about summary refs log tree commit diff
path: root/library/std/src/f64.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/std/src/f64.rs')
-rw-r--r--library/std/src/f64.rs1697
1 files changed, 1697 insertions, 0 deletions
diff --git a/library/std/src/f64.rs b/library/std/src/f64.rs
new file mode 100644
index 00000000000..f09fc8d790b
--- /dev/null
+++ b/library/std/src/f64.rs
@@ -0,0 +1,1697 @@
+//! This module provides constants which are specific to the implementation
+//! of the `f64` floating point data type.
+//!
+//! *[See also the `f64` primitive type](../../std/primitive.f64.html).*
+//!
+//! Mathematically significant numbers are provided in the `consts` sub-module.
+//!
+//! Although using these constants won’t cause compilation warnings,
+//! new code should use the associated constants directly on the primitive type.
+
+#![stable(feature = "rust1", since = "1.0.0")]
+#![allow(missing_docs)]
+
+#[cfg(not(test))]
+use crate::intrinsics;
+#[cfg(not(test))]
+use crate::sys::cmath;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::f64::consts;
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::f64::{DIGITS, EPSILON, MANTISSA_DIGITS, RADIX};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::f64::{INFINITY, MAX_10_EXP, NAN, NEG_INFINITY};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::f64::{MAX, MIN, MIN_POSITIVE};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::f64::{MAX_EXP, MIN_10_EXP, MIN_EXP};
+
+#[cfg(not(test))]
+#[lang = "f64_runtime"]
+impl f64 {
+    /// Returns the largest integer less than or equal to a number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = 3.7_f64;
+    /// let g = 3.0_f64;
+    /// let h = -3.7_f64;
+    ///
+    /// assert_eq!(f.floor(), 3.0);
+    /// assert_eq!(g.floor(), 3.0);
+    /// assert_eq!(h.floor(), -4.0);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn floor(self) -> f64 {
+        unsafe { intrinsics::floorf64(self) }
+    }
+
+    /// Returns the smallest integer greater than or equal to a number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = 3.01_f64;
+    /// let g = 4.0_f64;
+    ///
+    /// assert_eq!(f.ceil(), 4.0);
+    /// assert_eq!(g.ceil(), 4.0);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn ceil(self) -> f64 {
+        unsafe { intrinsics::ceilf64(self) }
+    }
+
+    /// Returns the nearest integer to a number. Round half-way cases away from
+    /// `0.0`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = 3.3_f64;
+    /// let g = -3.3_f64;
+    ///
+    /// assert_eq!(f.round(), 3.0);
+    /// assert_eq!(g.round(), -3.0);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn round(self) -> f64 {
+        unsafe { intrinsics::roundf64(self) }
+    }
+
+    /// Returns the integer part of a number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = 3.7_f64;
+    /// let g = 3.0_f64;
+    /// let h = -3.7_f64;
+    ///
+    /// assert_eq!(f.trunc(), 3.0);
+    /// assert_eq!(g.trunc(), 3.0);
+    /// assert_eq!(h.trunc(), -3.0);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn trunc(self) -> f64 {
+        unsafe { intrinsics::truncf64(self) }
+    }
+
+    /// Returns the fractional part of a number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 3.6_f64;
+    /// let y = -3.6_f64;
+    /// let abs_difference_x = (x.fract() - 0.6).abs();
+    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
+    ///
+    /// assert!(abs_difference_x < 1e-10);
+    /// assert!(abs_difference_y < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn fract(self) -> f64 {
+        self - self.trunc()
+    }
+
+    /// Computes the absolute value of `self`. Returns `NAN` if the
+    /// number is `NAN`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 3.5_f64;
+    /// let y = -3.5_f64;
+    ///
+    /// let abs_difference_x = (x.abs() - x).abs();
+    /// let abs_difference_y = (y.abs() - (-y)).abs();
+    ///
+    /// assert!(abs_difference_x < 1e-10);
+    /// assert!(abs_difference_y < 1e-10);
+    ///
+    /// assert!(f64::NAN.abs().is_nan());
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn abs(self) -> f64 {
+        unsafe { intrinsics::fabsf64(self) }
+    }
+
+    /// Returns a number that represents the sign of `self`.
+    ///
+    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
+    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
+    /// - `NAN` if the number is `NAN`
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = 3.5_f64;
+    ///
+    /// assert_eq!(f.signum(), 1.0);
+    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
+    ///
+    /// assert!(f64::NAN.signum().is_nan());
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn signum(self) -> f64 {
+        if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
+    }
+
+    /// Returns a number composed of the magnitude of `self` and the sign of
+    /// `sign`.
+    ///
+    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
+    /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of
+    /// `sign` is returned.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = 3.5_f64;
+    ///
+    /// assert_eq!(f.copysign(0.42), 3.5_f64);
+    /// assert_eq!(f.copysign(-0.42), -3.5_f64);
+    /// assert_eq!((-f).copysign(0.42), 3.5_f64);
+    /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
+    ///
+    /// assert!(f64::NAN.copysign(1.0).is_nan());
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "copysign", since = "1.35.0")]
+    #[inline]
+    pub fn copysign(self, sign: f64) -> f64 {
+        unsafe { intrinsics::copysignf64(self, sign) }
+    }
+
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error, yielding a more accurate result than an unfused multiply-add.
+    ///
+    /// Using `mul_add` can be more performant than an unfused multiply-add if
+    /// the target architecture has a dedicated `fma` CPU instruction.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let m = 10.0_f64;
+    /// let x = 4.0_f64;
+    /// let b = 60.0_f64;
+    ///
+    /// // 100.0
+    /// let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn mul_add(self, a: f64, b: f64) -> f64 {
+        unsafe { intrinsics::fmaf64(self, a, b) }
+    }
+
+    /// Calculates Euclidean division, the matching method for `rem_euclid`.
+    ///
+    /// This computes the integer `n` such that
+    /// `self = n * rhs + self.rem_euclid(rhs)`.
+    /// In other words, the result is `self / rhs` rounded to the integer `n`
+    /// such that `self >= n * rhs`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let a: f64 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
+    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
+    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
+    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[inline]
+    #[stable(feature = "euclidean_division", since = "1.38.0")]
+    pub fn div_euclid(self, rhs: f64) -> f64 {
+        let q = (self / rhs).trunc();
+        if self % rhs < 0.0 {
+            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
+        }
+        q
+    }
+
+    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
+    ///
+    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
+    /// most cases. However, due to a floating point round-off error it can
+    /// result in `r == rhs.abs()`, violating the mathematical definition, if
+    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
+    /// This result is not an element of the function's codomain, but it is the
+    /// closest floating point number in the real numbers and thus fulfills the
+    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
+    /// approximatively.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let a: f64 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.rem_euclid(b), 3.0);
+    /// assert_eq!((-a).rem_euclid(b), 1.0);
+    /// assert_eq!(a.rem_euclid(-b), 3.0);
+    /// assert_eq!((-a).rem_euclid(-b), 1.0);
+    /// // limitation due to round-off error
+    /// assert!((-f64::EPSILON).rem_euclid(3.0) != 0.0);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[inline]
+    #[stable(feature = "euclidean_division", since = "1.38.0")]
+    pub fn rem_euclid(self, rhs: f64) -> f64 {
+        let r = self % rhs;
+        if r < 0.0 { r + rhs.abs() } else { r }
+    }
+
+    /// Raises a number to an integer power.
+    ///
+    /// Using this function is generally faster than using `powf`
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 2.0_f64;
+    /// let abs_difference = (x.powi(2) - (x * x)).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn powi(self, n: i32) -> f64 {
+        unsafe { intrinsics::powif64(self, n) }
+    }
+
+    /// Raises a number to a floating point power.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 2.0_f64;
+    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn powf(self, n: f64) -> f64 {
+        unsafe { intrinsics::powf64(self, n) }
+    }
+
+    /// Returns the square root of a number.
+    ///
+    /// Returns NaN if `self` is a negative number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let positive = 4.0_f64;
+    /// let negative = -4.0_f64;
+    ///
+    /// let abs_difference = (positive.sqrt() - 2.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// assert!(negative.sqrt().is_nan());
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn sqrt(self) -> f64 {
+        unsafe { intrinsics::sqrtf64(self) }
+    }
+
+    /// Returns `e^(self)`, (the exponential function).
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let one = 1.0_f64;
+    /// // e^1
+    /// let e = one.exp();
+    ///
+    /// // ln(e) - 1 == 0
+    /// let abs_difference = (e.ln() - 1.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn exp(self) -> f64 {
+        unsafe { intrinsics::expf64(self) }
+    }
+
+    /// Returns `2^(self)`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = 2.0_f64;
+    ///
+    /// // 2^2 - 4 == 0
+    /// let abs_difference = (f.exp2() - 4.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn exp2(self) -> f64 {
+        unsafe { intrinsics::exp2f64(self) }
+    }
+
+    /// Returns the natural logarithm of the number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let one = 1.0_f64;
+    /// // e^1
+    /// let e = one.exp();
+    ///
+    /// // ln(e) - 1 == 0
+    /// let abs_difference = (e.ln() - 1.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn ln(self) -> f64 {
+        self.log_wrapper(|n| unsafe { intrinsics::logf64(n) })
+    }
+
+    /// Returns the logarithm of the number with respect to an arbitrary base.
+    ///
+    /// The result may not be correctly rounded owing to implementation details;
+    /// `self.log2()` can produce more accurate results for base 2, and
+    /// `self.log10()` can produce more accurate results for base 10.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let twenty_five = 25.0_f64;
+    ///
+    /// // log5(25) - 2 == 0
+    /// let abs_difference = (twenty_five.log(5.0) - 2.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn log(self, base: f64) -> f64 {
+        self.ln() / base.ln()
+    }
+
+    /// Returns the base 2 logarithm of the number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let four = 4.0_f64;
+    ///
+    /// // log2(4) - 2 == 0
+    /// let abs_difference = (four.log2() - 2.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn log2(self) -> f64 {
+        self.log_wrapper(|n| {
+            #[cfg(target_os = "android")]
+            return crate::sys::android::log2f64(n);
+            #[cfg(not(target_os = "android"))]
+            return unsafe { intrinsics::log2f64(n) };
+        })
+    }
+
+    /// Returns the base 10 logarithm of the number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let hundred = 100.0_f64;
+    ///
+    /// // log10(100) - 2 == 0
+    /// let abs_difference = (hundred.log10() - 2.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn log10(self) -> f64 {
+        self.log_wrapper(|n| unsafe { intrinsics::log10f64(n) })
+    }
+
+    /// The positive difference of two numbers.
+    ///
+    /// * If `self <= other`: `0:0`
+    /// * Else: `self - other`
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 3.0_f64;
+    /// let y = -3.0_f64;
+    ///
+    /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
+    /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
+    ///
+    /// assert!(abs_difference_x < 1e-10);
+    /// assert!(abs_difference_y < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    #[rustc_deprecated(
+        since = "1.10.0",
+        reason = "you probably meant `(self - other).abs()`: \
+                  this operation is `(self - other).max(0.0)` \
+                  except that `abs_sub` also propagates NaNs (also \
+                  known as `fdim` in C). If you truly need the positive \
+                  difference, consider using that expression or the C function \
+                  `fdim`, depending on how you wish to handle NaN (please consider \
+                  filing an issue describing your use-case too)."
+    )]
+    pub fn abs_sub(self, other: f64) -> f64 {
+        unsafe { cmath::fdim(self, other) }
+    }
+
+    /// Returns the cubic root of a number.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 8.0_f64;
+    ///
+    /// // x^(1/3) - 2 == 0
+    /// let abs_difference = (x.cbrt() - 2.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn cbrt(self) -> f64 {
+        unsafe { cmath::cbrt(self) }
+    }
+
+    /// Calculates the length of the hypotenuse of a right-angle triangle given
+    /// legs of length `x` and `y`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 2.0_f64;
+    /// let y = 3.0_f64;
+    ///
+    /// // sqrt(x^2 + y^2)
+    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn hypot(self, other: f64) -> f64 {
+        unsafe { cmath::hypot(self, other) }
+    }
+
+    /// Computes the sine of a number (in radians).
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = std::f64::consts::FRAC_PI_2;
+    ///
+    /// let abs_difference = (x.sin() - 1.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn sin(self) -> f64 {
+        unsafe { intrinsics::sinf64(self) }
+    }
+
+    /// Computes the cosine of a number (in radians).
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 2.0 * std::f64::consts::PI;
+    ///
+    /// let abs_difference = (x.cos() - 1.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn cos(self) -> f64 {
+        unsafe { intrinsics::cosf64(self) }
+    }
+
+    /// Computes the tangent of a number (in radians).
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = std::f64::consts::FRAC_PI_4;
+    /// let abs_difference = (x.tan() - 1.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-14);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn tan(self) -> f64 {
+        unsafe { cmath::tan(self) }
+    }
+
+    /// Computes the arcsine of a number. Return value is in radians in
+    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
+    /// [-1, 1].
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = std::f64::consts::FRAC_PI_2;
+    ///
+    /// // asin(sin(pi/2))
+    /// let abs_difference = (f.sin().asin() - std::f64::consts::FRAC_PI_2).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn asin(self) -> f64 {
+        unsafe { cmath::asin(self) }
+    }
+
+    /// Computes the arccosine of a number. Return value is in radians in
+    /// the range [0, pi] or NaN if the number is outside the range
+    /// [-1, 1].
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = std::f64::consts::FRAC_PI_4;
+    ///
+    /// // acos(cos(pi/4))
+    /// let abs_difference = (f.cos().acos() - std::f64::consts::FRAC_PI_4).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn acos(self) -> f64 {
+        unsafe { cmath::acos(self) }
+    }
+
+    /// Computes the arctangent of a number. Return value is in radians in the
+    /// range [-pi/2, pi/2];
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let f = 1.0_f64;
+    ///
+    /// // atan(tan(1))
+    /// let abs_difference = (f.tan().atan() - 1.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn atan(self) -> f64 {
+        unsafe { cmath::atan(self) }
+    }
+
+    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
+    ///
+    /// * `x = 0`, `y = 0`: `0`
+    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
+    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
+    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// // Positive angles measured counter-clockwise
+    /// // from positive x axis
+    /// // -pi/4 radians (45 deg clockwise)
+    /// let x1 = 3.0_f64;
+    /// let y1 = -3.0_f64;
+    ///
+    /// // 3pi/4 radians (135 deg counter-clockwise)
+    /// let x2 = -3.0_f64;
+    /// let y2 = 3.0_f64;
+    ///
+    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f64::consts::FRAC_PI_4)).abs();
+    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f64::consts::FRAC_PI_4)).abs();
+    ///
+    /// assert!(abs_difference_1 < 1e-10);
+    /// assert!(abs_difference_2 < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn atan2(self, other: f64) -> f64 {
+        unsafe { cmath::atan2(self, other) }
+    }
+
+    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
+    /// `(sin(x), cos(x))`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = std::f64::consts::FRAC_PI_4;
+    /// let f = x.sin_cos();
+    ///
+    /// let abs_difference_0 = (f.0 - x.sin()).abs();
+    /// let abs_difference_1 = (f.1 - x.cos()).abs();
+    ///
+    /// assert!(abs_difference_0 < 1e-10);
+    /// assert!(abs_difference_1 < 1e-10);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn sin_cos(self) -> (f64, f64) {
+        (self.sin(), self.cos())
+    }
+
+    /// Returns `e^(self) - 1` in a way that is accurate even if the
+    /// number is close to zero.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 7.0_f64;
+    ///
+    /// // e^(ln(7)) - 1
+    /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn exp_m1(self) -> f64 {
+        unsafe { cmath::expm1(self) }
+    }
+
+    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
+    /// the operations were performed separately.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = std::f64::consts::E - 1.0;
+    ///
+    /// // ln(1 + (e - 1)) == ln(e) == 1
+    /// let abs_difference = (x.ln_1p() - 1.0).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn ln_1p(self) -> f64 {
+        unsafe { cmath::log1p(self) }
+    }
+
+    /// Hyperbolic sine function.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let e = std::f64::consts::E;
+    /// let x = 1.0_f64;
+    ///
+    /// let f = x.sinh();
+    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
+    /// let g = ((e * e) - 1.0) / (2.0 * e);
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn sinh(self) -> f64 {
+        unsafe { cmath::sinh(self) }
+    }
+
+    /// Hyperbolic cosine function.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let e = std::f64::consts::E;
+    /// let x = 1.0_f64;
+    /// let f = x.cosh();
+    /// // Solving cosh() at 1 gives this result
+    /// let g = ((e * e) + 1.0) / (2.0 * e);
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// // Same result
+    /// assert!(abs_difference < 1.0e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn cosh(self) -> f64 {
+        unsafe { cmath::cosh(self) }
+    }
+
+    /// Hyperbolic tangent function.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let e = std::f64::consts::E;
+    /// let x = 1.0_f64;
+    ///
+    /// let f = x.tanh();
+    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
+    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// assert!(abs_difference < 1.0e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn tanh(self) -> f64 {
+        unsafe { cmath::tanh(self) }
+    }
+
+    /// Inverse hyperbolic sine function.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 1.0_f64;
+    /// let f = x.sinh().asinh();
+    ///
+    /// let abs_difference = (f - x).abs();
+    ///
+    /// assert!(abs_difference < 1.0e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn asinh(self) -> f64 {
+        (self.abs() + ((self * self) + 1.0).sqrt()).ln().copysign(self)
+    }
+
+    /// Inverse hyperbolic cosine function.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = 1.0_f64;
+    /// let f = x.cosh().acosh();
+    ///
+    /// let abs_difference = (f - x).abs();
+    ///
+    /// assert!(abs_difference < 1.0e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn acosh(self) -> f64 {
+        if self < 1.0 { Self::NAN } else { (self + ((self * self) - 1.0).sqrt()).ln() }
+    }
+
+    /// Inverse hyperbolic tangent function.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let e = std::f64::consts::E;
+    /// let f = e.tanh().atanh();
+    ///
+    /// let abs_difference = (f - e).abs();
+    ///
+    /// assert!(abs_difference < 1.0e-10);
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn atanh(self) -> f64 {
+        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
+    }
+
+    /// Restrict a value to a certain interval unless it is NaN.
+    ///
+    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
+    /// less than `min`. Otherwise this returns `self`.
+    ///
+    /// Note that this function returns NaN if the initial value was NaN as
+    /// well.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(clamp)]
+    /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
+    /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
+    /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
+    /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
+    /// ```
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[unstable(feature = "clamp", issue = "44095")]
+    #[inline]
+    pub fn clamp(self, min: f64, max: f64) -> f64 {
+        assert!(min <= max);
+        let mut x = self;
+        if x < min {
+            x = min;
+        }
+        if x > max {
+            x = max;
+        }
+        x
+    }
+
+    // Solaris/Illumos requires a wrapper around log, log2, and log10 functions
+    // because of their non-standard behavior (e.g., log(-n) returns -Inf instead
+    // of expected NaN).
+    fn log_wrapper<F: Fn(f64) -> f64>(self, log_fn: F) -> f64 {
+        if !cfg!(any(target_os = "solaris", target_os = "illumos")) {
+            log_fn(self)
+        } else {
+            if self.is_finite() {
+                if self > 0.0 {
+                    log_fn(self)
+                } else if self == 0.0 {
+                    Self::NEG_INFINITY // log(0) = -Inf
+                } else {
+                    Self::NAN // log(-n) = NaN
+                }
+            } else if self.is_nan() {
+                self // log(NaN) = NaN
+            } else if self > 0.0 {
+                self // log(Inf) = Inf
+            } else {
+                Self::NAN // log(-Inf) = NaN
+            }
+        }
+    }
+}
+
+#[cfg(test)]
+mod tests {
+    use crate::f64::consts;
+    use crate::num::FpCategory as Fp;
+    use crate::num::*;
+
+    #[test]
+    fn test_num_f64() {
+        test_num(10f64, 2f64);
+    }
+
+    #[test]
+    fn test_min_nan() {
+        assert_eq!(f64::NAN.min(2.0), 2.0);
+        assert_eq!(2.0f64.min(f64::NAN), 2.0);
+    }
+
+    #[test]
+    fn test_max_nan() {
+        assert_eq!(f64::NAN.max(2.0), 2.0);
+        assert_eq!(2.0f64.max(f64::NAN), 2.0);
+    }
+
+    #[test]
+    fn test_nan() {
+        let nan: f64 = f64::NAN;
+        assert!(nan.is_nan());
+        assert!(!nan.is_infinite());
+        assert!(!nan.is_finite());
+        assert!(!nan.is_normal());
+        assert!(nan.is_sign_positive());
+        assert!(!nan.is_sign_negative());
+        assert_eq!(Fp::Nan, nan.classify());
+    }
+
+    #[test]
+    fn test_infinity() {
+        let inf: f64 = f64::INFINITY;
+        assert!(inf.is_infinite());
+        assert!(!inf.is_finite());
+        assert!(inf.is_sign_positive());
+        assert!(!inf.is_sign_negative());
+        assert!(!inf.is_nan());
+        assert!(!inf.is_normal());
+        assert_eq!(Fp::Infinite, inf.classify());
+    }
+
+    #[test]
+    fn test_neg_infinity() {
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert!(neg_inf.is_infinite());
+        assert!(!neg_inf.is_finite());
+        assert!(!neg_inf.is_sign_positive());
+        assert!(neg_inf.is_sign_negative());
+        assert!(!neg_inf.is_nan());
+        assert!(!neg_inf.is_normal());
+        assert_eq!(Fp::Infinite, neg_inf.classify());
+    }
+
+    #[test]
+    fn test_zero() {
+        let zero: f64 = 0.0f64;
+        assert_eq!(0.0, zero);
+        assert!(!zero.is_infinite());
+        assert!(zero.is_finite());
+        assert!(zero.is_sign_positive());
+        assert!(!zero.is_sign_negative());
+        assert!(!zero.is_nan());
+        assert!(!zero.is_normal());
+        assert_eq!(Fp::Zero, zero.classify());
+    }
+
+    #[test]
+    fn test_neg_zero() {
+        let neg_zero: f64 = -0.0;
+        assert_eq!(0.0, neg_zero);
+        assert!(!neg_zero.is_infinite());
+        assert!(neg_zero.is_finite());
+        assert!(!neg_zero.is_sign_positive());
+        assert!(neg_zero.is_sign_negative());
+        assert!(!neg_zero.is_nan());
+        assert!(!neg_zero.is_normal());
+        assert_eq!(Fp::Zero, neg_zero.classify());
+    }
+
+    #[cfg_attr(all(target_arch = "wasm32", target_os = "emscripten"), ignore)] // issue 42630
+    #[test]
+    fn test_one() {
+        let one: f64 = 1.0f64;
+        assert_eq!(1.0, one);
+        assert!(!one.is_infinite());
+        assert!(one.is_finite());
+        assert!(one.is_sign_positive());
+        assert!(!one.is_sign_negative());
+        assert!(!one.is_nan());
+        assert!(one.is_normal());
+        assert_eq!(Fp::Normal, one.classify());
+    }
+
+    #[test]
+    fn test_is_nan() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert!(nan.is_nan());
+        assert!(!0.0f64.is_nan());
+        assert!(!5.3f64.is_nan());
+        assert!(!(-10.732f64).is_nan());
+        assert!(!inf.is_nan());
+        assert!(!neg_inf.is_nan());
+    }
+
+    #[test]
+    fn test_is_infinite() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert!(!nan.is_infinite());
+        assert!(inf.is_infinite());
+        assert!(neg_inf.is_infinite());
+        assert!(!0.0f64.is_infinite());
+        assert!(!42.8f64.is_infinite());
+        assert!(!(-109.2f64).is_infinite());
+    }
+
+    #[test]
+    fn test_is_finite() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert!(!nan.is_finite());
+        assert!(!inf.is_finite());
+        assert!(!neg_inf.is_finite());
+        assert!(0.0f64.is_finite());
+        assert!(42.8f64.is_finite());
+        assert!((-109.2f64).is_finite());
+    }
+
+    #[cfg_attr(all(target_arch = "wasm32", target_os = "emscripten"), ignore)] // issue 42630
+    #[test]
+    fn test_is_normal() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        let zero: f64 = 0.0f64;
+        let neg_zero: f64 = -0.0;
+        assert!(!nan.is_normal());
+        assert!(!inf.is_normal());
+        assert!(!neg_inf.is_normal());
+        assert!(!zero.is_normal());
+        assert!(!neg_zero.is_normal());
+        assert!(1f64.is_normal());
+        assert!(1e-307f64.is_normal());
+        assert!(!1e-308f64.is_normal());
+    }
+
+    #[cfg_attr(all(target_arch = "wasm32", target_os = "emscripten"), ignore)] // issue 42630
+    #[test]
+    fn test_classify() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        let zero: f64 = 0.0f64;
+        let neg_zero: f64 = -0.0;
+        assert_eq!(nan.classify(), Fp::Nan);
+        assert_eq!(inf.classify(), Fp::Infinite);
+        assert_eq!(neg_inf.classify(), Fp::Infinite);
+        assert_eq!(zero.classify(), Fp::Zero);
+        assert_eq!(neg_zero.classify(), Fp::Zero);
+        assert_eq!(1e-307f64.classify(), Fp::Normal);
+        assert_eq!(1e-308f64.classify(), Fp::Subnormal);
+    }
+
+    #[test]
+    fn test_floor() {
+        assert_approx_eq!(1.0f64.floor(), 1.0f64);
+        assert_approx_eq!(1.3f64.floor(), 1.0f64);
+        assert_approx_eq!(1.5f64.floor(), 1.0f64);
+        assert_approx_eq!(1.7f64.floor(), 1.0f64);
+        assert_approx_eq!(0.0f64.floor(), 0.0f64);
+        assert_approx_eq!((-0.0f64).floor(), -0.0f64);
+        assert_approx_eq!((-1.0f64).floor(), -1.0f64);
+        assert_approx_eq!((-1.3f64).floor(), -2.0f64);
+        assert_approx_eq!((-1.5f64).floor(), -2.0f64);
+        assert_approx_eq!((-1.7f64).floor(), -2.0f64);
+    }
+
+    #[test]
+    fn test_ceil() {
+        assert_approx_eq!(1.0f64.ceil(), 1.0f64);
+        assert_approx_eq!(1.3f64.ceil(), 2.0f64);
+        assert_approx_eq!(1.5f64.ceil(), 2.0f64);
+        assert_approx_eq!(1.7f64.ceil(), 2.0f64);
+        assert_approx_eq!(0.0f64.ceil(), 0.0f64);
+        assert_approx_eq!((-0.0f64).ceil(), -0.0f64);
+        assert_approx_eq!((-1.0f64).ceil(), -1.0f64);
+        assert_approx_eq!((-1.3f64).ceil(), -1.0f64);
+        assert_approx_eq!((-1.5f64).ceil(), -1.0f64);
+        assert_approx_eq!((-1.7f64).ceil(), -1.0f64);
+    }
+
+    #[test]
+    fn test_round() {
+        assert_approx_eq!(1.0f64.round(), 1.0f64);
+        assert_approx_eq!(1.3f64.round(), 1.0f64);
+        assert_approx_eq!(1.5f64.round(), 2.0f64);
+        assert_approx_eq!(1.7f64.round(), 2.0f64);
+        assert_approx_eq!(0.0f64.round(), 0.0f64);
+        assert_approx_eq!((-0.0f64).round(), -0.0f64);
+        assert_approx_eq!((-1.0f64).round(), -1.0f64);
+        assert_approx_eq!((-1.3f64).round(), -1.0f64);
+        assert_approx_eq!((-1.5f64).round(), -2.0f64);
+        assert_approx_eq!((-1.7f64).round(), -2.0f64);
+    }
+
+    #[test]
+    fn test_trunc() {
+        assert_approx_eq!(1.0f64.trunc(), 1.0f64);
+        assert_approx_eq!(1.3f64.trunc(), 1.0f64);
+        assert_approx_eq!(1.5f64.trunc(), 1.0f64);
+        assert_approx_eq!(1.7f64.trunc(), 1.0f64);
+        assert_approx_eq!(0.0f64.trunc(), 0.0f64);
+        assert_approx_eq!((-0.0f64).trunc(), -0.0f64);
+        assert_approx_eq!((-1.0f64).trunc(), -1.0f64);
+        assert_approx_eq!((-1.3f64).trunc(), -1.0f64);
+        assert_approx_eq!((-1.5f64).trunc(), -1.0f64);
+        assert_approx_eq!((-1.7f64).trunc(), -1.0f64);
+    }
+
+    #[test]
+    fn test_fract() {
+        assert_approx_eq!(1.0f64.fract(), 0.0f64);
+        assert_approx_eq!(1.3f64.fract(), 0.3f64);
+        assert_approx_eq!(1.5f64.fract(), 0.5f64);
+        assert_approx_eq!(1.7f64.fract(), 0.7f64);
+        assert_approx_eq!(0.0f64.fract(), 0.0f64);
+        assert_approx_eq!((-0.0f64).fract(), -0.0f64);
+        assert_approx_eq!((-1.0f64).fract(), -0.0f64);
+        assert_approx_eq!((-1.3f64).fract(), -0.3f64);
+        assert_approx_eq!((-1.5f64).fract(), -0.5f64);
+        assert_approx_eq!((-1.7f64).fract(), -0.7f64);
+    }
+
+    #[test]
+    fn test_abs() {
+        assert_eq!(f64::INFINITY.abs(), f64::INFINITY);
+        assert_eq!(1f64.abs(), 1f64);
+        assert_eq!(0f64.abs(), 0f64);
+        assert_eq!((-0f64).abs(), 0f64);
+        assert_eq!((-1f64).abs(), 1f64);
+        assert_eq!(f64::NEG_INFINITY.abs(), f64::INFINITY);
+        assert_eq!((1f64 / f64::NEG_INFINITY).abs(), 0f64);
+        assert!(f64::NAN.abs().is_nan());
+    }
+
+    #[test]
+    fn test_signum() {
+        assert_eq!(f64::INFINITY.signum(), 1f64);
+        assert_eq!(1f64.signum(), 1f64);
+        assert_eq!(0f64.signum(), 1f64);
+        assert_eq!((-0f64).signum(), -1f64);
+        assert_eq!((-1f64).signum(), -1f64);
+        assert_eq!(f64::NEG_INFINITY.signum(), -1f64);
+        assert_eq!((1f64 / f64::NEG_INFINITY).signum(), -1f64);
+        assert!(f64::NAN.signum().is_nan());
+    }
+
+    #[test]
+    fn test_is_sign_positive() {
+        assert!(f64::INFINITY.is_sign_positive());
+        assert!(1f64.is_sign_positive());
+        assert!(0f64.is_sign_positive());
+        assert!(!(-0f64).is_sign_positive());
+        assert!(!(-1f64).is_sign_positive());
+        assert!(!f64::NEG_INFINITY.is_sign_positive());
+        assert!(!(1f64 / f64::NEG_INFINITY).is_sign_positive());
+        assert!(f64::NAN.is_sign_positive());
+        assert!(!(-f64::NAN).is_sign_positive());
+    }
+
+    #[test]
+    fn test_is_sign_negative() {
+        assert!(!f64::INFINITY.is_sign_negative());
+        assert!(!1f64.is_sign_negative());
+        assert!(!0f64.is_sign_negative());
+        assert!((-0f64).is_sign_negative());
+        assert!((-1f64).is_sign_negative());
+        assert!(f64::NEG_INFINITY.is_sign_negative());
+        assert!((1f64 / f64::NEG_INFINITY).is_sign_negative());
+        assert!(!f64::NAN.is_sign_negative());
+        assert!((-f64::NAN).is_sign_negative());
+    }
+
+    #[test]
+    fn test_mul_add() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_approx_eq!(12.3f64.mul_add(4.5, 6.7), 62.05);
+        assert_approx_eq!((-12.3f64).mul_add(-4.5, -6.7), 48.65);
+        assert_approx_eq!(0.0f64.mul_add(8.9, 1.2), 1.2);
+        assert_approx_eq!(3.4f64.mul_add(-0.0, 5.6), 5.6);
+        assert!(nan.mul_add(7.8, 9.0).is_nan());
+        assert_eq!(inf.mul_add(7.8, 9.0), inf);
+        assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
+        assert_eq!(8.9f64.mul_add(inf, 3.2), inf);
+        assert_eq!((-3.2f64).mul_add(2.4, neg_inf), neg_inf);
+    }
+
+    #[test]
+    fn test_recip() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_eq!(1.0f64.recip(), 1.0);
+        assert_eq!(2.0f64.recip(), 0.5);
+        assert_eq!((-0.4f64).recip(), -2.5);
+        assert_eq!(0.0f64.recip(), inf);
+        assert!(nan.recip().is_nan());
+        assert_eq!(inf.recip(), 0.0);
+        assert_eq!(neg_inf.recip(), 0.0);
+    }
+
+    #[test]
+    fn test_powi() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_eq!(1.0f64.powi(1), 1.0);
+        assert_approx_eq!((-3.1f64).powi(2), 9.61);
+        assert_approx_eq!(5.9f64.powi(-2), 0.028727);
+        assert_eq!(8.3f64.powi(0), 1.0);
+        assert!(nan.powi(2).is_nan());
+        assert_eq!(inf.powi(3), inf);
+        assert_eq!(neg_inf.powi(2), inf);
+    }
+
+    #[test]
+    fn test_powf() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_eq!(1.0f64.powf(1.0), 1.0);
+        assert_approx_eq!(3.4f64.powf(4.5), 246.408183);
+        assert_approx_eq!(2.7f64.powf(-3.2), 0.041652);
+        assert_approx_eq!((-3.1f64).powf(2.0), 9.61);
+        assert_approx_eq!(5.9f64.powf(-2.0), 0.028727);
+        assert_eq!(8.3f64.powf(0.0), 1.0);
+        assert!(nan.powf(2.0).is_nan());
+        assert_eq!(inf.powf(2.0), inf);
+        assert_eq!(neg_inf.powf(3.0), neg_inf);
+    }
+
+    #[test]
+    fn test_sqrt_domain() {
+        assert!(f64::NAN.sqrt().is_nan());
+        assert!(f64::NEG_INFINITY.sqrt().is_nan());
+        assert!((-1.0f64).sqrt().is_nan());
+        assert_eq!((-0.0f64).sqrt(), -0.0);
+        assert_eq!(0.0f64.sqrt(), 0.0);
+        assert_eq!(1.0f64.sqrt(), 1.0);
+        assert_eq!(f64::INFINITY.sqrt(), f64::INFINITY);
+    }
+
+    #[test]
+    fn test_exp() {
+        assert_eq!(1.0, 0.0f64.exp());
+        assert_approx_eq!(2.718282, 1.0f64.exp());
+        assert_approx_eq!(148.413159, 5.0f64.exp());
+
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        let nan: f64 = f64::NAN;
+        assert_eq!(inf, inf.exp());
+        assert_eq!(0.0, neg_inf.exp());
+        assert!(nan.exp().is_nan());
+    }
+
+    #[test]
+    fn test_exp2() {
+        assert_eq!(32.0, 5.0f64.exp2());
+        assert_eq!(1.0, 0.0f64.exp2());
+
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        let nan: f64 = f64::NAN;
+        assert_eq!(inf, inf.exp2());
+        assert_eq!(0.0, neg_inf.exp2());
+        assert!(nan.exp2().is_nan());
+    }
+
+    #[test]
+    fn test_ln() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_approx_eq!(1.0f64.exp().ln(), 1.0);
+        assert!(nan.ln().is_nan());
+        assert_eq!(inf.ln(), inf);
+        assert!(neg_inf.ln().is_nan());
+        assert!((-2.3f64).ln().is_nan());
+        assert_eq!((-0.0f64).ln(), neg_inf);
+        assert_eq!(0.0f64.ln(), neg_inf);
+        assert_approx_eq!(4.0f64.ln(), 1.386294);
+    }
+
+    #[test]
+    fn test_log() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_eq!(10.0f64.log(10.0), 1.0);
+        assert_approx_eq!(2.3f64.log(3.5), 0.664858);
+        assert_eq!(1.0f64.exp().log(1.0f64.exp()), 1.0);
+        assert!(1.0f64.log(1.0).is_nan());
+        assert!(1.0f64.log(-13.9).is_nan());
+        assert!(nan.log(2.3).is_nan());
+        assert_eq!(inf.log(10.0), inf);
+        assert!(neg_inf.log(8.8).is_nan());
+        assert!((-2.3f64).log(0.1).is_nan());
+        assert_eq!((-0.0f64).log(2.0), neg_inf);
+        assert_eq!(0.0f64.log(7.0), neg_inf);
+    }
+
+    #[test]
+    fn test_log2() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_approx_eq!(10.0f64.log2(), 3.321928);
+        assert_approx_eq!(2.3f64.log2(), 1.201634);
+        assert_approx_eq!(1.0f64.exp().log2(), 1.442695);
+        assert!(nan.log2().is_nan());
+        assert_eq!(inf.log2(), inf);
+        assert!(neg_inf.log2().is_nan());
+        assert!((-2.3f64).log2().is_nan());
+        assert_eq!((-0.0f64).log2(), neg_inf);
+        assert_eq!(0.0f64.log2(), neg_inf);
+    }
+
+    #[test]
+    fn test_log10() {
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_eq!(10.0f64.log10(), 1.0);
+        assert_approx_eq!(2.3f64.log10(), 0.361728);
+        assert_approx_eq!(1.0f64.exp().log10(), 0.434294);
+        assert_eq!(1.0f64.log10(), 0.0);
+        assert!(nan.log10().is_nan());
+        assert_eq!(inf.log10(), inf);
+        assert!(neg_inf.log10().is_nan());
+        assert!((-2.3f64).log10().is_nan());
+        assert_eq!((-0.0f64).log10(), neg_inf);
+        assert_eq!(0.0f64.log10(), neg_inf);
+    }
+
+    #[test]
+    fn test_to_degrees() {
+        let pi: f64 = consts::PI;
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_eq!(0.0f64.to_degrees(), 0.0);
+        assert_approx_eq!((-5.8f64).to_degrees(), -332.315521);
+        assert_eq!(pi.to_degrees(), 180.0);
+        assert!(nan.to_degrees().is_nan());
+        assert_eq!(inf.to_degrees(), inf);
+        assert_eq!(neg_inf.to_degrees(), neg_inf);
+    }
+
+    #[test]
+    fn test_to_radians() {
+        let pi: f64 = consts::PI;
+        let nan: f64 = f64::NAN;
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        assert_eq!(0.0f64.to_radians(), 0.0);
+        assert_approx_eq!(154.6f64.to_radians(), 2.698279);
+        assert_approx_eq!((-332.31f64).to_radians(), -5.799903);
+        assert_eq!(180.0f64.to_radians(), pi);
+        assert!(nan.to_radians().is_nan());
+        assert_eq!(inf.to_radians(), inf);
+        assert_eq!(neg_inf.to_radians(), neg_inf);
+    }
+
+    #[test]
+    fn test_asinh() {
+        assert_eq!(0.0f64.asinh(), 0.0f64);
+        assert_eq!((-0.0f64).asinh(), -0.0f64);
+
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        let nan: f64 = f64::NAN;
+        assert_eq!(inf.asinh(), inf);
+        assert_eq!(neg_inf.asinh(), neg_inf);
+        assert!(nan.asinh().is_nan());
+        assert!((-0.0f64).asinh().is_sign_negative());
+        // issue 63271
+        assert_approx_eq!(2.0f64.asinh(), 1.443635475178810342493276740273105f64);
+        assert_approx_eq!((-2.0f64).asinh(), -1.443635475178810342493276740273105f64);
+        // regression test for the catastrophic cancellation fixed in 72486
+        assert_approx_eq!((-67452098.07139316f64).asinh(), -18.72007542627454439398548429400083);
+    }
+
+    #[test]
+    fn test_acosh() {
+        assert_eq!(1.0f64.acosh(), 0.0f64);
+        assert!(0.999f64.acosh().is_nan());
+
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        let nan: f64 = f64::NAN;
+        assert_eq!(inf.acosh(), inf);
+        assert!(neg_inf.acosh().is_nan());
+        assert!(nan.acosh().is_nan());
+        assert_approx_eq!(2.0f64.acosh(), 1.31695789692481670862504634730796844f64);
+        assert_approx_eq!(3.0f64.acosh(), 1.76274717403908605046521864995958461f64);
+    }
+
+    #[test]
+    fn test_atanh() {
+        assert_eq!(0.0f64.atanh(), 0.0f64);
+        assert_eq!((-0.0f64).atanh(), -0.0f64);
+
+        let inf: f64 = f64::INFINITY;
+        let neg_inf: f64 = f64::NEG_INFINITY;
+        let nan: f64 = f64::NAN;
+        assert_eq!(1.0f64.atanh(), inf);
+        assert_eq!((-1.0f64).atanh(), neg_inf);
+        assert!(2f64.atanh().atanh().is_nan());
+        assert!((-2f64).atanh().atanh().is_nan());
+        assert!(inf.atanh().is_nan());
+        assert!(neg_inf.atanh().is_nan());
+        assert!(nan.atanh().is_nan());
+        assert_approx_eq!(0.5f64.atanh(), 0.54930614433405484569762261846126285f64);
+        assert_approx_eq!((-0.5f64).atanh(), -0.54930614433405484569762261846126285f64);
+    }
+
+    #[test]
+    fn test_real_consts() {
+        use super::consts;
+        let pi: f64 = consts::PI;
+        let frac_pi_2: f64 = consts::FRAC_PI_2;
+        let frac_pi_3: f64 = consts::FRAC_PI_3;
+        let frac_pi_4: f64 = consts::FRAC_PI_4;
+        let frac_pi_6: f64 = consts::FRAC_PI_6;
+        let frac_pi_8: f64 = consts::FRAC_PI_8;
+        let frac_1_pi: f64 = consts::FRAC_1_PI;
+        let frac_2_pi: f64 = consts::FRAC_2_PI;
+        let frac_2_sqrtpi: f64 = consts::FRAC_2_SQRT_PI;
+        let sqrt2: f64 = consts::SQRT_2;
+        let frac_1_sqrt2: f64 = consts::FRAC_1_SQRT_2;
+        let e: f64 = consts::E;
+        let log2_e: f64 = consts::LOG2_E;
+        let log10_e: f64 = consts::LOG10_E;
+        let ln_2: f64 = consts::LN_2;
+        let ln_10: f64 = consts::LN_10;
+
+        assert_approx_eq!(frac_pi_2, pi / 2f64);
+        assert_approx_eq!(frac_pi_3, pi / 3f64);
+        assert_approx_eq!(frac_pi_4, pi / 4f64);
+        assert_approx_eq!(frac_pi_6, pi / 6f64);
+        assert_approx_eq!(frac_pi_8, pi / 8f64);
+        assert_approx_eq!(frac_1_pi, 1f64 / pi);
+        assert_approx_eq!(frac_2_pi, 2f64 / pi);
+        assert_approx_eq!(frac_2_sqrtpi, 2f64 / pi.sqrt());
+        assert_approx_eq!(sqrt2, 2f64.sqrt());
+        assert_approx_eq!(frac_1_sqrt2, 1f64 / 2f64.sqrt());
+        assert_approx_eq!(log2_e, e.log2());
+        assert_approx_eq!(log10_e, e.log10());
+        assert_approx_eq!(ln_2, 2f64.ln());
+        assert_approx_eq!(ln_10, 10f64.ln());
+    }
+
+    #[test]
+    fn test_float_bits_conv() {
+        assert_eq!((1f64).to_bits(), 0x3ff0000000000000);
+        assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
+        assert_eq!((1337f64).to_bits(), 0x4094e40000000000);
+        assert_eq!((-14.25f64).to_bits(), 0xc02c800000000000);
+        assert_approx_eq!(f64::from_bits(0x3ff0000000000000), 1.0);
+        assert_approx_eq!(f64::from_bits(0x4029000000000000), 12.5);
+        assert_approx_eq!(f64::from_bits(0x4094e40000000000), 1337.0);
+        assert_approx_eq!(f64::from_bits(0xc02c800000000000), -14.25);
+
+        // Check that NaNs roundtrip their bits regardless of signaling-ness
+        // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
+        let masked_nan1 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA;
+        let masked_nan2 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555;
+        assert!(f64::from_bits(masked_nan1).is_nan());
+        assert!(f64::from_bits(masked_nan2).is_nan());
+
+        assert_eq!(f64::from_bits(masked_nan1).to_bits(), masked_nan1);
+        assert_eq!(f64::from_bits(masked_nan2).to_bits(), masked_nan2);
+    }
+
+    #[test]
+    #[should_panic]
+    fn test_clamp_min_greater_than_max() {
+        let _ = 1.0f64.clamp(3.0, 1.0);
+    }
+
+    #[test]
+    #[should_panic]
+    fn test_clamp_min_is_nan() {
+        let _ = 1.0f64.clamp(f64::NAN, 1.0);
+    }
+
+    #[test]
+    #[should_panic]
+    fn test_clamp_max_is_nan() {
+        let _ = 1.0f64.clamp(3.0, f64::NAN);
+    }
+
+    #[test]
+    fn test_total_cmp() {
+        use core::cmp::Ordering;
+
+        fn quiet_bit_mask() -> u64 {
+            1 << (f64::MANTISSA_DIGITS - 2)
+        }
+
+        fn min_subnorm() -> f64 {
+            f64::MIN_POSITIVE / f64::powf(2.0, f64::MANTISSA_DIGITS as f64 - 1.0)
+        }
+
+        fn max_subnorm() -> f64 {
+            f64::MIN_POSITIVE - min_subnorm()
+        }
+
+        fn q_nan() -> f64 {
+            f64::from_bits(f64::NAN.to_bits() | quiet_bit_mask())
+        }
+
+        fn s_nan() -> f64 {
+            f64::from_bits((f64::NAN.to_bits() & !quiet_bit_mask()) + 42)
+        }
+
+        assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan()));
+        assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan()));
+        assert_eq!(Ordering::Equal, (-f64::INFINITY).total_cmp(&-f64::INFINITY));
+        assert_eq!(Ordering::Equal, (-f64::MAX).total_cmp(&-f64::MAX));
+        assert_eq!(Ordering::Equal, (-2.5_f64).total_cmp(&-2.5));
+        assert_eq!(Ordering::Equal, (-1.0_f64).total_cmp(&-1.0));
+        assert_eq!(Ordering::Equal, (-1.5_f64).total_cmp(&-1.5));
+        assert_eq!(Ordering::Equal, (-0.5_f64).total_cmp(&-0.5));
+        assert_eq!(Ordering::Equal, (-f64::MIN_POSITIVE).total_cmp(&-f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm()));
+        assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm()));
+        assert_eq!(Ordering::Equal, (-0.0_f64).total_cmp(&-0.0));
+        assert_eq!(Ordering::Equal, 0.0_f64.total_cmp(&0.0));
+        assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm()));
+        assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm()));
+        assert_eq!(Ordering::Equal, f64::MIN_POSITIVE.total_cmp(&f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Equal, 0.5_f64.total_cmp(&0.5));
+        assert_eq!(Ordering::Equal, 1.0_f64.total_cmp(&1.0));
+        assert_eq!(Ordering::Equal, 1.5_f64.total_cmp(&1.5));
+        assert_eq!(Ordering::Equal, 2.5_f64.total_cmp(&2.5));
+        assert_eq!(Ordering::Equal, f64::MAX.total_cmp(&f64::MAX));
+        assert_eq!(Ordering::Equal, f64::INFINITY.total_cmp(&f64::INFINITY));
+        assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan()));
+        assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan()));
+
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::INFINITY));
+        assert_eq!(Ordering::Less, (-f64::INFINITY).total_cmp(&-f64::MAX));
+        assert_eq!(Ordering::Less, (-f64::MAX).total_cmp(&-2.5));
+        assert_eq!(Ordering::Less, (-2.5_f64).total_cmp(&-1.5));
+        assert_eq!(Ordering::Less, (-1.5_f64).total_cmp(&-1.0));
+        assert_eq!(Ordering::Less, (-1.0_f64).total_cmp(&-0.5));
+        assert_eq!(Ordering::Less, (-0.5_f64).total_cmp(&-f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Less, (-f64::MIN_POSITIVE).total_cmp(&-max_subnorm()));
+        assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm()));
+        assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0));
+        assert_eq!(Ordering::Less, (-0.0_f64).total_cmp(&0.0));
+        assert_eq!(Ordering::Less, 0.0_f64.total_cmp(&min_subnorm()));
+        assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm()));
+        assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Less, f64::MIN_POSITIVE.total_cmp(&0.5));
+        assert_eq!(Ordering::Less, 0.5_f64.total_cmp(&1.0));
+        assert_eq!(Ordering::Less, 1.0_f64.total_cmp(&1.5));
+        assert_eq!(Ordering::Less, 1.5_f64.total_cmp(&2.5));
+        assert_eq!(Ordering::Less, 2.5_f64.total_cmp(&f64::MAX));
+        assert_eq!(Ordering::Less, f64::MAX.total_cmp(&f64::INFINITY));
+        assert_eq!(Ordering::Less, f64::INFINITY.total_cmp(&s_nan()));
+        assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan()));
+
+        assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan()));
+        assert_eq!(Ordering::Greater, (-f64::INFINITY).total_cmp(&-s_nan()));
+        assert_eq!(Ordering::Greater, (-f64::MAX).total_cmp(&-f64::INFINITY));
+        assert_eq!(Ordering::Greater, (-2.5_f64).total_cmp(&-f64::MAX));
+        assert_eq!(Ordering::Greater, (-1.5_f64).total_cmp(&-2.5));
+        assert_eq!(Ordering::Greater, (-1.0_f64).total_cmp(&-1.5));
+        assert_eq!(Ordering::Greater, (-0.5_f64).total_cmp(&-1.0));
+        assert_eq!(Ordering::Greater, (-f64::MIN_POSITIVE).total_cmp(&-0.5));
+        assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm()));
+        assert_eq!(Ordering::Greater, (-0.0_f64).total_cmp(&-min_subnorm()));
+        assert_eq!(Ordering::Greater, 0.0_f64.total_cmp(&-0.0));
+        assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0));
+        assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm()));
+        assert_eq!(Ordering::Greater, f64::MIN_POSITIVE.total_cmp(&max_subnorm()));
+        assert_eq!(Ordering::Greater, 0.5_f64.total_cmp(&f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Greater, 1.0_f64.total_cmp(&0.5));
+        assert_eq!(Ordering::Greater, 1.5_f64.total_cmp(&1.0));
+        assert_eq!(Ordering::Greater, 2.5_f64.total_cmp(&1.5));
+        assert_eq!(Ordering::Greater, f64::MAX.total_cmp(&2.5));
+        assert_eq!(Ordering::Greater, f64::INFINITY.total_cmp(&f64::MAX));
+        assert_eq!(Ordering::Greater, s_nan().total_cmp(&f64::INFINITY));
+        assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan()));
+
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::INFINITY));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::MAX));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm()));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm()));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm()));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm()));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::MAX));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::INFINITY));
+        assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan()));
+
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::INFINITY));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::MAX));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm()));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm()));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm()));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm()));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::MIN_POSITIVE));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::MAX));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::INFINITY));
+        assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
+    }
+}