about summary refs log tree commit diff
path: root/library/std/src/net/ip_addr.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/std/src/net/ip_addr.rs')
-rw-r--r--library/std/src/net/ip_addr.rs2092
1 files changed, 2092 insertions, 0 deletions
diff --git a/library/std/src/net/ip_addr.rs b/library/std/src/net/ip_addr.rs
new file mode 100644
index 00000000000..a670f716833
--- /dev/null
+++ b/library/std/src/net/ip_addr.rs
@@ -0,0 +1,2092 @@
+// Tests for this module
+#[cfg(all(test, not(target_os = "emscripten")))]
+mod tests;
+
+use crate::cmp::Ordering;
+use crate::fmt::{self, Write};
+use crate::mem::transmute;
+use crate::sys::net::netc as c;
+use crate::sys_common::{FromInner, IntoInner};
+
+use super::display_buffer::DisplayBuffer;
+
+/// An IP address, either IPv4 or IPv6.
+///
+/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
+/// respective documentation for more details.
+///
+/// # Examples
+///
+/// ```
+/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+///
+/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
+/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
+///
+/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
+/// assert_eq!("::1".parse(), Ok(localhost_v6));
+///
+/// assert_eq!(localhost_v4.is_ipv6(), false);
+/// assert_eq!(localhost_v4.is_ipv4(), true);
+/// ```
+#[stable(feature = "ip_addr", since = "1.7.0")]
+#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
+pub enum IpAddr {
+    /// An IPv4 address.
+    #[stable(feature = "ip_addr", since = "1.7.0")]
+    V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr),
+    /// An IPv6 address.
+    #[stable(feature = "ip_addr", since = "1.7.0")]
+    V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr),
+}
+
+/// An IPv4 address.
+///
+/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
+/// They are usually represented as four octets.
+///
+/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
+///
+/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
+///
+/// # Textual representation
+///
+/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
+/// notation, divided by `.` (this is called "dot-decimal notation").
+/// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which
+/// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943].
+///
+/// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
+/// [`FromStr`]: crate::str::FromStr
+///
+/// # Examples
+///
+/// ```
+/// use std::net::Ipv4Addr;
+///
+/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
+/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
+/// assert_eq!(localhost.is_loopback(), true);
+/// assert!("012.004.002.000".parse::<Ipv4Addr>().is_err()); // all octets are in octal
+/// assert!("0000000.0.0.0".parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal
+/// assert!("0xcb.0x0.0x71.0x00".parse::<Ipv4Addr>().is_err()); // all octets are in hex
+/// ```
+#[derive(Copy, Clone, PartialEq, Eq, Hash)]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Ipv4Addr {
+    octets: [u8; 4],
+}
+
+/// An IPv6 address.
+///
+/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
+/// They are usually represented as eight 16-bit segments.
+///
+/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
+///
+/// # Embedding IPv4 Addresses
+///
+/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
+///
+/// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined:
+/// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated.
+///
+/// Both types of addresses are not assigned any special meaning by this implementation,
+/// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`,
+/// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is.
+/// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address.
+///
+/// ### IPv4-Compatible IPv6 Addresses
+///
+/// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated.
+/// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows:
+///
+/// ```text
+/// |                80 bits               | 16 |      32 bits        |
+/// +--------------------------------------+--------------------------+
+/// |0000..............................0000|0000|    IPv4 address     |
+/// +--------------------------------------+----+---------------------+
+/// ```
+/// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`.
+///
+/// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`].
+/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address.
+///
+/// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1
+///
+/// ### IPv4-Mapped IPv6 Addresses
+///
+/// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2].
+/// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows:
+///
+/// ```text
+/// |                80 bits               | 16 |      32 bits        |
+/// +--------------------------------------+--------------------------+
+/// |0000..............................0000|FFFF|    IPv4 address     |
+/// +--------------------------------------+----+---------------------+
+/// ```
+/// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`.
+///
+/// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`].
+/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address.
+/// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use
+/// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
+///
+/// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
+///
+/// # Textual representation
+///
+/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
+/// an IPv6 address in text, but in general, each segments is written in hexadecimal
+/// notation, and segments are separated by `:`. For more information, see
+/// [IETF RFC 5952].
+///
+/// [`FromStr`]: crate::str::FromStr
+/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
+///
+/// # Examples
+///
+/// ```
+/// use std::net::Ipv6Addr;
+///
+/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
+/// assert_eq!("::1".parse(), Ok(localhost));
+/// assert_eq!(localhost.is_loopback(), true);
+/// ```
+#[derive(Copy, Clone, PartialEq, Eq, Hash)]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Ipv6Addr {
+    octets: [u8; 16],
+}
+
+/// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2].
+///
+/// # Stability Guarantees
+///
+/// Not all possible values for a multicast scope have been assigned.
+/// Future RFCs may introduce new scopes, which will be added as variants to this enum;
+/// because of this the enum is marked as `#[non_exhaustive]`.
+///
+/// # Examples
+/// ```
+/// #![feature(ip)]
+///
+/// use std::net::Ipv6Addr;
+/// use std::net::Ipv6MulticastScope::*;
+///
+/// // An IPv6 multicast address with global scope (`ff0e::`).
+/// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0);
+///
+/// // Will print "Global scope".
+/// match address.multicast_scope() {
+///     Some(InterfaceLocal) => println!("Interface-Local scope"),
+///     Some(LinkLocal) => println!("Link-Local scope"),
+///     Some(RealmLocal) => println!("Realm-Local scope"),
+///     Some(AdminLocal) => println!("Admin-Local scope"),
+///     Some(SiteLocal) => println!("Site-Local scope"),
+///     Some(OrganizationLocal) => println!("Organization-Local scope"),
+///     Some(Global) => println!("Global scope"),
+///     Some(_) => println!("Unknown scope"),
+///     None => println!("Not a multicast address!")
+/// }
+///
+/// ```
+///
+/// [IPv6 multicast address]: Ipv6Addr
+/// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2
+#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
+#[unstable(feature = "ip", issue = "27709")]
+#[non_exhaustive]
+pub enum Ipv6MulticastScope {
+    /// Interface-Local scope.
+    InterfaceLocal,
+    /// Link-Local scope.
+    LinkLocal,
+    /// Realm-Local scope.
+    RealmLocal,
+    /// Admin-Local scope.
+    AdminLocal,
+    /// Site-Local scope.
+    SiteLocal,
+    /// Organization-Local scope.
+    OrganizationLocal,
+    /// Global scope.
+    Global,
+}
+
+impl IpAddr {
+    /// Returns [`true`] for the special 'unspecified' address.
+    ///
+    /// See the documentation for [`Ipv4Addr::is_unspecified()`] and
+    /// [`Ipv6Addr::is_unspecified()`] for more details.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
+    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "ip_shared", since = "1.12.0")]
+    #[must_use]
+    #[inline]
+    pub const fn is_unspecified(&self) -> bool {
+        match self {
+            IpAddr::V4(ip) => ip.is_unspecified(),
+            IpAddr::V6(ip) => ip.is_unspecified(),
+        }
+    }
+
+    /// Returns [`true`] if this is a loopback address.
+    ///
+    /// See the documentation for [`Ipv4Addr::is_loopback()`] and
+    /// [`Ipv6Addr::is_loopback()`] for more details.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
+    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "ip_shared", since = "1.12.0")]
+    #[must_use]
+    #[inline]
+    pub const fn is_loopback(&self) -> bool {
+        match self {
+            IpAddr::V4(ip) => ip.is_loopback(),
+            IpAddr::V6(ip) => ip.is_loopback(),
+        }
+    }
+
+    /// Returns [`true`] if the address appears to be globally routable.
+    ///
+    /// See the documentation for [`Ipv4Addr::is_global()`] and
+    /// [`Ipv6Addr::is_global()`] for more details.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
+    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ip", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_global(&self) -> bool {
+        match self {
+            IpAddr::V4(ip) => ip.is_global(),
+            IpAddr::V6(ip) => ip.is_global(),
+        }
+    }
+
+    /// Returns [`true`] if this is a multicast address.
+    ///
+    /// See the documentation for [`Ipv4Addr::is_multicast()`] and
+    /// [`Ipv6Addr::is_multicast()`] for more details.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
+    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "ip_shared", since = "1.12.0")]
+    #[must_use]
+    #[inline]
+    pub const fn is_multicast(&self) -> bool {
+        match self {
+            IpAddr::V4(ip) => ip.is_multicast(),
+            IpAddr::V6(ip) => ip.is_multicast(),
+        }
+    }
+
+    /// Returns [`true`] if this address is in a range designated for documentation.
+    ///
+    /// See the documentation for [`Ipv4Addr::is_documentation()`] and
+    /// [`Ipv6Addr::is_documentation()`] for more details.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
+    /// assert_eq!(
+    ///     IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
+    ///     true
+    /// );
+    /// ```
+    #[rustc_const_unstable(feature = "const_ip", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_documentation(&self) -> bool {
+        match self {
+            IpAddr::V4(ip) => ip.is_documentation(),
+            IpAddr::V6(ip) => ip.is_documentation(),
+        }
+    }
+
+    /// Returns [`true`] if this address is in a range designated for benchmarking.
+    ///
+    /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and
+    /// [`Ipv6Addr::is_benchmarking()`] for more details.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true);
+    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true);
+    /// ```
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_benchmarking(&self) -> bool {
+        match self {
+            IpAddr::V4(ip) => ip.is_benchmarking(),
+            IpAddr::V6(ip) => ip.is_benchmarking(),
+        }
+    }
+
+    /// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
+    /// otherwise.
+    ///
+    /// [`IPv4` address]: IpAddr::V4
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
+    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "ipaddr_checker", since = "1.16.0")]
+    #[must_use]
+    #[inline]
+    pub const fn is_ipv4(&self) -> bool {
+        matches!(self, IpAddr::V4(_))
+    }
+
+    /// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
+    /// otherwise.
+    ///
+    /// [`IPv6` address]: IpAddr::V6
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
+    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "ipaddr_checker", since = "1.16.0")]
+    #[must_use]
+    #[inline]
+    pub const fn is_ipv6(&self) -> bool {
+        matches!(self, IpAddr::V6(_))
+    }
+
+    /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6 addresses, otherwise it
+    /// return `self` as-is.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true);
+    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false);
+    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true);
+    /// ```
+    #[inline]
+    #[must_use = "this returns the result of the operation, \
+                  without modifying the original"]
+    #[rustc_const_unstable(feature = "const_ip", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    pub const fn to_canonical(&self) -> IpAddr {
+        match self {
+            &v4 @ IpAddr::V4(_) => v4,
+            IpAddr::V6(v6) => v6.to_canonical(),
+        }
+    }
+}
+
+impl Ipv4Addr {
+    /// Creates a new IPv4 address from four eight-bit octets.
+    ///
+    /// The result will represent the IP address `a`.`b`.`c`.`d`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[must_use]
+    #[inline]
+    pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
+        Ipv4Addr { octets: [a, b, c, d] }
+    }
+
+    /// An IPv4 address with the address pointing to localhost: `127.0.0.1`
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// let addr = Ipv4Addr::LOCALHOST;
+    /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
+    /// ```
+    #[stable(feature = "ip_constructors", since = "1.30.0")]
+    pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
+
+    /// An IPv4 address representing an unspecified address: `0.0.0.0`
+    ///
+    /// This corresponds to the constant `INADDR_ANY` in other languages.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// let addr = Ipv4Addr::UNSPECIFIED;
+    /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
+    /// ```
+    #[doc(alias = "INADDR_ANY")]
+    #[stable(feature = "ip_constructors", since = "1.30.0")]
+    pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
+
+    /// An IPv4 address representing the broadcast address: `255.255.255.255`
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// let addr = Ipv4Addr::BROADCAST;
+    /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
+    /// ```
+    #[stable(feature = "ip_constructors", since = "1.30.0")]
+    pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
+
+    /// Returns the four eight-bit integers that make up this address.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
+    /// assert_eq!(addr.octets(), [127, 0, 0, 1]);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[must_use]
+    #[inline]
+    pub const fn octets(&self) -> [u8; 4] {
+        self.octets
+    }
+
+    /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`).
+    ///
+    /// This property is defined in _UNIX Network Programming, Second Edition_,
+    /// W. Richard Stevens, p. 891; see also [ip7].
+    ///
+    /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
+    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
+    #[stable(feature = "ip_shared", since = "1.12.0")]
+    #[must_use]
+    #[inline]
+    pub const fn is_unspecified(&self) -> bool {
+        u32::from_be_bytes(self.octets) == 0
+    }
+
+    /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`).
+    ///
+    /// This property is defined by [IETF RFC 1122].
+    ///
+    /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
+    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(since = "1.7.0", feature = "ip_17")]
+    #[must_use]
+    #[inline]
+    pub const fn is_loopback(&self) -> bool {
+        self.octets()[0] == 127
+    }
+
+    /// Returns [`true`] if this is a private address.
+    ///
+    /// The private address ranges are defined in [IETF RFC 1918] and include:
+    ///
+    ///  - `10.0.0.0/8`
+    ///  - `172.16.0.0/12`
+    ///  - `192.168.0.0/16`
+    ///
+    /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
+    /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
+    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
+    /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
+    /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
+    /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
+    /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(since = "1.7.0", feature = "ip_17")]
+    #[must_use]
+    #[inline]
+    pub const fn is_private(&self) -> bool {
+        match self.octets() {
+            [10, ..] => true,
+            [172, b, ..] if b >= 16 && b <= 31 => true,
+            [192, 168, ..] => true,
+            _ => false,
+        }
+    }
+
+    /// Returns [`true`] if the address is link-local (`169.254.0.0/16`).
+    ///
+    /// This property is defined by [IETF RFC 3927].
+    ///
+    /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
+    /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
+    /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(since = "1.7.0", feature = "ip_17")]
+    #[must_use]
+    #[inline]
+    pub const fn is_link_local(&self) -> bool {
+        matches!(self.octets(), [169, 254, ..])
+    }
+
+    /// Returns [`true`] if the address appears to be globally reachable
+    /// as specified by the [IANA IPv4 Special-Purpose Address Registry].
+    /// Whether or not an address is practically reachable will depend on your network configuration.
+    ///
+    /// Most IPv4 addresses are globally reachable;
+    /// unless they are specifically defined as *not* globally reachable.
+    ///
+    /// Non-exhaustive list of notable addresses that are not globally reachable:
+    ///
+    /// - The [unspecified address] ([`is_unspecified`](Ipv4Addr::is_unspecified))
+    /// - Addresses reserved for private use ([`is_private`](Ipv4Addr::is_private))
+    /// - Addresses in the shared address space ([`is_shared`](Ipv4Addr::is_shared))
+    /// - Loopback addresses ([`is_loopback`](Ipv4Addr::is_loopback))
+    /// - Link-local addresses ([`is_link_local`](Ipv4Addr::is_link_local))
+    /// - Addresses reserved for documentation ([`is_documentation`](Ipv4Addr::is_documentation))
+    /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv4Addr::is_benchmarking))
+    /// - Reserved addresses ([`is_reserved`](Ipv4Addr::is_reserved))
+    /// - The [broadcast address] ([`is_broadcast`](Ipv4Addr::is_broadcast))
+    ///
+    /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv4 Special-Purpose Address Registry].
+    ///
+    /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
+    /// [unspecified address]: Ipv4Addr::UNSPECIFIED
+    /// [broadcast address]: Ipv4Addr::BROADCAST
+
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::Ipv4Addr;
+    ///
+    /// // Most IPv4 addresses are globally reachable:
+    /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
+    ///
+    /// // However some addresses have been assigned a special meaning
+    /// // that makes them not globally reachable. Some examples are:
+    ///
+    /// // The unspecified address (`0.0.0.0`)
+    /// assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);
+    ///
+    /// // Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
+    /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
+    /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
+    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
+    ///
+    /// // Addresses in the shared address space (`100.64.0.0/10`)
+    /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
+    ///
+    /// // The loopback addresses (`127.0.0.0/8`)
+    /// assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);
+    ///
+    /// // Link-local addresses (`169.254.0.0/16`)
+    /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
+    ///
+    /// // Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
+    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
+    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
+    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
+    ///
+    /// // Addresses reserved for benchmarking (`198.18.0.0/15`)
+    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
+    ///
+    /// // Reserved addresses (`240.0.0.0/4`)
+    /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
+    ///
+    /// // The broadcast address (`255.255.255.255`)
+    /// assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);
+    ///
+    /// // For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_global(&self) -> bool {
+        !(self.octets()[0] == 0 // "This network"
+            || self.is_private()
+            || self.is_shared()
+            || self.is_loopback()
+            || self.is_link_local()
+            // addresses reserved for future protocols (`192.0.0.0/24`)
+            ||(self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0)
+            || self.is_documentation()
+            || self.is_benchmarking()
+            || self.is_reserved()
+            || self.is_broadcast())
+    }
+
+    /// Returns [`true`] if this address is part of the Shared Address Space defined in
+    /// [IETF RFC 6598] (`100.64.0.0/10`).
+    ///
+    /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
+    /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
+    /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_shared(&self) -> bool {
+        self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
+    }
+
+    /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
+    /// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0`
+    /// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
+    ///
+    /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
+    /// [errata 423]: https://www.rfc-editor.org/errata/eid423
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
+    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
+    /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
+    /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_benchmarking(&self) -> bool {
+        self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
+    }
+
+    /// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112]
+    /// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the
+    /// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since
+    /// it is obviously not reserved for future use.
+    ///
+    /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
+    ///
+    /// # Warning
+    ///
+    /// As IANA assigns new addresses, this method will be
+    /// updated. This may result in non-reserved addresses being
+    /// treated as reserved in code that relies on an outdated version
+    /// of this method.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
+    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
+    ///
+    /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
+    /// // The broadcast address is not considered as reserved for future use by this implementation
+    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_reserved(&self) -> bool {
+        self.octets()[0] & 240 == 240 && !self.is_broadcast()
+    }
+
+    /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`).
+    ///
+    /// Multicast addresses have a most significant octet between `224` and `239`,
+    /// and is defined by [IETF RFC 5771].
+    ///
+    /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
+    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
+    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(since = "1.7.0", feature = "ip_17")]
+    #[must_use]
+    #[inline]
+    pub const fn is_multicast(&self) -> bool {
+        self.octets()[0] >= 224 && self.octets()[0] <= 239
+    }
+
+    /// Returns [`true`] if this is a broadcast address (`255.255.255.255`).
+    ///
+    /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919].
+    ///
+    /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
+    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(since = "1.7.0", feature = "ip_17")]
+    #[must_use]
+    #[inline]
+    pub const fn is_broadcast(&self) -> bool {
+        u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets())
+    }
+
+    /// Returns [`true`] if this address is in a range designated for documentation.
+    ///
+    /// This is defined in [IETF RFC 5737]:
+    ///
+    /// - `192.0.2.0/24` (TEST-NET-1)
+    /// - `198.51.100.0/24` (TEST-NET-2)
+    /// - `203.0.113.0/24` (TEST-NET-3)
+    ///
+    /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
+    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
+    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
+    /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(since = "1.7.0", feature = "ip_17")]
+    #[must_use]
+    #[inline]
+    pub const fn is_documentation(&self) -> bool {
+        matches!(self.octets(), [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _])
+    }
+
+    /// Converts this address to an [IPv4-compatible] [`IPv6` address].
+    ///
+    /// `a.b.c.d` becomes `::a.b.c.d`
+    ///
+    /// Note that IPv4-compatible addresses have been officially deprecated.
+    /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead.
+    ///
+    /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
+    /// [`IPv6` address]: Ipv6Addr
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(
+    ///     Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
+    ///     Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
+    /// );
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[must_use = "this returns the result of the operation, \
+                  without modifying the original"]
+    #[inline]
+    pub const fn to_ipv6_compatible(&self) -> Ipv6Addr {
+        let [a, b, c, d] = self.octets();
+        Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] }
+    }
+
+    /// Converts this address to an [IPv4-mapped] [`IPv6` address].
+    ///
+    /// `a.b.c.d` becomes `::ffff:a.b.c.d`
+    ///
+    /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
+    /// [`IPv6` address]: Ipv6Addr
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
+    ///            Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[must_use = "this returns the result of the operation, \
+                  without modifying the original"]
+    #[inline]
+    pub const fn to_ipv6_mapped(&self) -> Ipv6Addr {
+        let [a, b, c, d] = self.octets();
+        Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] }
+    }
+}
+
+#[stable(feature = "ip_addr", since = "1.7.0")]
+impl fmt::Display for IpAddr {
+    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+        match self {
+            IpAddr::V4(ip) => ip.fmt(fmt),
+            IpAddr::V6(ip) => ip.fmt(fmt),
+        }
+    }
+}
+
+#[stable(feature = "ip_addr", since = "1.7.0")]
+impl fmt::Debug for IpAddr {
+    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+        fmt::Display::fmt(self, fmt)
+    }
+}
+
+#[stable(feature = "ip_from_ip", since = "1.16.0")]
+impl From<Ipv4Addr> for IpAddr {
+    /// Copies this address to a new `IpAddr::V4`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv4Addr};
+    ///
+    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
+    ///
+    /// assert_eq!(
+    ///     IpAddr::V4(addr),
+    ///     IpAddr::from(addr)
+    /// )
+    /// ```
+    #[inline]
+    fn from(ipv4: Ipv4Addr) -> IpAddr {
+        IpAddr::V4(ipv4)
+    }
+}
+
+#[stable(feature = "ip_from_ip", since = "1.16.0")]
+impl From<Ipv6Addr> for IpAddr {
+    /// Copies this address to a new `IpAddr::V6`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv6Addr};
+    ///
+    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
+    ///
+    /// assert_eq!(
+    ///     IpAddr::V6(addr),
+    ///     IpAddr::from(addr)
+    /// );
+    /// ```
+    #[inline]
+    fn from(ipv6: Ipv6Addr) -> IpAddr {
+        IpAddr::V6(ipv6)
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Display for Ipv4Addr {
+    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+        let octets = self.octets();
+
+        // If there are no alignment requirements, write the IP address directly to `f`.
+        // Otherwise, write it to a local buffer and then use `f.pad`.
+        if fmt.precision().is_none() && fmt.width().is_none() {
+            write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
+        } else {
+            const LONGEST_IPV4_ADDR: &str = "255.255.255.255";
+
+            let mut buf = DisplayBuffer::<{ LONGEST_IPV4_ADDR.len() }>::new();
+            // Buffer is long enough for the longest possible IPv4 address, so this should never fail.
+            write!(buf, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
+
+            fmt.pad(buf.as_str())
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Debug for Ipv4Addr {
+    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+        fmt::Display::fmt(self, fmt)
+    }
+}
+
+#[stable(feature = "ip_cmp", since = "1.16.0")]
+impl PartialEq<Ipv4Addr> for IpAddr {
+    #[inline]
+    fn eq(&self, other: &Ipv4Addr) -> bool {
+        match self {
+            IpAddr::V4(v4) => v4 == other,
+            IpAddr::V6(_) => false,
+        }
+    }
+}
+
+#[stable(feature = "ip_cmp", since = "1.16.0")]
+impl PartialEq<IpAddr> for Ipv4Addr {
+    #[inline]
+    fn eq(&self, other: &IpAddr) -> bool {
+        match other {
+            IpAddr::V4(v4) => self == v4,
+            IpAddr::V6(_) => false,
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl PartialOrd for Ipv4Addr {
+    #[inline]
+    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
+        Some(self.cmp(other))
+    }
+}
+
+#[stable(feature = "ip_cmp", since = "1.16.0")]
+impl PartialOrd<Ipv4Addr> for IpAddr {
+    #[inline]
+    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
+        match self {
+            IpAddr::V4(v4) => v4.partial_cmp(other),
+            IpAddr::V6(_) => Some(Ordering::Greater),
+        }
+    }
+}
+
+#[stable(feature = "ip_cmp", since = "1.16.0")]
+impl PartialOrd<IpAddr> for Ipv4Addr {
+    #[inline]
+    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
+        match other {
+            IpAddr::V4(v4) => self.partial_cmp(v4),
+            IpAddr::V6(_) => Some(Ordering::Less),
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Ord for Ipv4Addr {
+    #[inline]
+    fn cmp(&self, other: &Ipv4Addr) -> Ordering {
+        self.octets.cmp(&other.octets)
+    }
+}
+
+impl IntoInner<c::in_addr> for Ipv4Addr {
+    #[inline]
+    fn into_inner(self) -> c::in_addr {
+        // `s_addr` is stored as BE on all machines and the array is in BE order.
+        // So the native endian conversion method is used so that it's never swapped.
+        c::in_addr { s_addr: u32::from_ne_bytes(self.octets) }
+    }
+}
+impl FromInner<c::in_addr> for Ipv4Addr {
+    fn from_inner(addr: c::in_addr) -> Ipv4Addr {
+        Ipv4Addr { octets: addr.s_addr.to_ne_bytes() }
+    }
+}
+
+#[stable(feature = "ip_u32", since = "1.1.0")]
+impl From<Ipv4Addr> for u32 {
+    /// Converts an `Ipv4Addr` into a host byte order `u32`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
+    /// assert_eq!(0x12345678, u32::from(addr));
+    /// ```
+    #[inline]
+    fn from(ip: Ipv4Addr) -> u32 {
+        u32::from_be_bytes(ip.octets)
+    }
+}
+
+#[stable(feature = "ip_u32", since = "1.1.0")]
+impl From<u32> for Ipv4Addr {
+    /// Converts a host byte order `u32` into an `Ipv4Addr`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// let addr = Ipv4Addr::from(0x12345678);
+    /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr);
+    /// ```
+    #[inline]
+    fn from(ip: u32) -> Ipv4Addr {
+        Ipv4Addr { octets: ip.to_be_bytes() }
+    }
+}
+
+#[stable(feature = "from_slice_v4", since = "1.9.0")]
+impl From<[u8; 4]> for Ipv4Addr {
+    /// Creates an `Ipv4Addr` from a four element byte array.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv4Addr;
+    ///
+    /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
+    /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
+    /// ```
+    #[inline]
+    fn from(octets: [u8; 4]) -> Ipv4Addr {
+        Ipv4Addr { octets }
+    }
+}
+
+#[stable(feature = "ip_from_slice", since = "1.17.0")]
+impl From<[u8; 4]> for IpAddr {
+    /// Creates an `IpAddr::V4` from a four element byte array.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv4Addr};
+    ///
+    /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
+    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
+    /// ```
+    #[inline]
+    fn from(octets: [u8; 4]) -> IpAddr {
+        IpAddr::V4(Ipv4Addr::from(octets))
+    }
+}
+
+impl Ipv6Addr {
+    /// Creates a new IPv6 address from eight 16-bit segments.
+    ///
+    /// The result will represent the IP address `a:b:c:d:e:f:g:h`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[must_use]
+    #[inline]
+    pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
+        let addr16 = [
+            a.to_be(),
+            b.to_be(),
+            c.to_be(),
+            d.to_be(),
+            e.to_be(),
+            f.to_be(),
+            g.to_be(),
+            h.to_be(),
+        ];
+        Ipv6Addr {
+            // All elements in `addr16` are big endian.
+            // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`.
+            octets: unsafe { transmute::<_, [u8; 16]>(addr16) },
+        }
+    }
+
+    /// An IPv6 address representing localhost: `::1`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// let addr = Ipv6Addr::LOCALHOST;
+    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
+    /// ```
+    #[stable(feature = "ip_constructors", since = "1.30.0")]
+    pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
+
+    /// An IPv6 address representing the unspecified address: `::`
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// let addr = Ipv6Addr::UNSPECIFIED;
+    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
+    /// ```
+    #[stable(feature = "ip_constructors", since = "1.30.0")]
+    pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
+
+    /// Returns the eight 16-bit segments that make up this address.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
+    ///            [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[must_use]
+    #[inline]
+    pub const fn segments(&self) -> [u16; 8] {
+        // All elements in `self.octets` must be big endian.
+        // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`.
+        let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) };
+        // We want native endian u16
+        [
+            u16::from_be(a),
+            u16::from_be(b),
+            u16::from_be(c),
+            u16::from_be(d),
+            u16::from_be(e),
+            u16::from_be(f),
+            u16::from_be(g),
+            u16::from_be(h),
+        ]
+    }
+
+    /// Returns [`true`] for the special 'unspecified' address (`::`).
+    ///
+    /// This property is defined in [IETF RFC 4291].
+    ///
+    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(since = "1.7.0", feature = "ip_17")]
+    #[must_use]
+    #[inline]
+    pub const fn is_unspecified(&self) -> bool {
+        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets())
+    }
+
+    /// Returns [`true`] if this is the [loopback address] (`::1`),
+    /// as defined in [IETF RFC 4291 section 2.5.3].
+    ///
+    /// Contrary to IPv4, in IPv6 there is only one loopback address.
+    ///
+    /// [loopback address]: Ipv6Addr::LOCALHOST
+    /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(since = "1.7.0", feature = "ip_17")]
+    #[must_use]
+    #[inline]
+    pub const fn is_loopback(&self) -> bool {
+        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets())
+    }
+
+    /// Returns [`true`] if the address appears to be globally reachable
+    /// as specified by the [IANA IPv6 Special-Purpose Address Registry].
+    /// Whether or not an address is practically reachable will depend on your network configuration.
+    ///
+    /// Most IPv6 addresses are globally reachable;
+    /// unless they are specifically defined as *not* globally reachable.
+    ///
+    /// Non-exhaustive list of notable addresses that are not globally reachable:
+    /// - The [unspecified address] ([`is_unspecified`](Ipv6Addr::is_unspecified))
+    /// - The [loopback address] ([`is_loopback`](Ipv6Addr::is_loopback))
+    /// - IPv4-mapped addresses
+    /// - Addresses reserved for benchmarking
+    /// - Addresses reserved for documentation ([`is_documentation`](Ipv6Addr::is_documentation))
+    /// - Unique local addresses ([`is_unique_local`](Ipv6Addr::is_unique_local))
+    /// - Unicast addresses with link-local scope ([`is_unicast_link_local`](Ipv6Addr::is_unicast_link_local))
+    ///
+    /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv6 Special-Purpose Address Registry].
+    ///
+    /// Note that an address having global scope is not the same as being globally reachable,
+    /// and there is no direct relation between the two concepts: There exist addresses with global scope
+    /// that are not globally reachable (for example unique local addresses),
+    /// and addresses that are globally reachable without having global scope
+    /// (multicast addresses with non-global scope).
+    ///
+    /// [IANA IPv6 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
+    /// [unspecified address]: Ipv6Addr::UNSPECIFIED
+    /// [loopback address]: Ipv6Addr::LOCALHOST
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::Ipv6Addr;
+    ///
+    /// // Most IPv6 addresses are globally reachable:
+    /// assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true);
+    ///
+    /// // However some addresses have been assigned a special meaning
+    /// // that makes them not globally reachable. Some examples are:
+    ///
+    /// // The unspecified address (`::`)
+    /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false);
+    ///
+    /// // The loopback address (`::1`)
+    /// assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false);
+    ///
+    /// // IPv4-mapped addresses (`::ffff:0:0/96`)
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false);
+    ///
+    /// // Addresses reserved for benchmarking (`2001:2::/48`)
+    /// assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false);
+    ///
+    /// // Addresses reserved for documentation (`2001:db8::/32`)
+    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false);
+    ///
+    /// // Unique local addresses (`fc00::/7`)
+    /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
+    ///
+    /// // Unicast addresses with link-local scope (`fe80::/10`)
+    /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
+    ///
+    /// // For a complete overview see the IANA IPv6 Special-Purpose Address Registry.
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_global(&self) -> bool {
+        !(self.is_unspecified()
+            || self.is_loopback()
+            // IPv4-mapped Address (`::ffff:0:0/96`)
+            || matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
+            // IPv4-IPv6 Translat. (`64:ff9b:1::/48`)
+            || matches!(self.segments(), [0x64, 0xff9b, 1, _, _, _, _, _])
+            // Discard-Only Address Block (`100::/64`)
+            || matches!(self.segments(), [0x100, 0, 0, 0, _, _, _, _])
+            // IETF Protocol Assignments (`2001::/23`)
+            || (matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200)
+                && !(
+                    // Port Control Protocol Anycast (`2001:1::1`)
+                    u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001
+                    // Traversal Using Relays around NAT Anycast (`2001:1::2`)
+                    || u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002
+                    // AMT (`2001:3::/32`)
+                    || matches!(self.segments(), [0x2001, 3, _, _, _, _, _, _])
+                    // AS112-v6 (`2001:4:112::/48`)
+                    || matches!(self.segments(), [0x2001, 4, 0x112, _, _, _, _, _])
+                    // ORCHIDv2 (`2001:20::/28`)
+                    || matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x2F)
+                ))
+            || self.is_documentation()
+            || self.is_unique_local()
+            || self.is_unicast_link_local())
+    }
+
+    /// Returns [`true`] if this is a unique local address (`fc00::/7`).
+    ///
+    /// This property is defined in [IETF RFC 4193].
+    ///
+    /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
+    /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_unique_local(&self) -> bool {
+        (self.segments()[0] & 0xfe00) == 0xfc00
+    }
+
+    /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291].
+    /// Any address that is not a [multicast address] (`ff00::/8`) is unicast.
+    ///
+    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
+    /// [multicast address]: Ipv6Addr::is_multicast
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::Ipv6Addr;
+    ///
+    /// // The unspecified and loopback addresses are unicast.
+    /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
+    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);
+    ///
+    /// // Any address that is not a multicast address (`ff00::/8`) is unicast.
+    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
+    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_unicast(&self) -> bool {
+        !self.is_multicast()
+    }
+
+    /// Returns `true` if the address is a unicast address with link-local scope,
+    /// as defined in [RFC 4291].
+    ///
+    /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4].
+    /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6],
+    /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format:
+    ///
+    /// ```text
+    /// | 10 bits  |         54 bits         |          64 bits           |
+    /// +----------+-------------------------+----------------------------+
+    /// |1111111010|           0             |       interface ID         |
+    /// +----------+-------------------------+----------------------------+
+    /// ```
+    /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`,
+    /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated,
+    /// and those addresses will have link-local scope.
+    ///
+    /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope",
+    /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it.
+    ///
+    /// [RFC 4291]: https://tools.ietf.org/html/rfc4291
+    /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
+    /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
+    /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
+    /// [loopback address]: Ipv6Addr::LOCALHOST
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::Ipv6Addr;
+    ///
+    /// // The loopback address (`::1`) does not actually have link-local scope.
+    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);
+    ///
+    /// // Only addresses in `fe80::/10` have link-local scope.
+    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
+    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
+    ///
+    /// // Addresses outside the stricter `fe80::/64` also have link-local scope.
+    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
+    /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_unicast_link_local(&self) -> bool {
+        (self.segments()[0] & 0xffc0) == 0xfe80
+    }
+
+    /// Returns [`true`] if this is an address reserved for documentation
+    /// (`2001:db8::/32`).
+    ///
+    /// This property is defined in [IETF RFC 3849].
+    ///
+    /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
+    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_documentation(&self) -> bool {
+        (self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8)
+    }
+
+    /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`).
+    ///
+    /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`.
+    /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`.
+    ///
+    /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180
+    /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false);
+    /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true);
+    /// ```
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_benchmarking(&self) -> bool {
+        (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0)
+    }
+
+    /// Returns [`true`] if the address is a globally routable unicast address.
+    ///
+    /// The following return false:
+    ///
+    /// - the loopback address
+    /// - the link-local addresses
+    /// - unique local addresses
+    /// - the unspecified address
+    /// - the address range reserved for documentation
+    ///
+    /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
+    ///
+    /// ```no_rust
+    /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
+    /// be supported in new implementations (i.e., new implementations must treat this prefix as
+    /// Global Unicast).
+    /// ```
+    ///
+    /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn is_unicast_global(&self) -> bool {
+        self.is_unicast()
+            && !self.is_loopback()
+            && !self.is_unicast_link_local()
+            && !self.is_unique_local()
+            && !self.is_unspecified()
+            && !self.is_documentation()
+            && !self.is_benchmarking()
+    }
+
+    /// Returns the address's multicast scope if the address is multicast.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    ///
+    /// use std::net::{Ipv6Addr, Ipv6MulticastScope};
+    ///
+    /// assert_eq!(
+    ///     Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
+    ///     Some(Ipv6MulticastScope::Global)
+    /// );
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use]
+    #[inline]
+    pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
+        if self.is_multicast() {
+            match self.segments()[0] & 0x000f {
+                1 => Some(Ipv6MulticastScope::InterfaceLocal),
+                2 => Some(Ipv6MulticastScope::LinkLocal),
+                3 => Some(Ipv6MulticastScope::RealmLocal),
+                4 => Some(Ipv6MulticastScope::AdminLocal),
+                5 => Some(Ipv6MulticastScope::SiteLocal),
+                8 => Some(Ipv6MulticastScope::OrganizationLocal),
+                14 => Some(Ipv6MulticastScope::Global),
+                _ => None,
+            }
+        } else {
+            None
+        }
+    }
+
+    /// Returns [`true`] if this is a multicast address (`ff00::/8`).
+    ///
+    /// This property is defined by [IETF RFC 4291].
+    ///
+    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(since = "1.7.0", feature = "ip_17")]
+    #[must_use]
+    #[inline]
+    pub const fn is_multicast(&self) -> bool {
+        (self.segments()[0] & 0xff00) == 0xff00
+    }
+
+    /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address,
+    /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`].
+    ///
+    /// `::ffff:a.b.c.d` becomes `a.b.c.d`.
+    /// All addresses *not* starting with `::ffff` will return `None`.
+    ///
+    /// [`IPv4` address]: Ipv4Addr
+    /// [IPv4-mapped]: Ipv6Addr
+    /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
+    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
+    #[stable(feature = "ipv6_to_ipv4_mapped", since = "1.63.0")]
+    #[must_use = "this returns the result of the operation, \
+                  without modifying the original"]
+    #[inline]
+    pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
+        match self.octets() {
+            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => {
+                Some(Ipv4Addr::new(a, b, c, d))
+            }
+            _ => None,
+        }
+    }
+
+    /// Converts this address to an [`IPv4` address] if it is either
+    /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1],
+    /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2],
+    /// otherwise returns [`None`].
+    ///
+    /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use
+    /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
+    ///
+    /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`.
+    /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`.
+    ///
+    /// [`IPv4` address]: Ipv4Addr
+    /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
+    /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
+    /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
+    /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{Ipv4Addr, Ipv6Addr};
+    ///
+    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
+    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
+    ///            Some(Ipv4Addr::new(0, 0, 0, 1)));
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[must_use = "this returns the result of the operation, \
+                  without modifying the original"]
+    #[inline]
+    pub const fn to_ipv4(&self) -> Option<Ipv4Addr> {
+        if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() {
+            let [a, b] = ab.to_be_bytes();
+            let [c, d] = cd.to_be_bytes();
+            Some(Ipv4Addr::new(a, b, c, d))
+        } else {
+            None
+        }
+    }
+
+    /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped addresses, otherwise it
+    /// returns self wrapped in an `IpAddr::V6`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(ip)]
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false);
+    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true);
+    /// ```
+    #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
+    #[unstable(feature = "ip", issue = "27709")]
+    #[must_use = "this returns the result of the operation, \
+                  without modifying the original"]
+    #[inline]
+    pub const fn to_canonical(&self) -> IpAddr {
+        if let Some(mapped) = self.to_ipv4_mapped() {
+            return IpAddr::V4(mapped);
+        }
+        IpAddr::V6(*self)
+    }
+
+    /// Returns the sixteen eight-bit integers the IPv6 address consists of.
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
+    ///            [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+    /// ```
+    #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
+    #[stable(feature = "ipv6_to_octets", since = "1.12.0")]
+    #[must_use]
+    #[inline]
+    pub const fn octets(&self) -> [u8; 16] {
+        self.octets
+    }
+}
+
+/// Write an Ipv6Addr, conforming to the canonical style described by
+/// [RFC 5952](https://tools.ietf.org/html/rfc5952).
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Display for Ipv6Addr {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        // If there are no alignment requirements, write the IP address directly to `f`.
+        // Otherwise, write it to a local buffer and then use `f.pad`.
+        if f.precision().is_none() && f.width().is_none() {
+            let segments = self.segments();
+
+            // Special case for :: and ::1; otherwise they get written with the
+            // IPv4 formatter
+            if self.is_unspecified() {
+                f.write_str("::")
+            } else if self.is_loopback() {
+                f.write_str("::1")
+            } else if let Some(ipv4) = self.to_ipv4() {
+                match segments[5] {
+                    // IPv4 Compatible address
+                    0 => write!(f, "::{}", ipv4),
+                    // IPv4 Mapped address
+                    0xffff => write!(f, "::ffff:{}", ipv4),
+                    _ => unreachable!(),
+                }
+            } else {
+                #[derive(Copy, Clone, Default)]
+                struct Span {
+                    start: usize,
+                    len: usize,
+                }
+
+                // Find the inner 0 span
+                let zeroes = {
+                    let mut longest = Span::default();
+                    let mut current = Span::default();
+
+                    for (i, &segment) in segments.iter().enumerate() {
+                        if segment == 0 {
+                            if current.len == 0 {
+                                current.start = i;
+                            }
+
+                            current.len += 1;
+
+                            if current.len > longest.len {
+                                longest = current;
+                            }
+                        } else {
+                            current = Span::default();
+                        }
+                    }
+
+                    longest
+                };
+
+                /// Write a colon-separated part of the address
+                #[inline]
+                fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result {
+                    if let Some((first, tail)) = chunk.split_first() {
+                        write!(f, "{:x}", first)?;
+                        for segment in tail {
+                            f.write_char(':')?;
+                            write!(f, "{:x}", segment)?;
+                        }
+                    }
+                    Ok(())
+                }
+
+                if zeroes.len > 1 {
+                    fmt_subslice(f, &segments[..zeroes.start])?;
+                    f.write_str("::")?;
+                    fmt_subslice(f, &segments[zeroes.start + zeroes.len..])
+                } else {
+                    fmt_subslice(f, &segments)
+                }
+            }
+        } else {
+            const LONGEST_IPV6_ADDR: &str = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff";
+
+            let mut buf = DisplayBuffer::<{ LONGEST_IPV6_ADDR.len() }>::new();
+            // Buffer is long enough for the longest possible IPv6 address, so this should never fail.
+            write!(buf, "{}", self).unwrap();
+
+            f.pad(buf.as_str())
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Debug for Ipv6Addr {
+    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+        fmt::Display::fmt(self, fmt)
+    }
+}
+
+#[stable(feature = "ip_cmp", since = "1.16.0")]
+impl PartialEq<IpAddr> for Ipv6Addr {
+    #[inline]
+    fn eq(&self, other: &IpAddr) -> bool {
+        match other {
+            IpAddr::V4(_) => false,
+            IpAddr::V6(v6) => self == v6,
+        }
+    }
+}
+
+#[stable(feature = "ip_cmp", since = "1.16.0")]
+impl PartialEq<Ipv6Addr> for IpAddr {
+    #[inline]
+    fn eq(&self, other: &Ipv6Addr) -> bool {
+        match self {
+            IpAddr::V4(_) => false,
+            IpAddr::V6(v6) => v6 == other,
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl PartialOrd for Ipv6Addr {
+    #[inline]
+    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
+        Some(self.cmp(other))
+    }
+}
+
+#[stable(feature = "ip_cmp", since = "1.16.0")]
+impl PartialOrd<Ipv6Addr> for IpAddr {
+    #[inline]
+    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
+        match self {
+            IpAddr::V4(_) => Some(Ordering::Less),
+            IpAddr::V6(v6) => v6.partial_cmp(other),
+        }
+    }
+}
+
+#[stable(feature = "ip_cmp", since = "1.16.0")]
+impl PartialOrd<IpAddr> for Ipv6Addr {
+    #[inline]
+    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
+        match other {
+            IpAddr::V4(_) => Some(Ordering::Greater),
+            IpAddr::V6(v6) => self.partial_cmp(v6),
+        }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Ord for Ipv6Addr {
+    #[inline]
+    fn cmp(&self, other: &Ipv6Addr) -> Ordering {
+        self.segments().cmp(&other.segments())
+    }
+}
+
+impl IntoInner<c::in6_addr> for Ipv6Addr {
+    fn into_inner(self) -> c::in6_addr {
+        c::in6_addr { s6_addr: self.octets }
+    }
+}
+impl FromInner<c::in6_addr> for Ipv6Addr {
+    #[inline]
+    fn from_inner(addr: c::in6_addr) -> Ipv6Addr {
+        Ipv6Addr { octets: addr.s6_addr }
+    }
+}
+
+#[stable(feature = "i128", since = "1.26.0")]
+impl From<Ipv6Addr> for u128 {
+    /// Convert an `Ipv6Addr` into a host byte order `u128`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// let addr = Ipv6Addr::new(
+    ///     0x1020, 0x3040, 0x5060, 0x7080,
+    ///     0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
+    /// );
+    /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr));
+    /// ```
+    #[inline]
+    fn from(ip: Ipv6Addr) -> u128 {
+        u128::from_be_bytes(ip.octets)
+    }
+}
+#[stable(feature = "i128", since = "1.26.0")]
+impl From<u128> for Ipv6Addr {
+    /// Convert a host byte order `u128` into an `Ipv6Addr`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128);
+    /// assert_eq!(
+    ///     Ipv6Addr::new(
+    ///         0x1020, 0x3040, 0x5060, 0x7080,
+    ///         0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
+    ///     ),
+    ///     addr);
+    /// ```
+    #[inline]
+    fn from(ip: u128) -> Ipv6Addr {
+        Ipv6Addr::from(ip.to_be_bytes())
+    }
+}
+
+#[stable(feature = "ipv6_from_octets", since = "1.9.0")]
+impl From<[u8; 16]> for Ipv6Addr {
+    /// Creates an `Ipv6Addr` from a sixteen element byte array.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// let addr = Ipv6Addr::from([
+    ///     25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
+    ///     17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
+    /// ]);
+    /// assert_eq!(
+    ///     Ipv6Addr::new(
+    ///         0x1918, 0x1716,
+    ///         0x1514, 0x1312,
+    ///         0x1110, 0x0f0e,
+    ///         0x0d0c, 0x0b0a
+    ///     ),
+    ///     addr
+    /// );
+    /// ```
+    #[inline]
+    fn from(octets: [u8; 16]) -> Ipv6Addr {
+        Ipv6Addr { octets }
+    }
+}
+
+#[stable(feature = "ipv6_from_segments", since = "1.16.0")]
+impl From<[u16; 8]> for Ipv6Addr {
+    /// Creates an `Ipv6Addr` from an eight element 16-bit array.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::Ipv6Addr;
+    ///
+    /// let addr = Ipv6Addr::from([
+    ///     525u16, 524u16, 523u16, 522u16,
+    ///     521u16, 520u16, 519u16, 518u16,
+    /// ]);
+    /// assert_eq!(
+    ///     Ipv6Addr::new(
+    ///         0x20d, 0x20c,
+    ///         0x20b, 0x20a,
+    ///         0x209, 0x208,
+    ///         0x207, 0x206
+    ///     ),
+    ///     addr
+    /// );
+    /// ```
+    #[inline]
+    fn from(segments: [u16; 8]) -> Ipv6Addr {
+        let [a, b, c, d, e, f, g, h] = segments;
+        Ipv6Addr::new(a, b, c, d, e, f, g, h)
+    }
+}
+
+#[stable(feature = "ip_from_slice", since = "1.17.0")]
+impl From<[u8; 16]> for IpAddr {
+    /// Creates an `IpAddr::V6` from a sixteen element byte array.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv6Addr};
+    ///
+    /// let addr = IpAddr::from([
+    ///     25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
+    ///     17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
+    /// ]);
+    /// assert_eq!(
+    ///     IpAddr::V6(Ipv6Addr::new(
+    ///         0x1918, 0x1716,
+    ///         0x1514, 0x1312,
+    ///         0x1110, 0x0f0e,
+    ///         0x0d0c, 0x0b0a
+    ///     )),
+    ///     addr
+    /// );
+    /// ```
+    #[inline]
+    fn from(octets: [u8; 16]) -> IpAddr {
+        IpAddr::V6(Ipv6Addr::from(octets))
+    }
+}
+
+#[stable(feature = "ip_from_slice", since = "1.17.0")]
+impl From<[u16; 8]> for IpAddr {
+    /// Creates an `IpAddr::V6` from an eight element 16-bit array.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::net::{IpAddr, Ipv6Addr};
+    ///
+    /// let addr = IpAddr::from([
+    ///     525u16, 524u16, 523u16, 522u16,
+    ///     521u16, 520u16, 519u16, 518u16,
+    /// ]);
+    /// assert_eq!(
+    ///     IpAddr::V6(Ipv6Addr::new(
+    ///         0x20d, 0x20c,
+    ///         0x20b, 0x20a,
+    ///         0x209, 0x208,
+    ///         0x207, 0x206
+    ///     )),
+    ///     addr
+    /// );
+    /// ```
+    #[inline]
+    fn from(segments: [u16; 8]) -> IpAddr {
+        IpAddr::V6(Ipv6Addr::from(segments))
+    }
+}