with specific target hardware in mind.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as
+    /// `fusedMultiplyAdd` and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let m = 10.0_f16;
+    /// let x = 4.0_f16;
+    /// let b = 60.0_f16;
+    ///
+    /// assert_eq!(m.mul_add(x, b), 100.0);
+    /// assert_eq!(m * x + b, 100.0);
+    ///
+    /// let one_plus_eps = 1.0_f16 + f16::EPSILON;
+    /// let one_minus_eps = 1.0_f16 - f16::EPSILON;
+    /// let minus_one = -1.0_f16;
+    ///
+    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
+    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON);
+    /// // Different rounding with the non-fused multiply and add.
+    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[doc(alias = "fmaf16", alias = "fusedMultiplyAdd")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn mul_add(self, a: f16, b: f16) -> f16 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::fmaf16(self, a, b) }
+    }
+
+    /// Calculates Euclidean division, the matching method for `rem_euclid`.
+    ///
+    /// This computes the integer `n` such that
+    /// `self = n * rhs + self.rem_euclid(rhs)`.
+    /// In other words, the result is `self / rhs` rounded to the integer `n`
+    /// such that `self >= n * rhs`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let a: f16 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
+    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
+    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
+    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn div_euclid(self, rhs: f16) -> f16 {
+        let q = (self / rhs).trunc();
+        if self % rhs < 0.0 {
+            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
+        }
+        q
+    }
+
+    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
+    ///
+    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
+    /// most cases. However, due to a floating point round-off error it can
+    /// result in `r == rhs.abs()`, violating the mathematical definition, if
+    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
+    /// This result is not an element of the function's codomain, but it is the
+    /// closest floating point number in the real numbers and thus fulfills the
+    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
+    /// approximately.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let a: f16 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.rem_euclid(b), 3.0);
+    /// assert_eq!((-a).rem_euclid(b), 1.0);
+    /// assert_eq!(a.rem_euclid(-b), 3.0);
+    /// assert_eq!((-a).rem_euclid(-b), 1.0);
+    /// // limitation due to round-off error
+    /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[doc(alias = "modulo", alias = "mod")]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn rem_euclid(self, rhs: f16) -> f16 {
+        let r = self % rhs;
+        if r < 0.0 { r + rhs.abs() } else { r }
+    }
+
+    /// Raises a number to an integer power.
+    ///
+    /// Using this function is generally faster than using `powf`.
+    /// It might have a different sequence of rounding operations than `powf`,
+    /// so the results are not guaranteed to agree.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let x = 2.0_f16;
+    /// let abs_difference = (x.powi(2) - (x * x)).abs();
+    /// assert!(abs_difference <= f16::EPSILON);
+    ///
+    /// assert_eq!(f16::powi(f16::NAN, 0), 1.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn powi(self, n: i32) -> f16 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::powif16(self, n) }
+    }
+
+    /// Returns the square root of a number.
+    ///
+    /// Returns NaN if `self` is a negative number other than `-0.0`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
+    /// and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let positive = 4.0_f16;
+    /// let negative = -4.0_f16;
+    /// let negative_zero = -0.0_f16;
+    ///
+    /// assert_eq!(positive.sqrt(), 2.0);
+    /// assert!(negative.sqrt().is_nan());
+    /// assert!(negative_zero.sqrt() == negative_zero);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "squareRoot")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sqrt(self) -> f16 {
+        // SAFETY: intrinsic with no preconditions
+        unsafe { intrinsics::sqrtf16(self) }
+    }
+
+    /// Returns the cube root of a number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `cbrtf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #![feature(cfg_target_has_reliable_f16_f128)]
+    /// # #![expect(internal_features)]
+    /// # #[cfg(not(miri))]
+    /// # #[cfg(target_has_reliable_f16_math)] {
+    ///
+    /// let x = 8.0f16;
+    ///
+    /// // x^(1/3) - 2 == 0
+    /// let abs_difference = (x.cbrt() - 2.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cbrt(self) -> f16 {
+        libm::cbrtf(self as f32) as f16
+    }
+}
diff --git a/library/core/src/num/f32.rs b/library/core/src/num/f32.rs
index 5fbc6eb33f1..9525bdb6762 100644
--- a/library/core/src/num/f32.rs
+++ b/library/core/src/num/f32.rs
@@ -12,7 +12,7 @@
 #![stable(feature = "rust1", since = "1.0.0")]
 
 use crate::convert::FloatToInt;
-use crate::num::FpCategory;
+use crate::num::{FpCategory, libm};
 use crate::panic::const_assert;
 use crate::{cfg_match, intrinsics, mem};
 
@@ -1556,3 +1556,414 @@ impl f32 {
         intrinsics::frem_algebraic(self, rhs)
     }
 }
+
+/// Experimental version of `floor` in `core`. See [`f32::floor`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let f = 3.7_f32;
+/// let g = 3.0_f32;
+/// let h = -3.7_f32;
+///
+/// assert_eq!(f32::floor(f), 3.0);
+/// assert_eq!(f32::floor(g), 3.0);
+/// assert_eq!(f32::floor(h), -4.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::floor`]: ../../std/primitive.f32.html#method.floor
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn floor(x: f32) -> f32 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::floorf32(x) }
+}
+
+/// Experimental version of `ceil` in `core`. See [`f32::ceil`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let f = 3.01_f32;
+/// let g = 4.0_f32;
+///
+/// assert_eq!(f32::ceil(f), 4.0);
+/// assert_eq!(f32::ceil(g), 4.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::ceil`]: ../../std/primitive.f32.html#method.ceil
+#[inline]
+#[doc(alias = "ceiling")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+#[unstable(feature = "core_float_math", issue = "137578")]
+pub fn ceil(x: f32) -> f32 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::ceilf32(x) }
+}
+
+/// Experimental version of `round` in `core`. See [`f32::round`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let f = 3.3_f32;
+/// let g = -3.3_f32;
+/// let h = -3.7_f32;
+/// let i = 3.5_f32;
+/// let j = 4.5_f32;
+///
+/// assert_eq!(f32::round(f), 3.0);
+/// assert_eq!(f32::round(g), -3.0);
+/// assert_eq!(f32::round(h), -4.0);
+/// assert_eq!(f32::round(i), 4.0);
+/// assert_eq!(f32::round(j), 5.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::round`]: ../../std/primitive.f32.html#method.round
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn round(x: f32) -> f32 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::roundf32(x) }
+}
+
+/// Experimental version of `round_ties_even` in `core`. See [`f32::round_ties_even`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let f = 3.3_f32;
+/// let g = -3.3_f32;
+/// let h = 3.5_f32;
+/// let i = 4.5_f32;
+///
+/// assert_eq!(f32::round_ties_even(f), 3.0);
+/// assert_eq!(f32::round_ties_even(g), -3.0);
+/// assert_eq!(f32::round_ties_even(h), 4.0);
+/// assert_eq!(f32::round_ties_even(i), 4.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::round_ties_even`]: ../../std/primitive.f32.html#method.round_ties_even
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn round_ties_even(x: f32) -> f32 {
+    intrinsics::round_ties_even_f32(x)
+}
+
+/// Experimental version of `trunc` in `core`. See [`f32::trunc`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let f = 3.7_f32;
+/// let g = 3.0_f32;
+/// let h = -3.7_f32;
+///
+/// assert_eq!(f32::trunc(f), 3.0);
+/// assert_eq!(f32::trunc(g), 3.0);
+/// assert_eq!(f32::trunc(h), -3.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::trunc`]: ../../std/primitive.f32.html#method.trunc
+#[inline]
+#[doc(alias = "truncate")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+#[unstable(feature = "core_float_math", issue = "137578")]
+pub fn trunc(x: f32) -> f32 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::truncf32(x) }
+}
+
+/// Experimental version of `fract` in `core`. See [`f32::fract`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let x = 3.6_f32;
+/// let y = -3.6_f32;
+/// let abs_difference_x = (f32::fract(x) - 0.6).abs();
+/// let abs_difference_y = (f32::fract(y) - (-0.6)).abs();
+///
+/// assert!(abs_difference_x <= f32::EPSILON);
+/// assert!(abs_difference_y <= f32::EPSILON);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::fract`]: ../../std/primitive.f32.html#method.fract
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn fract(x: f32) -> f32 {
+    x - trunc(x)
+}
+
+/// Experimental version of `mul_add` in `core`. See [`f32::mul_add`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// # // FIXME(#140515): mingw has an incorrect fma https://sourceforge.net/p/mingw-w64/bugs/848/
+/// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
+/// use core::f32;
+///
+/// let m = 10.0_f32;
+/// let x = 4.0_f32;
+/// let b = 60.0_f32;
+///
+/// assert_eq!(f32::mul_add(m, x, b), 100.0);
+/// assert_eq!(m * x + b, 100.0);
+///
+/// let one_plus_eps = 1.0_f32 + f32::EPSILON;
+/// let one_minus_eps = 1.0_f32 - f32::EPSILON;
+/// let minus_one = -1.0_f32;
+///
+/// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
+/// assert_eq!(f32::mul_add(one_plus_eps, one_minus_eps, minus_one), -f32::EPSILON * f32::EPSILON);
+/// // Different rounding with the non-fused multiply and add.
+/// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
+/// # }
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::mul_add`]: ../../std/primitive.f32.html#method.mul_add
+#[inline]
+#[doc(alias = "fmaf", alias = "fusedMultiplyAdd")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+#[unstable(feature = "core_float_math", issue = "137578")]
+pub fn mul_add(x: f32, y: f32, z: f32) -> f32 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::fmaf32(x, y, z) }
+}
+
+/// Experimental version of `div_euclid` in `core`. See [`f32::div_euclid`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let a: f32 = 7.0;
+/// let b = 4.0;
+/// assert_eq!(f32::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
+/// assert_eq!(f32::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
+/// assert_eq!(f32::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
+/// assert_eq!(f32::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::div_euclid`]: ../../std/primitive.f32.html#method.div_euclid
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn div_euclid(x: f32, rhs: f32) -> f32 {
+    let q = trunc(x / rhs);
+    if x % rhs < 0.0 {
+        return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
+    }
+    q
+}
+
+/// Experimental version of `rem_euclid` in `core`. See [`f32::rem_euclid`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let a: f32 = 7.0;
+/// let b = 4.0;
+/// assert_eq!(f32::rem_euclid(a, b), 3.0);
+/// assert_eq!(f32::rem_euclid(-a, b), 1.0);
+/// assert_eq!(f32::rem_euclid(a, -b), 3.0);
+/// assert_eq!(f32::rem_euclid(-a, -b), 1.0);
+/// // limitation due to round-off error
+/// assert!(f32::rem_euclid(-f32::EPSILON, 3.0) != 0.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::rem_euclid`]: ../../std/primitive.f32.html#method.rem_euclid
+#[inline]
+#[doc(alias = "modulo", alias = "mod")]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn rem_euclid(x: f32, rhs: f32) -> f32 {
+    let r = x % rhs;
+    if r < 0.0 { r + rhs.abs() } else { r }
+}
+
+/// Experimental version of `powi` in `core`. See [`f32::powi`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let x = 2.0_f32;
+/// let abs_difference = (f32::powi(x, 2) - (x * x)).abs();
+/// assert!(abs_difference <= f32::EPSILON);
+///
+/// assert_eq!(f32::powi(f32::NAN, 0), 1.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::powi`]: ../../std/primitive.f32.html#method.powi
+#[inline]
+#[must_use = "method returns a new number and does not mutate the original value"]
+#[unstable(feature = "core_float_math", issue = "137578")]
+pub fn powi(x: f32, n: i32) -> f32 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::powif32(x, n) }
+}
+
+/// Experimental version of `sqrt` in `core`. See [`f32::sqrt`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let positive = 4.0_f32;
+/// let negative = -4.0_f32;
+/// let negative_zero = -0.0_f32;
+///
+/// assert_eq!(f32::sqrt(positive), 2.0);
+/// assert!(f32::sqrt(negative).is_nan());
+/// assert_eq!(f32::sqrt(negative_zero), negative_zero);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::sqrt`]: ../../std/primitive.f32.html#method.sqrt
+#[inline]
+#[doc(alias = "squareRoot")]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn sqrt(x: f32) -> f32 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::sqrtf32(x) }
+}
+
+/// Experimental version of `abs_sub` in `core`. See [`f32::abs_sub`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let x = 3.0f32;
+/// let y = -3.0f32;
+///
+/// let abs_difference_x = (f32::abs_sub(x, 1.0) - 2.0).abs();
+/// let abs_difference_y = (f32::abs_sub(y, 1.0) - 0.0).abs();
+///
+/// assert!(abs_difference_x <= f32::EPSILON);
+/// assert!(abs_difference_y <= f32::EPSILON);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::abs_sub`]: ../../std/primitive.f32.html#method.abs_sub
+#[inline]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(
+    since = "1.10.0",
+    note = "you probably meant `(self - other).abs()`: \
+            this operation is `(self - other).max(0.0)` \
+            except that `abs_sub` also propagates NaNs (also \
+            known as `fdimf` in C). If you truly need the positive \
+            difference, consider using that expression or the C function \
+            `fdimf`, depending on how you wish to handle NaN (please consider \
+            filing an issue describing your use-case too)."
+)]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn abs_sub(x: f32, other: f32) -> f32 {
+    libm::fdimf(x, other)
+}
+
+/// Experimental version of `cbrt` in `core`. See [`f32::cbrt`] for details.
+///
+/// # Unspecified precision
+///
+/// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
+/// can even differ within the same execution from one invocation to the next.
+/// This function currently corresponds to the `cbrtf` from libc on Unix
+/// and Windows. Note that this might change in the future.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f32;
+///
+/// let x = 8.0f32;
+///
+/// // x^(1/3) - 2 == 0
+/// let abs_difference = (f32::cbrt(x) - 2.0).abs();
+///
+/// assert!(abs_difference <= f32::EPSILON);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f32::cbrt`]: ../../std/primitive.f32.html#method.cbrt
+#[inline]
+#[must_use = "method returns a new number and does not mutate the original value"]
+#[unstable(feature = "core_float_math", issue = "137578")]
+pub fn cbrt(x: f32) -> f32 {
+    libm::cbrtf(x)
+}
diff --git a/library/core/src/num/f64.rs b/library/core/src/num/f64.rs
index 81ab0f14c2b..76c4e5d1a6f 100644
--- a/library/core/src/num/f64.rs
+++ b/library/core/src/num/f64.rs
@@ -12,7 +12,7 @@
 #![stable(feature = "rust1", since = "1.0.0")]
 
 use crate::convert::FloatToInt;
-use crate::num::FpCategory;
+use crate::num::{FpCategory, libm};
 use crate::panic::const_assert;
 use crate::{intrinsics, mem};
 
@@ -1555,3 +1555,407 @@ impl f64 {
         intrinsics::frem_algebraic(self, rhs)
     }
 }
+
+/// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let f = 3.7_f64;
+/// let g = 3.0_f64;
+/// let h = -3.7_f64;
+///
+/// assert_eq!(f64::floor(f), 3.0);
+/// assert_eq!(f64::floor(g), 3.0);
+/// assert_eq!(f64::floor(h), -4.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::floor`]: ../../std/primitive.f64.html#method.floor
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn floor(x: f64) -> f64 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::floorf64(x) }
+}
+
+/// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let f = 3.01_f64;
+/// let g = 4.0_f64;
+///
+/// assert_eq!(f64::ceil(f), 4.0);
+/// assert_eq!(f64::ceil(g), 4.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::ceil`]: ../../std/primitive.f64.html#method.ceil
+#[inline]
+#[doc(alias = "ceiling")]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn ceil(x: f64) -> f64 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::ceilf64(x) }
+}
+
+/// Experimental version of `round` in `core`. See [`f64::round`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let f = 3.3_f64;
+/// let g = -3.3_f64;
+/// let h = -3.7_f64;
+/// let i = 3.5_f64;
+/// let j = 4.5_f64;
+///
+/// assert_eq!(f64::round(f), 3.0);
+/// assert_eq!(f64::round(g), -3.0);
+/// assert_eq!(f64::round(h), -4.0);
+/// assert_eq!(f64::round(i), 4.0);
+/// assert_eq!(f64::round(j), 5.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::round`]: ../../std/primitive.f64.html#method.round
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn round(x: f64) -> f64 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::roundf64(x) }
+}
+
+/// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let f = 3.3_f64;
+/// let g = -3.3_f64;
+/// let h = 3.5_f64;
+/// let i = 4.5_f64;
+///
+/// assert_eq!(f64::round_ties_even(f), 3.0);
+/// assert_eq!(f64::round_ties_even(g), -3.0);
+/// assert_eq!(f64::round_ties_even(h), 4.0);
+/// assert_eq!(f64::round_ties_even(i), 4.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::round_ties_even`]: ../../std/primitive.f64.html#method.round_ties_even
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn round_ties_even(x: f64) -> f64 {
+    intrinsics::round_ties_even_f64(x)
+}
+
+/// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let f = 3.7_f64;
+/// let g = 3.0_f64;
+/// let h = -3.7_f64;
+///
+/// assert_eq!(f64::trunc(f), 3.0);
+/// assert_eq!(f64::trunc(g), 3.0);
+/// assert_eq!(f64::trunc(h), -3.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::trunc`]: ../../std/primitive.f64.html#method.trunc
+#[inline]
+#[doc(alias = "truncate")]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn trunc(x: f64) -> f64 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::truncf64(x) }
+}
+
+/// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let x = 3.6_f64;
+/// let y = -3.6_f64;
+/// let abs_difference_x = (f64::fract(x) - 0.6).abs();
+/// let abs_difference_y = (f64::fract(y) - (-0.6)).abs();
+///
+/// assert!(abs_difference_x < 1e-10);
+/// assert!(abs_difference_y < 1e-10);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::fract`]: ../../std/primitive.f64.html#method.fract
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn fract(x: f64) -> f64 {
+    x - trunc(x)
+}
+
+/// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// # // FIXME(#140515): mingw has an incorrect fma https://sourceforge.net/p/mingw-w64/bugs/848/
+/// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
+/// use core::f64;
+///
+/// let m = 10.0_f64;
+/// let x = 4.0_f64;
+/// let b = 60.0_f64;
+///
+/// assert_eq!(f64::mul_add(m, x, b), 100.0);
+/// assert_eq!(m * x + b, 100.0);
+///
+/// let one_plus_eps = 1.0_f64 + f64::EPSILON;
+/// let one_minus_eps = 1.0_f64 - f64::EPSILON;
+/// let minus_one = -1.0_f64;
+///
+/// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
+/// assert_eq!(f64::mul_add(one_plus_eps, one_minus_eps, minus_one), -f64::EPSILON * f64::EPSILON);
+/// // Different rounding with the non-fused multiply and add.
+/// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
+/// # }
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::mul_add`]: ../../std/primitive.f64.html#method.mul_add
+#[inline]
+#[doc(alias = "fma", alias = "fusedMultiplyAdd")]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn mul_add(x: f64, a: f64, b: f64) -> f64 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::fmaf64(x, a, b) }
+}
+
+/// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let a: f64 = 7.0;
+/// let b = 4.0;
+/// assert_eq!(f64::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
+/// assert_eq!(f64::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
+/// assert_eq!(f64::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
+/// assert_eq!(f64::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::div_euclid`]: ../../std/primitive.f64.html#method.div_euclid
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn div_euclid(x: f64, rhs: f64) -> f64 {
+    let q = trunc(x / rhs);
+    if x % rhs < 0.0 {
+        return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
+    }
+    q
+}
+
+/// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let a: f64 = 7.0;
+/// let b = 4.0;
+/// assert_eq!(f64::rem_euclid(a, b), 3.0);
+/// assert_eq!(f64::rem_euclid(-a, b), 1.0);
+/// assert_eq!(f64::rem_euclid(a, -b), 3.0);
+/// assert_eq!(f64::rem_euclid(-a, -b), 1.0);
+/// // limitation due to round-off error
+/// assert!(f64::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::rem_euclid`]: ../../std/primitive.f64.html#method.rem_euclid
+#[inline]
+#[doc(alias = "modulo", alias = "mod")]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
+    let r = x % rhs;
+    if r < 0.0 { r + rhs.abs() } else { r }
+}
+
+/// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let x = 2.0_f64;
+/// let abs_difference = (f64::powi(x, 2) - (x * x)).abs();
+/// assert!(abs_difference <= f64::EPSILON);
+///
+/// assert_eq!(f64::powi(f64::NAN, 0), 1.0);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::powi`]: ../../std/primitive.f64.html#method.powi
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn powi(x: f64, n: i32) -> f64 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::powif64(x, n) }
+}
+
+/// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let positive = 4.0_f64;
+/// let negative = -4.0_f64;
+/// let negative_zero = -0.0_f64;
+///
+/// assert_eq!(f64::sqrt(positive), 2.0);
+/// assert!(f64::sqrt(negative).is_nan());
+/// assert_eq!(f64::sqrt(negative_zero), negative_zero);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::sqrt`]: ../../std/primitive.f64.html#method.sqrt
+#[inline]
+#[doc(alias = "squareRoot")]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn sqrt(x: f64) -> f64 {
+    // SAFETY: intrinsic with no preconditions
+    unsafe { intrinsics::sqrtf64(x) }
+}
+
+/// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let x = 3.0_f64;
+/// let y = -3.0_f64;
+///
+/// let abs_difference_x = (f64::abs_sub(x, 1.0) - 2.0).abs();
+/// let abs_difference_y = (f64::abs_sub(y, 1.0) - 0.0).abs();
+///
+/// assert!(abs_difference_x < 1e-10);
+/// assert!(abs_difference_y < 1e-10);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::abs_sub`]: ../../std/primitive.f64.html#method.abs_sub
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[deprecated(
+    since = "1.10.0",
+    note = "you probably meant `(self - other).abs()`: \
+                this operation is `(self - other).max(0.0)` \
+                except that `abs_sub` also propagates NaNs (also \
+                known as `fdim` in C). If you truly need the positive \
+                difference, consider using that expression or the C function \
+                `fdim`, depending on how you wish to handle NaN (please consider \
+                filing an issue describing your use-case too)."
+)]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn abs_sub(x: f64, other: f64) -> f64 {
+    libm::fdim(x, other)
+}
+
+/// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(core_float_math)]
+///
+/// use core::f64;
+///
+/// let x = 8.0_f64;
+///
+/// // x^(1/3) - 2 == 0
+/// let abs_difference = (f64::cbrt(x) - 2.0).abs();
+///
+/// assert!(abs_difference < 1e-10);
+/// ```
+///
+/// _This standalone function is for testing only. It will be stabilized as an inherent method._
+///
+/// [`f64::cbrt`]: ../../std/primitive.f64.html#method.cbrt
+#[inline]
+#[unstable(feature = "core_float_math", issue = "137578")]
+#[must_use = "method returns a new number and does not mutate the original value"]
+pub fn cbrt(x: f64) -> f64 {
+    libm::cbrt(x)
+}
diff --git a/library/core/src/num/libm.rs b/library/core/src/num/libm.rs
new file mode 100644
index 00000000000..aeabb087230
--- /dev/null
+++ b/library/core/src/num/libm.rs
@@ -0,0 +1,11 @@
+//! Bindings to math functions provided by the system `libm` or by the `libm` crate, exposed
+//! via `compiler-builtins`.
+
+// SAFETY: These symbols have standard interfaces in C and are defined by `libm`, or are
+// provided by `compiler-builtins` on unsupported platforms.
+unsafe extern "C" {
+    pub(crate) safe fn cbrt(n: f64) -> f64;
+    pub(crate) safe fn cbrtf(n: f32) -> f32;
+    pub(crate) safe fn fdim(a: f64, b: f64) -> f64;
+    pub(crate) safe fn fdimf(a: f32, b: f32) -> f32;
+}
diff --git a/library/core/src/num/mod.rs b/library/core/src/num/mod.rs
index a82b2aa61ce..5c73bddbef2 100644
--- a/library/core/src/num/mod.rs
+++ b/library/core/src/num/mod.rs
@@ -46,6 +46,7 @@ mod uint_macros; // import uint_impl!
 mod error;
 mod int_log10;
 mod int_sqrt;
+pub(crate) mod libm;
 mod nonzero;
 mod overflow_panic;
 mod saturating;