about summary refs log tree commit diff
path: root/library/std/src/sync/condvar.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/std/src/sync/condvar.rs')
-rw-r--r--library/std/src/sync/condvar.rs818
1 files changed, 818 insertions, 0 deletions
diff --git a/library/std/src/sync/condvar.rs b/library/std/src/sync/condvar.rs
new file mode 100644
index 00000000000..9b90bfd68b5
--- /dev/null
+++ b/library/std/src/sync/condvar.rs
@@ -0,0 +1,818 @@
+use crate::fmt;
+use crate::sync::atomic::{AtomicUsize, Ordering};
+use crate::sync::{mutex, MutexGuard, PoisonError};
+use crate::sys_common::condvar as sys;
+use crate::sys_common::mutex as sys_mutex;
+use crate::sys_common::poison::{self, LockResult};
+use crate::time::{Duration, Instant};
+
+/// A type indicating whether a timed wait on a condition variable returned
+/// due to a time out or not.
+///
+/// It is returned by the [`wait_timeout`] method.
+///
+/// [`wait_timeout`]: struct.Condvar.html#method.wait_timeout
+#[derive(Debug, PartialEq, Eq, Copy, Clone)]
+#[stable(feature = "wait_timeout", since = "1.5.0")]
+pub struct WaitTimeoutResult(bool);
+
+impl WaitTimeoutResult {
+    /// Returns `true` if the wait was known to have timed out.
+    ///
+    /// # Examples
+    ///
+    /// This example spawns a thread which will update the boolean value and
+    /// then wait 100 milliseconds before notifying the condvar.
+    ///
+    /// The main thread will wait with a timeout on the condvar and then leave
+    /// once the boolean has been updated and notified.
+    ///
+    /// ```
+    /// use std::sync::{Arc, Condvar, Mutex};
+    /// use std::thread;
+    /// use std::time::Duration;
+    ///
+    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
+    /// let pair2 = pair.clone();
+    ///
+    /// thread::spawn(move || {
+    ///     let (lock, cvar) = &*pair2;
+    ///
+    ///     // Let's wait 20 milliseconds before notifying the condvar.
+    ///     thread::sleep(Duration::from_millis(20));
+    ///
+    ///     let mut started = lock.lock().unwrap();
+    ///     // We update the boolean value.
+    ///     *started = true;
+    ///     cvar.notify_one();
+    /// });
+    ///
+    /// // Wait for the thread to start up.
+    /// let (lock, cvar) = &*pair;
+    /// let mut started = lock.lock().unwrap();
+    /// loop {
+    ///     // Let's put a timeout on the condvar's wait.
+    ///     let result = cvar.wait_timeout(started, Duration::from_millis(10)).unwrap();
+    ///     // 10 milliseconds have passed, or maybe the value changed!
+    ///     started = result.0;
+    ///     if *started == true {
+    ///         // We received the notification and the value has been updated, we can leave.
+    ///         break
+    ///     }
+    /// }
+    /// ```
+    #[stable(feature = "wait_timeout", since = "1.5.0")]
+    pub fn timed_out(&self) -> bool {
+        self.0
+    }
+}
+
+/// A Condition Variable
+///
+/// Condition variables represent the ability to block a thread such that it
+/// consumes no CPU time while waiting for an event to occur. Condition
+/// variables are typically associated with a boolean predicate (a condition)
+/// and a mutex. The predicate is always verified inside of the mutex before
+/// determining that a thread must block.
+///
+/// Functions in this module will block the current **thread** of execution and
+/// are bindings to system-provided condition variables where possible. Note
+/// that this module places one additional restriction over the system condition
+/// variables: each condvar can be used with precisely one mutex at runtime. Any
+/// attempt to use multiple mutexes on the same condition variable will result
+/// in a runtime panic. If this is not desired, then the unsafe primitives in
+/// `sys` do not have this restriction but may result in undefined behavior.
+///
+/// # Examples
+///
+/// ```
+/// use std::sync::{Arc, Mutex, Condvar};
+/// use std::thread;
+///
+/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
+/// let pair2 = pair.clone();
+///
+/// // Inside of our lock, spawn a new thread, and then wait for it to start.
+/// thread::spawn(move|| {
+///     let (lock, cvar) = &*pair2;
+///     let mut started = lock.lock().unwrap();
+///     *started = true;
+///     // We notify the condvar that the value has changed.
+///     cvar.notify_one();
+/// });
+///
+/// // Wait for the thread to start up.
+/// let (lock, cvar) = &*pair;
+/// let mut started = lock.lock().unwrap();
+/// while !*started {
+///     started = cvar.wait(started).unwrap();
+/// }
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Condvar {
+    inner: Box<sys::Condvar>,
+    mutex: AtomicUsize,
+}
+
+impl Condvar {
+    /// Creates a new condition variable which is ready to be waited on and
+    /// notified.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::Condvar;
+    ///
+    /// let condvar = Condvar::new();
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn new() -> Condvar {
+        let mut c = Condvar { inner: box sys::Condvar::new(), mutex: AtomicUsize::new(0) };
+        unsafe {
+            c.inner.init();
+        }
+        c
+    }
+
+    /// Blocks the current thread until this condition variable receives a
+    /// notification.
+    ///
+    /// This function will atomically unlock the mutex specified (represented by
+    /// `guard`) and block the current thread. This means that any calls
+    /// to [`notify_one`] or [`notify_all`] which happen logically after the
+    /// mutex is unlocked are candidates to wake this thread up. When this
+    /// function call returns, the lock specified will have been re-acquired.
+    ///
+    /// Note that this function is susceptible to spurious wakeups. Condition
+    /// variables normally have a boolean predicate associated with them, and
+    /// the predicate must always be checked each time this function returns to
+    /// protect against spurious wakeups.
+    ///
+    /// # Errors
+    ///
+    /// This function will return an error if the mutex being waited on is
+    /// poisoned when this thread re-acquires the lock. For more information,
+    /// see information about [poisoning] on the [`Mutex`] type.
+    ///
+    /// # Panics
+    ///
+    /// This function will [`panic!`] if it is used with more than one mutex
+    /// over time. Each condition variable is dynamically bound to exactly one
+    /// mutex to ensure defined behavior across platforms. If this functionality
+    /// is not desired, then unsafe primitives in `sys` are provided.
+    ///
+    /// [`notify_one`]: #method.notify_one
+    /// [`notify_all`]: #method.notify_all
+    /// [poisoning]: ../sync/struct.Mutex.html#poisoning
+    /// [`Mutex`]: ../sync/struct.Mutex.html
+    /// [`panic!`]: ../../std/macro.panic.html
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex, Condvar};
+    /// use std::thread;
+    ///
+    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
+    /// let pair2 = pair.clone();
+    ///
+    /// thread::spawn(move|| {
+    ///     let (lock, cvar) = &*pair2;
+    ///     let mut started = lock.lock().unwrap();
+    ///     *started = true;
+    ///     // We notify the condvar that the value has changed.
+    ///     cvar.notify_one();
+    /// });
+    ///
+    /// // Wait for the thread to start up.
+    /// let (lock, cvar) = &*pair;
+    /// let mut started = lock.lock().unwrap();
+    /// // As long as the value inside the `Mutex<bool>` is `false`, we wait.
+    /// while !*started {
+    ///     started = cvar.wait(started).unwrap();
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>) -> LockResult<MutexGuard<'a, T>> {
+        let poisoned = unsafe {
+            let lock = mutex::guard_lock(&guard);
+            self.verify(lock);
+            self.inner.wait(lock);
+            mutex::guard_poison(&guard).get()
+        };
+        if poisoned { Err(PoisonError::new(guard)) } else { Ok(guard) }
+    }
+
+    /// Blocks the current thread until this condition variable receives a
+    /// notification and the provided condition is false.
+    ///
+    /// This function will atomically unlock the mutex specified (represented by
+    /// `guard`) and block the current thread. This means that any calls
+    /// to [`notify_one`] or [`notify_all`] which happen logically after the
+    /// mutex is unlocked are candidates to wake this thread up. When this
+    /// function call returns, the lock specified will have been re-acquired.
+    ///
+    /// # Errors
+    ///
+    /// This function will return an error if the mutex being waited on is
+    /// poisoned when this thread re-acquires the lock. For more information,
+    /// see information about [poisoning] on the [`Mutex`] type.
+    ///
+    /// [`notify_one`]: #method.notify_one
+    /// [`notify_all`]: #method.notify_all
+    /// [poisoning]: ../sync/struct.Mutex.html#poisoning
+    /// [`Mutex`]: ../sync/struct.Mutex.html
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex, Condvar};
+    /// use std::thread;
+    ///
+    /// let pair = Arc::new((Mutex::new(true), Condvar::new()));
+    /// let pair2 = pair.clone();
+    ///
+    /// thread::spawn(move|| {
+    ///     let (lock, cvar) = &*pair2;
+    ///     let mut pending = lock.lock().unwrap();
+    ///     *pending = false;
+    ///     // We notify the condvar that the value has changed.
+    ///     cvar.notify_one();
+    /// });
+    ///
+    /// // Wait for the thread to start up.
+    /// let (lock, cvar) = &*pair;
+    /// // As long as the value inside the `Mutex<bool>` is `true`, we wait.
+    /// let _guard = cvar.wait_while(lock.lock().unwrap(), |pending| { *pending }).unwrap();
+    /// ```
+    #[stable(feature = "wait_until", since = "1.42.0")]
+    pub fn wait_while<'a, T, F>(
+        &self,
+        mut guard: MutexGuard<'a, T>,
+        mut condition: F,
+    ) -> LockResult<MutexGuard<'a, T>>
+    where
+        F: FnMut(&mut T) -> bool,
+    {
+        while condition(&mut *guard) {
+            guard = self.wait(guard)?;
+        }
+        Ok(guard)
+    }
+
+    /// Waits on this condition variable for a notification, timing out after a
+    /// specified duration.
+    ///
+    /// The semantics of this function are equivalent to [`wait`]
+    /// except that the thread will be blocked for roughly no longer
+    /// than `ms` milliseconds. This method should not be used for
+    /// precise timing due to anomalies such as preemption or platform
+    /// differences that may not cause the maximum amount of time
+    /// waited to be precisely `ms`.
+    ///
+    /// Note that the best effort is made to ensure that the time waited is
+    /// measured with a monotonic clock, and not affected by the changes made to
+    /// the system time.
+    ///
+    /// The returned boolean is `false` only if the timeout is known
+    /// to have elapsed.
+    ///
+    /// Like [`wait`], the lock specified will be re-acquired when this function
+    /// returns, regardless of whether the timeout elapsed or not.
+    ///
+    /// [`wait`]: #method.wait
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex, Condvar};
+    /// use std::thread;
+    ///
+    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
+    /// let pair2 = pair.clone();
+    ///
+    /// thread::spawn(move|| {
+    ///     let (lock, cvar) = &*pair2;
+    ///     let mut started = lock.lock().unwrap();
+    ///     *started = true;
+    ///     // We notify the condvar that the value has changed.
+    ///     cvar.notify_one();
+    /// });
+    ///
+    /// // Wait for the thread to start up.
+    /// let (lock, cvar) = &*pair;
+    /// let mut started = lock.lock().unwrap();
+    /// // As long as the value inside the `Mutex<bool>` is `false`, we wait.
+    /// loop {
+    ///     let result = cvar.wait_timeout_ms(started, 10).unwrap();
+    ///     // 10 milliseconds have passed, or maybe the value changed!
+    ///     started = result.0;
+    ///     if *started == true {
+    ///         // We received the notification and the value has been updated, we can leave.
+    ///         break
+    ///     }
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[rustc_deprecated(since = "1.6.0", reason = "replaced by `std::sync::Condvar::wait_timeout`")]
+    pub fn wait_timeout_ms<'a, T>(
+        &self,
+        guard: MutexGuard<'a, T>,
+        ms: u32,
+    ) -> LockResult<(MutexGuard<'a, T>, bool)> {
+        let res = self.wait_timeout(guard, Duration::from_millis(ms as u64));
+        poison::map_result(res, |(a, b)| (a, !b.timed_out()))
+    }
+
+    /// Waits on this condition variable for a notification, timing out after a
+    /// specified duration.
+    ///
+    /// The semantics of this function are equivalent to [`wait`] except that
+    /// the thread will be blocked for roughly no longer than `dur`. This
+    /// method should not be used for precise timing due to anomalies such as
+    /// preemption or platform differences that may not cause the maximum
+    /// amount of time waited to be precisely `dur`.
+    ///
+    /// Note that the best effort is made to ensure that the time waited is
+    /// measured with a monotonic clock, and not affected by the changes made to
+    /// the system time. This function is susceptible to spurious wakeups.
+    /// Condition variables normally have a boolean predicate associated with
+    /// them, and the predicate must always be checked each time this function
+    /// returns to protect against spurious wakeups. Additionally, it is
+    /// typically desirable for the timeout to not exceed some duration in
+    /// spite of spurious wakes, thus the sleep-duration is decremented by the
+    /// amount slept. Alternatively, use the `wait_timeout_while` method
+    /// to wait with a timeout while a predicate is true.
+    ///
+    /// The returned [`WaitTimeoutResult`] value indicates if the timeout is
+    /// known to have elapsed.
+    ///
+    /// Like [`wait`], the lock specified will be re-acquired when this function
+    /// returns, regardless of whether the timeout elapsed or not.
+    ///
+    /// [`wait`]: #method.wait
+    /// [`wait_timeout_while`]: #method.wait_timeout_while
+    /// [`WaitTimeoutResult`]: struct.WaitTimeoutResult.html
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex, Condvar};
+    /// use std::thread;
+    /// use std::time::Duration;
+    ///
+    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
+    /// let pair2 = pair.clone();
+    ///
+    /// thread::spawn(move|| {
+    ///     let (lock, cvar) = &*pair2;
+    ///     let mut started = lock.lock().unwrap();
+    ///     *started = true;
+    ///     // We notify the condvar that the value has changed.
+    ///     cvar.notify_one();
+    /// });
+    ///
+    /// // wait for the thread to start up
+    /// let (lock, cvar) = &*pair;
+    /// let mut started = lock.lock().unwrap();
+    /// // as long as the value inside the `Mutex<bool>` is `false`, we wait
+    /// loop {
+    ///     let result = cvar.wait_timeout(started, Duration::from_millis(10)).unwrap();
+    ///     // 10 milliseconds have passed, or maybe the value changed!
+    ///     started = result.0;
+    ///     if *started == true {
+    ///         // We received the notification and the value has been updated, we can leave.
+    ///         break
+    ///     }
+    /// }
+    /// ```
+    #[stable(feature = "wait_timeout", since = "1.5.0")]
+    pub fn wait_timeout<'a, T>(
+        &self,
+        guard: MutexGuard<'a, T>,
+        dur: Duration,
+    ) -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)> {
+        let (poisoned, result) = unsafe {
+            let lock = mutex::guard_lock(&guard);
+            self.verify(lock);
+            let success = self.inner.wait_timeout(lock, dur);
+            (mutex::guard_poison(&guard).get(), WaitTimeoutResult(!success))
+        };
+        if poisoned { Err(PoisonError::new((guard, result))) } else { Ok((guard, result)) }
+    }
+
+    /// Waits on this condition variable for a notification, timing out after a
+    /// specified duration.
+    ///
+    /// The semantics of this function are equivalent to [`wait_while`] except
+    /// that the thread will be blocked for roughly no longer than `dur`. This
+    /// method should not be used for precise timing due to anomalies such as
+    /// preemption or platform differences that may not cause the maximum
+    /// amount of time waited to be precisely `dur`.
+    ///
+    /// Note that the best effort is made to ensure that the time waited is
+    /// measured with a monotonic clock, and not affected by the changes made to
+    /// the system time.
+    ///
+    /// The returned [`WaitTimeoutResult`] value indicates if the timeout is
+    /// known to have elapsed without the condition being met.
+    ///
+    /// Like [`wait_while`], the lock specified will be re-acquired when this
+    /// function returns, regardless of whether the timeout elapsed or not.
+    ///
+    /// [`wait_while`]: #method.wait_while
+    /// [`wait_timeout`]: #method.wait_timeout
+    /// [`WaitTimeoutResult`]: struct.WaitTimeoutResult.html
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex, Condvar};
+    /// use std::thread;
+    /// use std::time::Duration;
+    ///
+    /// let pair = Arc::new((Mutex::new(true), Condvar::new()));
+    /// let pair2 = pair.clone();
+    ///
+    /// thread::spawn(move|| {
+    ///     let (lock, cvar) = &*pair2;
+    ///     let mut pending = lock.lock().unwrap();
+    ///     *pending = false;
+    ///     // We notify the condvar that the value has changed.
+    ///     cvar.notify_one();
+    /// });
+    ///
+    /// // wait for the thread to start up
+    /// let (lock, cvar) = &*pair;
+    /// let result = cvar.wait_timeout_while(
+    ///     lock.lock().unwrap(),
+    ///     Duration::from_millis(100),
+    ///     |&mut pending| pending,
+    /// ).unwrap();
+    /// if result.1.timed_out() {
+    ///     // timed-out without the condition ever evaluating to false.
+    /// }
+    /// // access the locked mutex via result.0
+    /// ```
+    #[stable(feature = "wait_timeout_until", since = "1.42.0")]
+    pub fn wait_timeout_while<'a, T, F>(
+        &self,
+        mut guard: MutexGuard<'a, T>,
+        dur: Duration,
+        mut condition: F,
+    ) -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)>
+    where
+        F: FnMut(&mut T) -> bool,
+    {
+        let start = Instant::now();
+        loop {
+            if !condition(&mut *guard) {
+                return Ok((guard, WaitTimeoutResult(false)));
+            }
+            let timeout = match dur.checked_sub(start.elapsed()) {
+                Some(timeout) => timeout,
+                None => return Ok((guard, WaitTimeoutResult(true))),
+            };
+            guard = self.wait_timeout(guard, timeout)?.0;
+        }
+    }
+
+    /// Wakes up one blocked thread on this condvar.
+    ///
+    /// If there is a blocked thread on this condition variable, then it will
+    /// be woken up from its call to [`wait`] or [`wait_timeout`]. Calls to
+    /// `notify_one` are not buffered in any way.
+    ///
+    /// To wake up all threads, see [`notify_all`].
+    ///
+    /// [`wait`]: #method.wait
+    /// [`wait_timeout`]: #method.wait_timeout
+    /// [`notify_all`]: #method.notify_all
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex, Condvar};
+    /// use std::thread;
+    ///
+    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
+    /// let pair2 = pair.clone();
+    ///
+    /// thread::spawn(move|| {
+    ///     let (lock, cvar) = &*pair2;
+    ///     let mut started = lock.lock().unwrap();
+    ///     *started = true;
+    ///     // We notify the condvar that the value has changed.
+    ///     cvar.notify_one();
+    /// });
+    ///
+    /// // Wait for the thread to start up.
+    /// let (lock, cvar) = &*pair;
+    /// let mut started = lock.lock().unwrap();
+    /// // As long as the value inside the `Mutex<bool>` is `false`, we wait.
+    /// while !*started {
+    ///     started = cvar.wait(started).unwrap();
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn notify_one(&self) {
+        unsafe { self.inner.notify_one() }
+    }
+
+    /// Wakes up all blocked threads on this condvar.
+    ///
+    /// This method will ensure that any current waiters on the condition
+    /// variable are awoken. Calls to `notify_all()` are not buffered in any
+    /// way.
+    ///
+    /// To wake up only one thread, see [`notify_one`].
+    ///
+    /// [`notify_one`]: #method.notify_one
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex, Condvar};
+    /// use std::thread;
+    ///
+    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
+    /// let pair2 = pair.clone();
+    ///
+    /// thread::spawn(move|| {
+    ///     let (lock, cvar) = &*pair2;
+    ///     let mut started = lock.lock().unwrap();
+    ///     *started = true;
+    ///     // We notify the condvar that the value has changed.
+    ///     cvar.notify_all();
+    /// });
+    ///
+    /// // Wait for the thread to start up.
+    /// let (lock, cvar) = &*pair;
+    /// let mut started = lock.lock().unwrap();
+    /// // As long as the value inside the `Mutex<bool>` is `false`, we wait.
+    /// while !*started {
+    ///     started = cvar.wait(started).unwrap();
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn notify_all(&self) {
+        unsafe { self.inner.notify_all() }
+    }
+
+    fn verify(&self, mutex: &sys_mutex::Mutex) {
+        let addr = mutex as *const _ as usize;
+        match self.mutex.compare_and_swap(0, addr, Ordering::SeqCst) {
+            // If we got out 0, then we have successfully bound the mutex to
+            // this cvar.
+            0 => {}
+
+            // If we get out a value that's the same as `addr`, then someone
+            // already beat us to the punch.
+            n if n == addr => {}
+
+            // Anything else and we're using more than one mutex on this cvar,
+            // which is currently disallowed.
+            _ => panic!(
+                "attempted to use a condition variable with two \
+                         mutexes"
+            ),
+        }
+    }
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl fmt::Debug for Condvar {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        f.pad("Condvar { .. }")
+    }
+}
+
+#[stable(feature = "condvar_default", since = "1.10.0")]
+impl Default for Condvar {
+    /// Creates a `Condvar` which is ready to be waited on and notified.
+    fn default() -> Condvar {
+        Condvar::new()
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Drop for Condvar {
+    fn drop(&mut self) {
+        unsafe { self.inner.destroy() }
+    }
+}
+
+#[cfg(test)]
+mod tests {
+    use crate::sync::atomic::{AtomicBool, Ordering};
+    use crate::sync::mpsc::channel;
+    use crate::sync::{Arc, Condvar, Mutex};
+    use crate::thread;
+    use crate::time::Duration;
+
+    #[test]
+    fn smoke() {
+        let c = Condvar::new();
+        c.notify_one();
+        c.notify_all();
+    }
+
+    #[test]
+    #[cfg_attr(target_os = "emscripten", ignore)]
+    fn notify_one() {
+        let m = Arc::new(Mutex::new(()));
+        let m2 = m.clone();
+        let c = Arc::new(Condvar::new());
+        let c2 = c.clone();
+
+        let g = m.lock().unwrap();
+        let _t = thread::spawn(move || {
+            let _g = m2.lock().unwrap();
+            c2.notify_one();
+        });
+        let g = c.wait(g).unwrap();
+        drop(g);
+    }
+
+    #[test]
+    #[cfg_attr(target_os = "emscripten", ignore)]
+    fn notify_all() {
+        const N: usize = 10;
+
+        let data = Arc::new((Mutex::new(0), Condvar::new()));
+        let (tx, rx) = channel();
+        for _ in 0..N {
+            let data = data.clone();
+            let tx = tx.clone();
+            thread::spawn(move || {
+                let &(ref lock, ref cond) = &*data;
+                let mut cnt = lock.lock().unwrap();
+                *cnt += 1;
+                if *cnt == N {
+                    tx.send(()).unwrap();
+                }
+                while *cnt != 0 {
+                    cnt = cond.wait(cnt).unwrap();
+                }
+                tx.send(()).unwrap();
+            });
+        }
+        drop(tx);
+
+        let &(ref lock, ref cond) = &*data;
+        rx.recv().unwrap();
+        let mut cnt = lock.lock().unwrap();
+        *cnt = 0;
+        cond.notify_all();
+        drop(cnt);
+
+        for _ in 0..N {
+            rx.recv().unwrap();
+        }
+    }
+
+    #[test]
+    #[cfg_attr(target_os = "emscripten", ignore)]
+    fn wait_while() {
+        let pair = Arc::new((Mutex::new(false), Condvar::new()));
+        let pair2 = pair.clone();
+
+        // Inside of our lock, spawn a new thread, and then wait for it to start.
+        thread::spawn(move || {
+            let &(ref lock, ref cvar) = &*pair2;
+            let mut started = lock.lock().unwrap();
+            *started = true;
+            // We notify the condvar that the value has changed.
+            cvar.notify_one();
+        });
+
+        // Wait for the thread to start up.
+        let &(ref lock, ref cvar) = &*pair;
+        let guard = cvar.wait_while(lock.lock().unwrap(), |started| !*started);
+        assert!(*guard.unwrap());
+    }
+
+    #[test]
+    #[cfg_attr(target_os = "emscripten", ignore)]
+    fn wait_timeout_wait() {
+        let m = Arc::new(Mutex::new(()));
+        let c = Arc::new(Condvar::new());
+
+        loop {
+            let g = m.lock().unwrap();
+            let (_g, no_timeout) = c.wait_timeout(g, Duration::from_millis(1)).unwrap();
+            // spurious wakeups mean this isn't necessarily true
+            // so execute test again, if not timeout
+            if !no_timeout.timed_out() {
+                continue;
+            }
+
+            break;
+        }
+    }
+
+    #[test]
+    #[cfg_attr(target_os = "emscripten", ignore)]
+    fn wait_timeout_while_wait() {
+        let m = Arc::new(Mutex::new(()));
+        let c = Arc::new(Condvar::new());
+
+        let g = m.lock().unwrap();
+        let (_g, wait) = c.wait_timeout_while(g, Duration::from_millis(1), |_| true).unwrap();
+        // no spurious wakeups. ensure it timed-out
+        assert!(wait.timed_out());
+    }
+
+    #[test]
+    #[cfg_attr(target_os = "emscripten", ignore)]
+    fn wait_timeout_while_instant_satisfy() {
+        let m = Arc::new(Mutex::new(()));
+        let c = Arc::new(Condvar::new());
+
+        let g = m.lock().unwrap();
+        let (_g, wait) = c.wait_timeout_while(g, Duration::from_millis(0), |_| false).unwrap();
+        // ensure it didn't time-out even if we were not given any time.
+        assert!(!wait.timed_out());
+    }
+
+    #[test]
+    #[cfg_attr(target_os = "emscripten", ignore)]
+    fn wait_timeout_while_wake() {
+        let pair = Arc::new((Mutex::new(false), Condvar::new()));
+        let pair_copy = pair.clone();
+
+        let &(ref m, ref c) = &*pair;
+        let g = m.lock().unwrap();
+        let _t = thread::spawn(move || {
+            let &(ref lock, ref cvar) = &*pair_copy;
+            let mut started = lock.lock().unwrap();
+            thread::sleep(Duration::from_millis(1));
+            *started = true;
+            cvar.notify_one();
+        });
+        let (g2, wait) = c
+            .wait_timeout_while(g, Duration::from_millis(u64::MAX), |&mut notified| !notified)
+            .unwrap();
+        // ensure it didn't time-out even if we were not given any time.
+        assert!(!wait.timed_out());
+        assert!(*g2);
+    }
+
+    #[test]
+    #[cfg_attr(target_os = "emscripten", ignore)]
+    fn wait_timeout_wake() {
+        let m = Arc::new(Mutex::new(()));
+        let c = Arc::new(Condvar::new());
+
+        loop {
+            let g = m.lock().unwrap();
+
+            let c2 = c.clone();
+            let m2 = m.clone();
+
+            let notified = Arc::new(AtomicBool::new(false));
+            let notified_copy = notified.clone();
+
+            let t = thread::spawn(move || {
+                let _g = m2.lock().unwrap();
+                thread::sleep(Duration::from_millis(1));
+                notified_copy.store(true, Ordering::SeqCst);
+                c2.notify_one();
+            });
+            let (g, timeout_res) = c.wait_timeout(g, Duration::from_millis(u64::MAX)).unwrap();
+            assert!(!timeout_res.timed_out());
+            // spurious wakeups mean this isn't necessarily true
+            // so execute test again, if not notified
+            if !notified.load(Ordering::SeqCst) {
+                t.join().unwrap();
+                continue;
+            }
+            drop(g);
+
+            t.join().unwrap();
+
+            break;
+        }
+    }
+
+    #[test]
+    #[should_panic]
+    #[cfg_attr(target_os = "emscripten", ignore)]
+    fn two_mutexes() {
+        let m = Arc::new(Mutex::new(()));
+        let m2 = m.clone();
+        let c = Arc::new(Condvar::new());
+        let c2 = c.clone();
+
+        let mut g = m.lock().unwrap();
+        let _t = thread::spawn(move || {
+            let _g = m2.lock().unwrap();
+            c2.notify_one();
+        });
+        g = c.wait(g).unwrap();
+        drop(g);
+
+        let m = Mutex::new(());
+        let _ = c.wait(m.lock().unwrap()).unwrap();
+    }
+}