about summary refs log tree commit diff
path: root/library/std
diff options
context:
space:
mode:
Diffstat (limited to 'library/std')
-rw-r--r--library/std/src/f128.rs396
-rw-r--r--library/std/src/f16.rs431
-rw-r--r--library/std/src/f32.rs32
-rw-r--r--library/std/src/f64.rs32
-rw-r--r--library/std/src/lib.rs1
-rw-r--r--library/std/src/sys/cmath.rs4
-rw-r--r--library/std/tests/floats/f128.rs762
-rw-r--r--library/std/tests/floats/f16.rs722
-rw-r--r--library/std/tests/floats/f32.rs687
-rw-r--r--library/std/tests/floats/f64.rs668
-rw-r--r--library/std/tests/floats/lib.rs3
11 files changed, 36 insertions, 3702 deletions
diff --git a/library/std/src/f128.rs b/library/std/src/f128.rs
index 6b2ba2e714c..bb4acde4822 100644
--- a/library/std/src/f128.rs
+++ b/library/std/src/f128.rs
@@ -14,365 +14,6 @@ use crate::sys::cmath;
 
 #[cfg(not(test))]
 impl f128 {
-    /// Returns the largest integer less than or equal to `self`.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let f = 3.7_f128;
-    /// let g = 3.0_f128;
-    /// let h = -3.7_f128;
-    ///
-    /// assert_eq!(f.floor(), 3.0);
-    /// assert_eq!(g.floor(), 3.0);
-    /// assert_eq!(h.floor(), -4.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn floor(self) -> f128 {
-        unsafe { intrinsics::floorf128(self) }
-    }
-
-    /// Returns the smallest integer greater than or equal to `self`.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let f = 3.01_f128;
-    /// let g = 4.0_f128;
-    ///
-    /// assert_eq!(f.ceil(), 4.0);
-    /// assert_eq!(g.ceil(), 4.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[doc(alias = "ceiling")]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn ceil(self) -> f128 {
-        unsafe { intrinsics::ceilf128(self) }
-    }
-
-    /// Returns the nearest integer to `self`. If a value is half-way between two
-    /// integers, round away from `0.0`.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let f = 3.3_f128;
-    /// let g = -3.3_f128;
-    /// let h = -3.7_f128;
-    /// let i = 3.5_f128;
-    /// let j = 4.5_f128;
-    ///
-    /// assert_eq!(f.round(), 3.0);
-    /// assert_eq!(g.round(), -3.0);
-    /// assert_eq!(h.round(), -4.0);
-    /// assert_eq!(i.round(), 4.0);
-    /// assert_eq!(j.round(), 5.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn round(self) -> f128 {
-        unsafe { intrinsics::roundf128(self) }
-    }
-
-    /// Returns the nearest integer to a number. Rounds half-way cases to the number
-    /// with an even least significant digit.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let f = 3.3_f128;
-    /// let g = -3.3_f128;
-    /// let h = 3.5_f128;
-    /// let i = 4.5_f128;
-    ///
-    /// assert_eq!(f.round_ties_even(), 3.0);
-    /// assert_eq!(g.round_ties_even(), -3.0);
-    /// assert_eq!(h.round_ties_even(), 4.0);
-    /// assert_eq!(i.round_ties_even(), 4.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn round_ties_even(self) -> f128 {
-        intrinsics::round_ties_even_f128(self)
-    }
-
-    /// Returns the integer part of `self`.
-    /// This means that non-integer numbers are always truncated towards zero.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let f = 3.7_f128;
-    /// let g = 3.0_f128;
-    /// let h = -3.7_f128;
-    ///
-    /// assert_eq!(f.trunc(), 3.0);
-    /// assert_eq!(g.trunc(), 3.0);
-    /// assert_eq!(h.trunc(), -3.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[doc(alias = "truncate")]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn trunc(self) -> f128 {
-        unsafe { intrinsics::truncf128(self) }
-    }
-
-    /// Returns the fractional part of `self`.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let x = 3.6_f128;
-    /// let y = -3.6_f128;
-    /// let abs_difference_x = (x.fract() - 0.6).abs();
-    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
-    ///
-    /// assert!(abs_difference_x <= f128::EPSILON);
-    /// assert!(abs_difference_y <= f128::EPSILON);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn fract(self) -> f128 {
-        self - self.trunc()
-    }
-
-    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
-    /// error, yielding a more accurate result than an unfused multiply-add.
-    ///
-    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
-    /// the target architecture has a dedicated `fma` CPU instruction. However,
-    /// this is not always true, and will be heavily dependant on designing
-    /// algorithms with specific target hardware in mind.
-    ///
-    /// # Precision
-    ///
-    /// The result of this operation is guaranteed to be the rounded
-    /// infinite-precision result. It is specified by IEEE 754 as
-    /// `fusedMultiplyAdd` and guaranteed not to change.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let m = 10.0_f128;
-    /// let x = 4.0_f128;
-    /// let b = 60.0_f128;
-    ///
-    /// assert_eq!(m.mul_add(x, b), 100.0);
-    /// assert_eq!(m * x + b, 100.0);
-    ///
-    /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
-    /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
-    /// let minus_one = -1.0_f128;
-    ///
-    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
-    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
-    /// // Different rounding with the non-fused multiply and add.
-    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn mul_add(self, a: f128, b: f128) -> f128 {
-        unsafe { intrinsics::fmaf128(self, a, b) }
-    }
-
-    /// Calculates Euclidean division, the matching method for `rem_euclid`.
-    ///
-    /// This computes the integer `n` such that
-    /// `self = n * rhs + self.rem_euclid(rhs)`.
-    /// In other words, the result is `self / rhs` rounded to the integer `n`
-    /// such that `self >= n * rhs`.
-    ///
-    /// # Precision
-    ///
-    /// The result of this operation is guaranteed to be the rounded
-    /// infinite-precision result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let a: f128 = 7.0;
-    /// let b = 4.0;
-    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
-    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
-    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
-    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn div_euclid(self, rhs: f128) -> f128 {
-        let q = (self / rhs).trunc();
-        if self % rhs < 0.0 {
-            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
-        }
-        q
-    }
-
-    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
-    ///
-    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
-    /// most cases. However, due to a floating point round-off error it can
-    /// result in `r == rhs.abs()`, violating the mathematical definition, if
-    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
-    /// This result is not an element of the function's codomain, but it is the
-    /// closest floating point number in the real numbers and thus fulfills the
-    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
-    /// approximately.
-    ///
-    /// # Precision
-    ///
-    /// The result of this operation is guaranteed to be the rounded
-    /// infinite-precision result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let a: f128 = 7.0;
-    /// let b = 4.0;
-    /// assert_eq!(a.rem_euclid(b), 3.0);
-    /// assert_eq!((-a).rem_euclid(b), 1.0);
-    /// assert_eq!(a.rem_euclid(-b), 3.0);
-    /// assert_eq!((-a).rem_euclid(-b), 1.0);
-    /// // limitation due to round-off error
-    /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[doc(alias = "modulo", alias = "mod")]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn rem_euclid(self, rhs: f128) -> f128 {
-        let r = self % rhs;
-        if r < 0.0 { r + rhs.abs() } else { r }
-    }
-
-    /// Raises a number to an integer power.
-    ///
-    /// Using this function is generally faster than using `powf`.
-    /// It might have a different sequence of rounding operations than `powf`,
-    /// so the results are not guaranteed to agree.
-    ///
-    /// # Unspecified precision
-    ///
-    /// The precision of this function is non-deterministic. This means it varies by platform,
-    /// Rust version, and can even differ within the same execution from one invocation to the next.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let x = 2.0_f128;
-    /// let abs_difference = (x.powi(2) - (x * x)).abs();
-    /// assert!(abs_difference <= f128::EPSILON);
-    ///
-    /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn powi(self, n: i32) -> f128 {
-        unsafe { intrinsics::powif128(self, n) }
-    }
-
     /// Raises a number to a floating point power.
     ///
     /// # Unspecified precision
@@ -405,43 +46,6 @@ impl f128 {
         unsafe { intrinsics::powf128(self, n) }
     }
 
-    /// Returns the square root of a number.
-    ///
-    /// Returns NaN if `self` is a negative number other than `-0.0`.
-    ///
-    /// # Precision
-    ///
-    /// The result of this operation is guaranteed to be the rounded
-    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
-    /// and guaranteed not to change.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f128)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f128_math)] {
-    ///
-    /// let positive = 4.0_f128;
-    /// let negative = -4.0_f128;
-    /// let negative_zero = -0.0_f128;
-    ///
-    /// assert_eq!(positive.sqrt(), 2.0);
-    /// assert!(negative.sqrt().is_nan());
-    /// assert!(negative_zero.sqrt() == negative_zero);
-    /// # }
-    /// ```
-    #[inline]
-    #[doc(alias = "squareRoot")]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f128", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn sqrt(self) -> f128 {
-        unsafe { intrinsics::sqrtf128(self) }
-    }
-
     /// Returns `e^(self)`, (the exponential function).
     ///
     /// # Unspecified precision
diff --git a/library/std/src/f16.rs b/library/std/src/f16.rs
index d6bc1d3118a..4792eac1f9e 100644
--- a/library/std/src/f16.rs
+++ b/library/std/src/f16.rs
@@ -14,365 +14,6 @@ use crate::sys::cmath;
 
 #[cfg(not(test))]
 impl f16 {
-    /// Returns the largest integer less than or equal to `self`.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let f = 3.7_f16;
-    /// let g = 3.0_f16;
-    /// let h = -3.7_f16;
-    ///
-    /// assert_eq!(f.floor(), 3.0);
-    /// assert_eq!(g.floor(), 3.0);
-    /// assert_eq!(h.floor(), -4.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn floor(self) -> f16 {
-        unsafe { intrinsics::floorf16(self) }
-    }
-
-    /// Returns the smallest integer greater than or equal to `self`.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let f = 3.01_f16;
-    /// let g = 4.0_f16;
-    ///
-    /// assert_eq!(f.ceil(), 4.0);
-    /// assert_eq!(g.ceil(), 4.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[doc(alias = "ceiling")]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn ceil(self) -> f16 {
-        unsafe { intrinsics::ceilf16(self) }
-    }
-
-    /// Returns the nearest integer to `self`. If a value is half-way between two
-    /// integers, round away from `0.0`.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let f = 3.3_f16;
-    /// let g = -3.3_f16;
-    /// let h = -3.7_f16;
-    /// let i = 3.5_f16;
-    /// let j = 4.5_f16;
-    ///
-    /// assert_eq!(f.round(), 3.0);
-    /// assert_eq!(g.round(), -3.0);
-    /// assert_eq!(h.round(), -4.0);
-    /// assert_eq!(i.round(), 4.0);
-    /// assert_eq!(j.round(), 5.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn round(self) -> f16 {
-        unsafe { intrinsics::roundf16(self) }
-    }
-
-    /// Returns the nearest integer to a number. Rounds half-way cases to the number
-    /// with an even least significant digit.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let f = 3.3_f16;
-    /// let g = -3.3_f16;
-    /// let h = 3.5_f16;
-    /// let i = 4.5_f16;
-    ///
-    /// assert_eq!(f.round_ties_even(), 3.0);
-    /// assert_eq!(g.round_ties_even(), -3.0);
-    /// assert_eq!(h.round_ties_even(), 4.0);
-    /// assert_eq!(i.round_ties_even(), 4.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn round_ties_even(self) -> f16 {
-        intrinsics::round_ties_even_f16(self)
-    }
-
-    /// Returns the integer part of `self`.
-    /// This means that non-integer numbers are always truncated towards zero.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let f = 3.7_f16;
-    /// let g = 3.0_f16;
-    /// let h = -3.7_f16;
-    ///
-    /// assert_eq!(f.trunc(), 3.0);
-    /// assert_eq!(g.trunc(), 3.0);
-    /// assert_eq!(h.trunc(), -3.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[doc(alias = "truncate")]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn trunc(self) -> f16 {
-        unsafe { intrinsics::truncf16(self) }
-    }
-
-    /// Returns the fractional part of `self`.
-    ///
-    /// This function always returns the precise result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let x = 3.6_f16;
-    /// let y = -3.6_f16;
-    /// let abs_difference_x = (x.fract() - 0.6).abs();
-    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
-    ///
-    /// assert!(abs_difference_x <= f16::EPSILON);
-    /// assert!(abs_difference_y <= f16::EPSILON);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn fract(self) -> f16 {
-        self - self.trunc()
-    }
-
-    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
-    /// error, yielding a more accurate result than an unfused multiply-add.
-    ///
-    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
-    /// the target architecture has a dedicated `fma` CPU instruction. However,
-    /// this is not always true, and will be heavily dependant on designing
-    /// algorithms with specific target hardware in mind.
-    ///
-    /// # Precision
-    ///
-    /// The result of this operation is guaranteed to be the rounded
-    /// infinite-precision result. It is specified by IEEE 754 as
-    /// `fusedMultiplyAdd` and guaranteed not to change.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let m = 10.0_f16;
-    /// let x = 4.0_f16;
-    /// let b = 60.0_f16;
-    ///
-    /// assert_eq!(m.mul_add(x, b), 100.0);
-    /// assert_eq!(m * x + b, 100.0);
-    ///
-    /// let one_plus_eps = 1.0_f16 + f16::EPSILON;
-    /// let one_minus_eps = 1.0_f16 - f16::EPSILON;
-    /// let minus_one = -1.0_f16;
-    ///
-    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
-    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON);
-    /// // Different rounding with the non-fused multiply and add.
-    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[doc(alias = "fmaf16", alias = "fusedMultiplyAdd")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn mul_add(self, a: f16, b: f16) -> f16 {
-        unsafe { intrinsics::fmaf16(self, a, b) }
-    }
-
-    /// Calculates Euclidean division, the matching method for `rem_euclid`.
-    ///
-    /// This computes the integer `n` such that
-    /// `self = n * rhs + self.rem_euclid(rhs)`.
-    /// In other words, the result is `self / rhs` rounded to the integer `n`
-    /// such that `self >= n * rhs`.
-    ///
-    /// # Precision
-    ///
-    /// The result of this operation is guaranteed to be the rounded
-    /// infinite-precision result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let a: f16 = 7.0;
-    /// let b = 4.0;
-    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
-    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
-    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
-    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn div_euclid(self, rhs: f16) -> f16 {
-        let q = (self / rhs).trunc();
-        if self % rhs < 0.0 {
-            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
-        }
-        q
-    }
-
-    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
-    ///
-    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
-    /// most cases. However, due to a floating point round-off error it can
-    /// result in `r == rhs.abs()`, violating the mathematical definition, if
-    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
-    /// This result is not an element of the function's codomain, but it is the
-    /// closest floating point number in the real numbers and thus fulfills the
-    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
-    /// approximately.
-    ///
-    /// # Precision
-    ///
-    /// The result of this operation is guaranteed to be the rounded
-    /// infinite-precision result.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let a: f16 = 7.0;
-    /// let b = 4.0;
-    /// assert_eq!(a.rem_euclid(b), 3.0);
-    /// assert_eq!((-a).rem_euclid(b), 1.0);
-    /// assert_eq!(a.rem_euclid(-b), 3.0);
-    /// assert_eq!((-a).rem_euclid(-b), 1.0);
-    /// // limitation due to round-off error
-    /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[doc(alias = "modulo", alias = "mod")]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn rem_euclid(self, rhs: f16) -> f16 {
-        let r = self % rhs;
-        if r < 0.0 { r + rhs.abs() } else { r }
-    }
-
-    /// Raises a number to an integer power.
-    ///
-    /// Using this function is generally faster than using `powf`.
-    /// It might have a different sequence of rounding operations than `powf`,
-    /// so the results are not guaranteed to agree.
-    ///
-    /// # Unspecified precision
-    ///
-    /// The precision of this function is non-deterministic. This means it varies by platform,
-    /// Rust version, and can even differ within the same execution from one invocation to the next.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let x = 2.0_f16;
-    /// let abs_difference = (x.powi(2) - (x * x)).abs();
-    /// assert!(abs_difference <= f16::EPSILON);
-    ///
-    /// assert_eq!(f16::powi(f16::NAN, 0), 1.0);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn powi(self, n: i32) -> f16 {
-        unsafe { intrinsics::powif16(self, n) }
-    }
-
     /// Raises a number to a floating point power.
     ///
     /// # Unspecified precision
@@ -405,43 +46,6 @@ impl f16 {
         unsafe { intrinsics::powf16(self, n) }
     }
 
-    /// Returns the square root of a number.
-    ///
-    /// Returns NaN if `self` is a negative number other than `-0.0`.
-    ///
-    /// # Precision
-    ///
-    /// The result of this operation is guaranteed to be the rounded
-    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
-    /// and guaranteed not to change.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let positive = 4.0_f16;
-    /// let negative = -4.0_f16;
-    /// let negative_zero = -0.0_f16;
-    ///
-    /// assert_eq!(positive.sqrt(), 2.0);
-    /// assert!(negative.sqrt().is_nan());
-    /// assert!(negative_zero.sqrt() == negative_zero);
-    /// # }
-    /// ```
-    #[inline]
-    #[doc(alias = "squareRoot")]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn sqrt(self) -> f16 {
-        unsafe { intrinsics::sqrtf16(self) }
-    }
-
     /// Returns `e^(self)`, (the exponential function).
     ///
     /// # Unspecified precision
@@ -702,41 +306,6 @@ impl f16 {
         unsafe { intrinsics::log10f16(self) }
     }
 
-    /// Returns the cube root of a number.
-    ///
-    /// # Unspecified precision
-    ///
-    /// The precision of this function is non-deterministic. This means it varies by platform,
-    /// Rust version, and can even differ within the same execution from one invocation to the next.
-    ///
-    /// This function currently corresponds to the `cbrtf` from libc on Unix
-    /// and Windows. Note that this might change in the future.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(f16)]
-    /// # #![feature(cfg_target_has_reliable_f16_f128)]
-    /// # #![expect(internal_features)]
-    /// # #[cfg(not(miri))]
-    /// # #[cfg(target_has_reliable_f16_math)] {
-    ///
-    /// let x = 8.0f16;
-    ///
-    /// // x^(1/3) - 2 == 0
-    /// let abs_difference = (x.cbrt() - 2.0).abs();
-    ///
-    /// assert!(abs_difference <= f16::EPSILON);
-    /// # }
-    /// ```
-    #[inline]
-    #[rustc_allow_incoherent_impl]
-    #[unstable(feature = "f16", issue = "116909")]
-    #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn cbrt(self) -> f16 {
-        cmath::cbrtf(self as f32) as f16
-    }
-
     /// Compute the distance between the origin and a point (`x`, `y`) on the
     /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
     /// right-angle triangle with other sides having length `x.abs()` and
diff --git a/library/std/src/f32.rs b/library/std/src/f32.rs
index baf7002f380..94140d01d8b 100644
--- a/library/std/src/f32.rs
+++ b/library/std/src/f32.rs
@@ -46,7 +46,7 @@ impl f32 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn floor(self) -> f32 {
-        unsafe { intrinsics::floorf32(self) }
+        core::f32::floor(self)
     }
 
     /// Returns the smallest integer greater than or equal to `self`.
@@ -68,7 +68,7 @@ impl f32 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn ceil(self) -> f32 {
-        unsafe { intrinsics::ceilf32(self) }
+        core::f32::ceil(self)
     }
 
     /// Returns the nearest integer to `self`. If a value is half-way between two
@@ -96,7 +96,7 @@ impl f32 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn round(self) -> f32 {
-        unsafe { intrinsics::roundf32(self) }
+        core::f32::round(self)
     }
 
     /// Returns the nearest integer to a number. Rounds half-way cases to the number
@@ -122,7 +122,7 @@ impl f32 {
     #[stable(feature = "round_ties_even", since = "1.77.0")]
     #[inline]
     pub fn round_ties_even(self) -> f32 {
-        intrinsics::round_ties_even_f32(self)
+        core::f32::round_ties_even(self)
     }
 
     /// Returns the integer part of `self`.
@@ -147,7 +147,7 @@ impl f32 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn trunc(self) -> f32 {
-        unsafe { intrinsics::truncf32(self) }
+        core::f32::trunc(self)
     }
 
     /// Returns the fractional part of `self`.
@@ -170,7 +170,7 @@ impl f32 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn fract(self) -> f32 {
-        self - self.trunc()
+        core::f32::fract(self)
     }
 
     /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
@@ -212,7 +212,7 @@ impl f32 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn mul_add(self, a: f32, b: f32) -> f32 {
-        unsafe { intrinsics::fmaf32(self, a, b) }
+        core::f32::mul_add(self, a, b)
     }
 
     /// Calculates Euclidean division, the matching method for `rem_euclid`.
@@ -242,11 +242,7 @@ impl f32 {
     #[inline]
     #[stable(feature = "euclidean_division", since = "1.38.0")]
     pub fn div_euclid(self, rhs: f32) -> f32 {
-        let q = (self / rhs).trunc();
-        if self % rhs < 0.0 {
-            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
-        }
-        q
+        core::f32::div_euclid(self, rhs)
     }
 
     /// Calculates the least nonnegative remainder of `self (mod rhs)`.
@@ -283,8 +279,7 @@ impl f32 {
     #[inline]
     #[stable(feature = "euclidean_division", since = "1.38.0")]
     pub fn rem_euclid(self, rhs: f32) -> f32 {
-        let r = self % rhs;
-        if r < 0.0 { r + rhs.abs() } else { r }
+        core::f32::rem_euclid(self, rhs)
     }
 
     /// Raises a number to an integer power.
@@ -312,7 +307,7 @@ impl f32 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn powi(self, n: i32) -> f32 {
-        unsafe { intrinsics::powif32(self, n) }
+        core::f32::powi(self, n)
     }
 
     /// Raises a number to a floating point power.
@@ -367,7 +362,7 @@ impl f32 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn sqrt(self) -> f32 {
-        unsafe { intrinsics::sqrtf32(self) }
+        core::f32::sqrt(self)
     }
 
     /// Returns `e^(self)`, (the exponential function).
@@ -599,7 +594,8 @@ impl f32 {
                 filing an issue describing your use-case too)."
     )]
     pub fn abs_sub(self, other: f32) -> f32 {
-        cmath::fdimf(self, other)
+        #[allow(deprecated)]
+        core::f32::abs_sub(self, other)
     }
 
     /// Returns the cube root of a number.
@@ -626,7 +622,7 @@ impl f32 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn cbrt(self) -> f32 {
-        cmath::cbrtf(self)
+        core::f32::cbrt(self)
     }
 
     /// Compute the distance between the origin and a point (`x`, `y`) on the
diff --git a/library/std/src/f64.rs b/library/std/src/f64.rs
index 84fd9bfb7b6..051061ae605 100644
--- a/library/std/src/f64.rs
+++ b/library/std/src/f64.rs
@@ -46,7 +46,7 @@ impl f64 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn floor(self) -> f64 {
-        unsafe { intrinsics::floorf64(self) }
+        core::f64::floor(self)
     }
 
     /// Returns the smallest integer greater than or equal to `self`.
@@ -68,7 +68,7 @@ impl f64 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn ceil(self) -> f64 {
-        unsafe { intrinsics::ceilf64(self) }
+        core::f64::ceil(self)
     }
 
     /// Returns the nearest integer to `self`. If a value is half-way between two
@@ -96,7 +96,7 @@ impl f64 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn round(self) -> f64 {
-        unsafe { intrinsics::roundf64(self) }
+        core::f64::round(self)
     }
 
     /// Returns the nearest integer to a number. Rounds half-way cases to the number
@@ -122,7 +122,7 @@ impl f64 {
     #[stable(feature = "round_ties_even", since = "1.77.0")]
     #[inline]
     pub fn round_ties_even(self) -> f64 {
-        intrinsics::round_ties_even_f64(self)
+        core::f64::round_ties_even(self)
     }
 
     /// Returns the integer part of `self`.
@@ -147,7 +147,7 @@ impl f64 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn trunc(self) -> f64 {
-        unsafe { intrinsics::truncf64(self) }
+        core::f64::trunc(self)
     }
 
     /// Returns the fractional part of `self`.
@@ -170,7 +170,7 @@ impl f64 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn fract(self) -> f64 {
-        self - self.trunc()
+        core::f64::fract(self)
     }
 
     /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
@@ -212,7 +212,7 @@ impl f64 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn mul_add(self, a: f64, b: f64) -> f64 {
-        unsafe { intrinsics::fmaf64(self, a, b) }
+        core::f64::mul_add(self, a, b)
     }
 
     /// Calculates Euclidean division, the matching method for `rem_euclid`.
@@ -242,11 +242,7 @@ impl f64 {
     #[inline]
     #[stable(feature = "euclidean_division", since = "1.38.0")]
     pub fn div_euclid(self, rhs: f64) -> f64 {
-        let q = (self / rhs).trunc();
-        if self % rhs < 0.0 {
-            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
-        }
-        q
+        core::f64::div_euclid(self, rhs)
     }
 
     /// Calculates the least nonnegative remainder of `self (mod rhs)`.
@@ -283,8 +279,7 @@ impl f64 {
     #[inline]
     #[stable(feature = "euclidean_division", since = "1.38.0")]
     pub fn rem_euclid(self, rhs: f64) -> f64 {
-        let r = self % rhs;
-        if r < 0.0 { r + rhs.abs() } else { r }
+        core::f64::rem_euclid(self, rhs)
     }
 
     /// Raises a number to an integer power.
@@ -312,7 +307,7 @@ impl f64 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn powi(self, n: i32) -> f64 {
-        unsafe { intrinsics::powif64(self, n) }
+        core::f64::powi(self, n)
     }
 
     /// Raises a number to a floating point power.
@@ -367,7 +362,7 @@ impl f64 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn sqrt(self) -> f64 {
-        unsafe { intrinsics::sqrtf64(self) }
+        core::f64::sqrt(self)
     }
 
     /// Returns `e^(self)`, (the exponential function).
@@ -599,7 +594,8 @@ impl f64 {
                 filing an issue describing your use-case too)."
     )]
     pub fn abs_sub(self, other: f64) -> f64 {
-        cmath::fdim(self, other)
+        #[allow(deprecated)]
+        core::f64::abs_sub(self, other)
     }
 
     /// Returns the cube root of a number.
@@ -626,7 +622,7 @@ impl f64 {
     #[stable(feature = "rust1", since = "1.0.0")]
     #[inline]
     pub fn cbrt(self) -> f64 {
-        cmath::cbrt(self)
+        core::f64::cbrt(self)
     }
 
     /// Compute the distance between the origin and a point (`x`, `y`) on the
diff --git a/library/std/src/lib.rs b/library/std/src/lib.rs
index 0bb40ee4b31..5c1d2deb481 100644
--- a/library/std/src/lib.rs
+++ b/library/std/src/lib.rs
@@ -287,6 +287,7 @@
 #![feature(cfi_encoding)]
 #![feature(char_max_len)]
 #![feature(concat_idents)]
+#![feature(core_float_math)]
 #![feature(decl_macro)]
 #![feature(deprecated_suggestion)]
 #![feature(doc_cfg)]
diff --git a/library/std/src/sys/cmath.rs b/library/std/src/sys/cmath.rs
index 668fd928534..299ce1a6ff0 100644
--- a/library/std/src/sys/cmath.rs
+++ b/library/std/src/sys/cmath.rs
@@ -7,13 +7,9 @@ unsafe extern "C" {
     pub safe fn asin(n: f64) -> f64;
     pub safe fn atan(n: f64) -> f64;
     pub safe fn atan2(a: f64, b: f64) -> f64;
-    pub safe fn cbrt(n: f64) -> f64;
-    pub safe fn cbrtf(n: f32) -> f32;
     pub safe fn cosh(n: f64) -> f64;
     pub safe fn expm1(n: f64) -> f64;
     pub safe fn expm1f(n: f32) -> f32;
-    pub safe fn fdim(a: f64, b: f64) -> f64;
-    pub safe fn fdimf(a: f32, b: f32) -> f32;
     #[cfg_attr(target_env = "msvc", link_name = "_hypot")]
     pub safe fn hypot(x: f64, y: f64) -> f64;
     #[cfg_attr(target_env = "msvc", link_name = "_hypotf")]
diff --git a/library/std/tests/floats/f128.rs b/library/std/tests/floats/f128.rs
index c2618f3b315..e7c90faa05c 100644
--- a/library/std/tests/floats/f128.rs
+++ b/library/std/tests/floats/f128.rs
@@ -2,49 +2,26 @@
 #![cfg(target_has_reliable_f128)]
 
 use std::f128::consts;
-use std::num::FpCategory as Fp;
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-use std::ops::Rem;
 use std::ops::{Add, Div, Mul, Sub};
 
 // Note these tolerances make sense around zero, but not for more extreme exponents.
 
-/// For operations that are near exact, usually not involving math of different
-/// signs.
-const TOL_PRECISE: f128 = 1e-28;
-
 /// Default tolerances. Works for values that should be near precise but not exact. Roughly
 /// the precision carried by `100 * 100`.
+#[cfg(not(miri))]
+#[cfg(target_has_reliable_f128_math)]
 const TOL: f128 = 1e-12;
 
+/// For operations that are near exact, usually not involving math of different
+/// signs.
+const TOL_PRECISE: f128 = 1e-28;
+
 /// Tolerances for math that is allowed to be imprecise, usually due to multiple chained
 /// operations.
 #[cfg(not(miri))]
 #[cfg(target_has_reliable_f128_math)]
 const TOL_IMPR: f128 = 1e-10;
 
-/// Smallest number
-const TINY_BITS: u128 = 0x1;
-
-/// Next smallest number
-const TINY_UP_BITS: u128 = 0x2;
-
-/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0
-const MAX_DOWN_BITS: u128 = 0x7ffefffffffffffffffffffffffffffe;
-
-/// Zeroed exponent, full significant
-const LARGEST_SUBNORMAL_BITS: u128 = 0x0000ffffffffffffffffffffffffffff;
-
-/// Exponent = 0b1, zeroed significand
-const SMALLEST_NORMAL_BITS: u128 = 0x00010000000000000000000000000000;
-
-/// First pattern over the mantissa
-const NAN_MASK1: u128 = 0x0000aaaaaaaaaaaaaaaaaaaaaaaaaaaa;
-
-/// Second pattern over the mantissa
-const NAN_MASK2: u128 = 0x00005555555555555555555555555555;
-
 /// Compare by representation
 #[allow(unused_macros)]
 macro_rules! assert_f128_biteq {
@@ -68,459 +45,11 @@ fn test_num_f128() {
     assert_eq!(ten.div(two), ten / two);
 }
 
-// FIXME(f16_f128,miri): many of these have to be disabled since miri does not yet support
-// the intrinsics.
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_num_f128_rem() {
-    let ten = 10f128;
-    let two = 2f128;
-    assert_eq!(ten.rem(two), ten % two);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_min_nan() {
-    assert_eq!(f128::NAN.min(2.0), 2.0);
-    assert_eq!(2.0f128.min(f128::NAN), 2.0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_max_nan() {
-    assert_eq!(f128::NAN.max(2.0), 2.0);
-    assert_eq!(2.0f128.max(f128::NAN), 2.0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_minimum() {
-    assert!(f128::NAN.minimum(2.0).is_nan());
-    assert!(2.0f128.minimum(f128::NAN).is_nan());
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_maximum() {
-    assert!(f128::NAN.maximum(2.0).is_nan());
-    assert!(2.0f128.maximum(f128::NAN).is_nan());
-}
-
-#[test]
-fn test_nan() {
-    let nan: f128 = f128::NAN;
-    assert!(nan.is_nan());
-    assert!(!nan.is_infinite());
-    assert!(!nan.is_finite());
-    assert!(nan.is_sign_positive());
-    assert!(!nan.is_sign_negative());
-    assert!(!nan.is_normal());
-    assert_eq!(Fp::Nan, nan.classify());
-    // Ensure the quiet bit is set.
-    assert!(nan.to_bits() & (1 << (f128::MANTISSA_DIGITS - 2)) != 0);
-}
-
-#[test]
-fn test_infinity() {
-    let inf: f128 = f128::INFINITY;
-    assert!(inf.is_infinite());
-    assert!(!inf.is_finite());
-    assert!(inf.is_sign_positive());
-    assert!(!inf.is_sign_negative());
-    assert!(!inf.is_nan());
-    assert!(!inf.is_normal());
-    assert_eq!(Fp::Infinite, inf.classify());
-}
-
-#[test]
-fn test_neg_infinity() {
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    assert!(neg_inf.is_infinite());
-    assert!(!neg_inf.is_finite());
-    assert!(!neg_inf.is_sign_positive());
-    assert!(neg_inf.is_sign_negative());
-    assert!(!neg_inf.is_nan());
-    assert!(!neg_inf.is_normal());
-    assert_eq!(Fp::Infinite, neg_inf.classify());
-}
-
-#[test]
-fn test_zero() {
-    let zero: f128 = 0.0f128;
-    assert_eq!(0.0, zero);
-    assert!(!zero.is_infinite());
-    assert!(zero.is_finite());
-    assert!(zero.is_sign_positive());
-    assert!(!zero.is_sign_negative());
-    assert!(!zero.is_nan());
-    assert!(!zero.is_normal());
-    assert_eq!(Fp::Zero, zero.classify());
-}
-
-#[test]
-fn test_neg_zero() {
-    let neg_zero: f128 = -0.0;
-    assert_eq!(0.0, neg_zero);
-    assert!(!neg_zero.is_infinite());
-    assert!(neg_zero.is_finite());
-    assert!(!neg_zero.is_sign_positive());
-    assert!(neg_zero.is_sign_negative());
-    assert!(!neg_zero.is_nan());
-    assert!(!neg_zero.is_normal());
-    assert_eq!(Fp::Zero, neg_zero.classify());
-}
-
-#[test]
-fn test_one() {
-    let one: f128 = 1.0f128;
-    assert_eq!(1.0, one);
-    assert!(!one.is_infinite());
-    assert!(one.is_finite());
-    assert!(one.is_sign_positive());
-    assert!(!one.is_sign_negative());
-    assert!(!one.is_nan());
-    assert!(one.is_normal());
-    assert_eq!(Fp::Normal, one.classify());
-}
-
-#[test]
-fn test_is_nan() {
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    assert!(nan.is_nan());
-    assert!(!0.0f128.is_nan());
-    assert!(!5.3f128.is_nan());
-    assert!(!(-10.732f128).is_nan());
-    assert!(!inf.is_nan());
-    assert!(!neg_inf.is_nan());
-}
-
-#[test]
-fn test_is_infinite() {
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    assert!(!nan.is_infinite());
-    assert!(inf.is_infinite());
-    assert!(neg_inf.is_infinite());
-    assert!(!0.0f128.is_infinite());
-    assert!(!42.8f128.is_infinite());
-    assert!(!(-109.2f128).is_infinite());
-}
-
-#[test]
-fn test_is_finite() {
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    assert!(!nan.is_finite());
-    assert!(!inf.is_finite());
-    assert!(!neg_inf.is_finite());
-    assert!(0.0f128.is_finite());
-    assert!(42.8f128.is_finite());
-    assert!((-109.2f128).is_finite());
-}
-
-#[test]
-fn test_is_normal() {
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    let zero: f128 = 0.0f128;
-    let neg_zero: f128 = -0.0;
-    assert!(!nan.is_normal());
-    assert!(!inf.is_normal());
-    assert!(!neg_inf.is_normal());
-    assert!(!zero.is_normal());
-    assert!(!neg_zero.is_normal());
-    assert!(1f128.is_normal());
-    assert!(1e-4931f128.is_normal());
-    assert!(!1e-4932f128.is_normal());
-}
-
-#[test]
-fn test_classify() {
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    let zero: f128 = 0.0f128;
-    let neg_zero: f128 = -0.0;
-    assert_eq!(nan.classify(), Fp::Nan);
-    assert_eq!(inf.classify(), Fp::Infinite);
-    assert_eq!(neg_inf.classify(), Fp::Infinite);
-    assert_eq!(zero.classify(), Fp::Zero);
-    assert_eq!(neg_zero.classify(), Fp::Zero);
-    assert_eq!(1f128.classify(), Fp::Normal);
-    assert_eq!(1e-4931f128.classify(), Fp::Normal);
-    assert_eq!(1e-4932f128.classify(), Fp::Subnormal);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_floor() {
-    assert_approx_eq!(1.0f128.floor(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.3f128.floor(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.5f128.floor(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.7f128.floor(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(0.0f128.floor(), 0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-0.0f128).floor(), -0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.0f128).floor(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.3f128).floor(), -2.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.5f128).floor(), -2.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.7f128).floor(), -2.0f128, TOL_PRECISE);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_ceil() {
-    assert_approx_eq!(1.0f128.ceil(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.3f128.ceil(), 2.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.5f128.ceil(), 2.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.7f128.ceil(), 2.0f128, TOL_PRECISE);
-    assert_approx_eq!(0.0f128.ceil(), 0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-0.0f128).ceil(), -0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.0f128).ceil(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.3f128).ceil(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.5f128).ceil(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.7f128).ceil(), -1.0f128, TOL_PRECISE);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_round() {
-    assert_approx_eq!(2.5f128.round(), 3.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.0f128.round(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.3f128.round(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.5f128.round(), 2.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.7f128.round(), 2.0f128, TOL_PRECISE);
-    assert_approx_eq!(0.0f128.round(), 0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-0.0f128).round(), -0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.0f128).round(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.3f128).round(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.5f128).round(), -2.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.7f128).round(), -2.0f128, TOL_PRECISE);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_round_ties_even() {
-    assert_approx_eq!(2.5f128.round_ties_even(), 2.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.0f128.round_ties_even(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.3f128.round_ties_even(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.5f128.round_ties_even(), 2.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.7f128.round_ties_even(), 2.0f128, TOL_PRECISE);
-    assert_approx_eq!(0.0f128.round_ties_even(), 0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-0.0f128).round_ties_even(), -0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.0f128).round_ties_even(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.3f128).round_ties_even(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.5f128).round_ties_even(), -2.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.7f128).round_ties_even(), -2.0f128, TOL_PRECISE);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_trunc() {
-    assert_approx_eq!(1.0f128.trunc(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.3f128.trunc(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.5f128.trunc(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.7f128.trunc(), 1.0f128, TOL_PRECISE);
-    assert_approx_eq!(0.0f128.trunc(), 0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-0.0f128).trunc(), -0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.0f128).trunc(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.3f128).trunc(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.5f128).trunc(), -1.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.7f128).trunc(), -1.0f128, TOL_PRECISE);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_fract() {
-    assert_approx_eq!(1.0f128.fract(), 0.0f128, TOL_PRECISE);
-    assert_approx_eq!(1.3f128.fract(), 0.3f128, TOL_PRECISE);
-    assert_approx_eq!(1.5f128.fract(), 0.5f128, TOL_PRECISE);
-    assert_approx_eq!(1.7f128.fract(), 0.7f128, TOL_PRECISE);
-    assert_approx_eq!(0.0f128.fract(), 0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-0.0f128).fract(), -0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.0f128).fract(), -0.0f128, TOL_PRECISE);
-    assert_approx_eq!((-1.3f128).fract(), -0.3f128, TOL_PRECISE);
-    assert_approx_eq!((-1.5f128).fract(), -0.5f128, TOL_PRECISE);
-    assert_approx_eq!((-1.7f128).fract(), -0.7f128, TOL_PRECISE);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_abs() {
-    assert_eq!(f128::INFINITY.abs(), f128::INFINITY);
-    assert_eq!(1f128.abs(), 1f128);
-    assert_eq!(0f128.abs(), 0f128);
-    assert_eq!((-0f128).abs(), 0f128);
-    assert_eq!((-1f128).abs(), 1f128);
-    assert_eq!(f128::NEG_INFINITY.abs(), f128::INFINITY);
-    assert_eq!((1f128 / f128::NEG_INFINITY).abs(), 0f128);
-    assert!(f128::NAN.abs().is_nan());
-}
-
-#[test]
-fn test_is_sign_positive() {
-    assert!(f128::INFINITY.is_sign_positive());
-    assert!(1f128.is_sign_positive());
-    assert!(0f128.is_sign_positive());
-    assert!(!(-0f128).is_sign_positive());
-    assert!(!(-1f128).is_sign_positive());
-    assert!(!f128::NEG_INFINITY.is_sign_positive());
-    assert!(!(1f128 / f128::NEG_INFINITY).is_sign_positive());
-    assert!(f128::NAN.is_sign_positive());
-    assert!(!(-f128::NAN).is_sign_positive());
-}
-
-#[test]
-fn test_is_sign_negative() {
-    assert!(!f128::INFINITY.is_sign_negative());
-    assert!(!1f128.is_sign_negative());
-    assert!(!0f128.is_sign_negative());
-    assert!((-0f128).is_sign_negative());
-    assert!((-1f128).is_sign_negative());
-    assert!(f128::NEG_INFINITY.is_sign_negative());
-    assert!((1f128 / f128::NEG_INFINITY).is_sign_negative());
-    assert!(!f128::NAN.is_sign_negative());
-    assert!((-f128::NAN).is_sign_negative());
-}
-
-#[test]
-fn test_next_up() {
-    let tiny = f128::from_bits(TINY_BITS);
-    let tiny_up = f128::from_bits(TINY_UP_BITS);
-    let max_down = f128::from_bits(MAX_DOWN_BITS);
-    let largest_subnormal = f128::from_bits(LARGEST_SUBNORMAL_BITS);
-    let smallest_normal = f128::from_bits(SMALLEST_NORMAL_BITS);
-    assert_f128_biteq!(f128::NEG_INFINITY.next_up(), f128::MIN);
-    assert_f128_biteq!(f128::MIN.next_up(), -max_down);
-    assert_f128_biteq!((-1.0 - f128::EPSILON).next_up(), -1.0);
-    assert_f128_biteq!((-smallest_normal).next_up(), -largest_subnormal);
-    assert_f128_biteq!((-tiny_up).next_up(), -tiny);
-    assert_f128_biteq!((-tiny).next_up(), -0.0f128);
-    assert_f128_biteq!((-0.0f128).next_up(), tiny);
-    assert_f128_biteq!(0.0f128.next_up(), tiny);
-    assert_f128_biteq!(tiny.next_up(), tiny_up);
-    assert_f128_biteq!(largest_subnormal.next_up(), smallest_normal);
-    assert_f128_biteq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
-    assert_f128_biteq!(f128::MAX.next_up(), f128::INFINITY);
-    assert_f128_biteq!(f128::INFINITY.next_up(), f128::INFINITY);
-
-    // Check that NaNs roundtrip.
-    let nan0 = f128::NAN;
-    let nan1 = f128::from_bits(f128::NAN.to_bits() ^ 0x002a_aaaa);
-    let nan2 = f128::from_bits(f128::NAN.to_bits() ^ 0x0055_5555);
-    assert_f128_biteq!(nan0.next_up(), nan0);
-    assert_f128_biteq!(nan1.next_up(), nan1);
-    assert_f128_biteq!(nan2.next_up(), nan2);
-}
-
-#[test]
-fn test_next_down() {
-    let tiny = f128::from_bits(TINY_BITS);
-    let tiny_up = f128::from_bits(TINY_UP_BITS);
-    let max_down = f128::from_bits(MAX_DOWN_BITS);
-    let largest_subnormal = f128::from_bits(LARGEST_SUBNORMAL_BITS);
-    let smallest_normal = f128::from_bits(SMALLEST_NORMAL_BITS);
-    assert_f128_biteq!(f128::NEG_INFINITY.next_down(), f128::NEG_INFINITY);
-    assert_f128_biteq!(f128::MIN.next_down(), f128::NEG_INFINITY);
-    assert_f128_biteq!((-max_down).next_down(), f128::MIN);
-    assert_f128_biteq!((-1.0f128).next_down(), -1.0 - f128::EPSILON);
-    assert_f128_biteq!((-largest_subnormal).next_down(), -smallest_normal);
-    assert_f128_biteq!((-tiny).next_down(), -tiny_up);
-    assert_f128_biteq!((-0.0f128).next_down(), -tiny);
-    assert_f128_biteq!((0.0f128).next_down(), -tiny);
-    assert_f128_biteq!(tiny.next_down(), 0.0f128);
-    assert_f128_biteq!(tiny_up.next_down(), tiny);
-    assert_f128_biteq!(smallest_normal.next_down(), largest_subnormal);
-    assert_f128_biteq!((1.0 + f128::EPSILON).next_down(), 1.0f128);
-    assert_f128_biteq!(f128::MAX.next_down(), max_down);
-    assert_f128_biteq!(f128::INFINITY.next_down(), f128::MAX);
-
-    // Check that NaNs roundtrip.
-    let nan0 = f128::NAN;
-    let nan1 = f128::from_bits(f128::NAN.to_bits() ^ 0x002a_aaaa);
-    let nan2 = f128::from_bits(f128::NAN.to_bits() ^ 0x0055_5555);
-    assert_f128_biteq!(nan0.next_down(), nan0);
-    assert_f128_biteq!(nan1.next_down(), nan1);
-    assert_f128_biteq!(nan2.next_down(), nan2);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_mul_add() {
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    assert_approx_eq!(12.3f128.mul_add(4.5, 6.7), 62.05, TOL_PRECISE);
-    assert_approx_eq!((-12.3f128).mul_add(-4.5, -6.7), 48.65, TOL_PRECISE);
-    assert_approx_eq!(0.0f128.mul_add(8.9, 1.2), 1.2, TOL_PRECISE);
-    assert_approx_eq!(3.4f128.mul_add(-0.0, 5.6), 5.6, TOL_PRECISE);
-    assert!(nan.mul_add(7.8, 9.0).is_nan());
-    assert_eq!(inf.mul_add(7.8, 9.0), inf);
-    assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
-    assert_eq!(8.9f128.mul_add(inf, 3.2), inf);
-    assert_eq!((-3.2f128).mul_add(2.4, neg_inf), neg_inf);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
-fn test_recip() {
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    assert_eq!(1.0f128.recip(), 1.0);
-    assert_eq!(2.0f128.recip(), 0.5);
-    assert_eq!((-0.4f128).recip(), -2.5);
-    assert_eq!(0.0f128.recip(), inf);
-    assert_approx_eq!(
-        f128::MAX.recip(),
-        8.40525785778023376565669454330438228902076605e-4933,
-        1e-4900
-    );
-    assert!(nan.recip().is_nan());
-    assert_eq!(inf.recip(), 0.0);
-    assert_eq!(neg_inf.recip(), 0.0);
-}
-
 // Many math functions allow for less accurate results, so the next tolerance up is used
 
 #[test]
 #[cfg(not(miri))]
 #[cfg(target_has_reliable_f128_math)]
-fn test_powi() {
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    assert_eq!(1.0f128.powi(1), 1.0);
-    assert_approx_eq!((-3.1f128).powi(2), 9.6100000000000005506706202140776519387, TOL);
-    assert_approx_eq!(5.9f128.powi(-2), 0.028727377190462507313100483690639638451, TOL);
-    assert_eq!(8.3f128.powi(0), 1.0);
-    assert!(nan.powi(2).is_nan());
-    assert_eq!(inf.powi(3), inf);
-    assert_eq!(neg_inf.powi(2), inf);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
 fn test_powf() {
     let nan: f128 = f128::NAN;
     let inf: f128 = f128::INFINITY;
@@ -539,19 +68,6 @@ fn test_powf() {
 #[test]
 #[cfg(not(miri))]
 #[cfg(target_has_reliable_f128_math)]
-fn test_sqrt_domain() {
-    assert!(f128::NAN.sqrt().is_nan());
-    assert!(f128::NEG_INFINITY.sqrt().is_nan());
-    assert!((-1.0f128).sqrt().is_nan());
-    assert_eq!((-0.0f128).sqrt(), -0.0);
-    assert_eq!(0.0f128.sqrt(), 0.0);
-    assert_eq!(1.0f128.sqrt(), 1.0);
-    assert_eq!(f128::INFINITY.sqrt(), f128::INFINITY);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f128_math)]
 fn test_exp() {
     assert_eq!(1.0, 0.0f128.exp());
     assert_approx_eq!(consts::E, 1.0f128.exp(), TOL);
@@ -655,38 +171,6 @@ fn test_log10() {
 }
 
 #[test]
-fn test_to_degrees() {
-    let pi: f128 = consts::PI;
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    assert_eq!(0.0f128.to_degrees(), 0.0);
-    assert_approx_eq!((-5.8f128).to_degrees(), -332.31552117587745090765431723855668471, TOL);
-    assert_approx_eq!(pi.to_degrees(), 180.0, TOL);
-    assert!(nan.to_degrees().is_nan());
-    assert_eq!(inf.to_degrees(), inf);
-    assert_eq!(neg_inf.to_degrees(), neg_inf);
-    assert_eq!(1_f128.to_degrees(), 57.2957795130823208767981548141051703);
-}
-
-#[test]
-fn test_to_radians() {
-    let pi: f128 = consts::PI;
-    let nan: f128 = f128::NAN;
-    let inf: f128 = f128::INFINITY;
-    let neg_inf: f128 = f128::NEG_INFINITY;
-    assert_eq!(0.0f128.to_radians(), 0.0);
-    assert_approx_eq!(154.6f128.to_radians(), 2.6982790235832334267135442069489767804, TOL);
-    assert_approx_eq!((-332.31f128).to_radians(), -5.7999036373023566567593094812182763013, TOL);
-    // check approx rather than exact because round trip for pi doesn't fall on an exactly
-    // representable value (unlike `f32` and `f64`).
-    assert_approx_eq!(180.0f128.to_radians(), pi, TOL_PRECISE);
-    assert!(nan.to_radians().is_nan());
-    assert_eq!(inf.to_radians(), inf);
-    assert_eq!(neg_inf.to_radians(), neg_inf);
-}
-
-#[test]
 #[cfg(not(miri))]
 #[cfg(target_has_reliable_f128_math)]
 fn test_asinh() {
@@ -835,237 +319,3 @@ fn test_real_consts() {
         assert_approx_eq!(ln_10, 10f128.ln(), TOL_PRECISE);
     }
 }
-
-#[test]
-fn test_float_bits_conv() {
-    assert_eq!((1f128).to_bits(), 0x3fff0000000000000000000000000000);
-    assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
-    assert_eq!((1337f128).to_bits(), 0x40094e40000000000000000000000000);
-    assert_eq!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000);
-    assert_approx_eq!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0, TOL_PRECISE);
-    assert_approx_eq!(f128::from_bits(0x40029000000000000000000000000000), 12.5, TOL_PRECISE);
-    assert_approx_eq!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0, TOL_PRECISE);
-    assert_approx_eq!(f128::from_bits(0xc002c800000000000000000000000000), -14.25, TOL_PRECISE);
-
-    // Check that NaNs roundtrip their bits regardless of signaling-ness
-    // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
-    let masked_nan1 = f128::NAN.to_bits() ^ NAN_MASK1;
-    let masked_nan2 = f128::NAN.to_bits() ^ NAN_MASK2;
-    assert!(f128::from_bits(masked_nan1).is_nan());
-    assert!(f128::from_bits(masked_nan2).is_nan());
-
-    assert_eq!(f128::from_bits(masked_nan1).to_bits(), masked_nan1);
-    assert_eq!(f128::from_bits(masked_nan2).to_bits(), masked_nan2);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_min_greater_than_max() {
-    let _ = 1.0f128.clamp(3.0, 1.0);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_min_is_nan() {
-    let _ = 1.0f128.clamp(f128::NAN, 1.0);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_max_is_nan() {
-    let _ = 1.0f128.clamp(3.0, f128::NAN);
-}
-
-#[test]
-fn test_total_cmp() {
-    use core::cmp::Ordering;
-
-    fn quiet_bit_mask() -> u128 {
-        1 << (f128::MANTISSA_DIGITS - 2)
-    }
-
-    // FIXME(f16_f128): test subnormals when powf is available
-    // fn min_subnorm() -> f128 {
-    //     f128::MIN_POSITIVE / f128::powf(2.0, f128::MANTISSA_DIGITS as f128 - 1.0)
-    // }
-
-    // fn max_subnorm() -> f128 {
-    //     f128::MIN_POSITIVE - min_subnorm()
-    // }
-
-    fn q_nan() -> f128 {
-        f128::from_bits(f128::NAN.to_bits() | quiet_bit_mask())
-    }
-
-    fn s_nan() -> f128 {
-        f128::from_bits((f128::NAN.to_bits() & !quiet_bit_mask()) + 42)
-    }
-
-    assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan()));
-    assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Equal, (-f128::INFINITY).total_cmp(&-f128::INFINITY));
-    assert_eq!(Ordering::Equal, (-f128::MAX).total_cmp(&-f128::MAX));
-    assert_eq!(Ordering::Equal, (-2.5_f128).total_cmp(&-2.5));
-    assert_eq!(Ordering::Equal, (-1.0_f128).total_cmp(&-1.0));
-    assert_eq!(Ordering::Equal, (-1.5_f128).total_cmp(&-1.5));
-    assert_eq!(Ordering::Equal, (-0.5_f128).total_cmp(&-0.5));
-    assert_eq!(Ordering::Equal, (-f128::MIN_POSITIVE).total_cmp(&-f128::MIN_POSITIVE));
-    // assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm()));
-    // assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Equal, (-0.0_f128).total_cmp(&-0.0));
-    assert_eq!(Ordering::Equal, 0.0_f128.total_cmp(&0.0));
-    // assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm()));
-    // assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Equal, f128::MIN_POSITIVE.total_cmp(&f128::MIN_POSITIVE));
-    assert_eq!(Ordering::Equal, 0.5_f128.total_cmp(&0.5));
-    assert_eq!(Ordering::Equal, 1.0_f128.total_cmp(&1.0));
-    assert_eq!(Ordering::Equal, 1.5_f128.total_cmp(&1.5));
-    assert_eq!(Ordering::Equal, 2.5_f128.total_cmp(&2.5));
-    assert_eq!(Ordering::Equal, f128::MAX.total_cmp(&f128::MAX));
-    assert_eq!(Ordering::Equal, f128::INFINITY.total_cmp(&f128::INFINITY));
-    assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan()));
-    assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan()));
-
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::INFINITY));
-    assert_eq!(Ordering::Less, (-f128::INFINITY).total_cmp(&-f128::MAX));
-    assert_eq!(Ordering::Less, (-f128::MAX).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-2.5_f128).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-1.5_f128).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-1.0_f128).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-0.5_f128).total_cmp(&-f128::MIN_POSITIVE));
-    // assert_eq!(Ordering::Less, (-f128::MIN_POSITIVE).total_cmp(&-max_subnorm()));
-    // assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm()));
-    // assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-0.0_f128).total_cmp(&0.0));
-    // assert_eq!(Ordering::Less, 0.0_f128.total_cmp(&min_subnorm()));
-    // assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm()));
-    // assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f128::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, f128::MIN_POSITIVE.total_cmp(&0.5));
-    assert_eq!(Ordering::Less, 0.5_f128.total_cmp(&1.0));
-    assert_eq!(Ordering::Less, 1.0_f128.total_cmp(&1.5));
-    assert_eq!(Ordering::Less, 1.5_f128.total_cmp(&2.5));
-    assert_eq!(Ordering::Less, 2.5_f128.total_cmp(&f128::MAX));
-    assert_eq!(Ordering::Less, f128::MAX.total_cmp(&f128::INFINITY));
-    assert_eq!(Ordering::Less, f128::INFINITY.total_cmp(&s_nan()));
-    assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan()));
-
-    assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan()));
-    assert_eq!(Ordering::Greater, (-f128::INFINITY).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Greater, (-f128::MAX).total_cmp(&-f128::INFINITY));
-    assert_eq!(Ordering::Greater, (-2.5_f128).total_cmp(&-f128::MAX));
-    assert_eq!(Ordering::Greater, (-1.5_f128).total_cmp(&-2.5));
-    assert_eq!(Ordering::Greater, (-1.0_f128).total_cmp(&-1.5));
-    assert_eq!(Ordering::Greater, (-0.5_f128).total_cmp(&-1.0));
-    assert_eq!(Ordering::Greater, (-f128::MIN_POSITIVE).total_cmp(&-0.5));
-    // assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f128::MIN_POSITIVE));
-    // assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm()));
-    // assert_eq!(Ordering::Greater, (-0.0_f128).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Greater, 0.0_f128.total_cmp(&-0.0));
-    // assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0));
-    // assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm()));
-    // assert_eq!(Ordering::Greater, f128::MIN_POSITIVE.total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Greater, 0.5_f128.total_cmp(&f128::MIN_POSITIVE));
-    assert_eq!(Ordering::Greater, 1.0_f128.total_cmp(&0.5));
-    assert_eq!(Ordering::Greater, 1.5_f128.total_cmp(&1.0));
-    assert_eq!(Ordering::Greater, 2.5_f128.total_cmp(&1.5));
-    assert_eq!(Ordering::Greater, f128::MAX.total_cmp(&2.5));
-    assert_eq!(Ordering::Greater, f128::INFINITY.total_cmp(&f128::MAX));
-    assert_eq!(Ordering::Greater, s_nan().total_cmp(&f128::INFINITY));
-    assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan()));
-
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f128::INFINITY));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f128::MAX));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f128::MIN_POSITIVE));
-    // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm()));
-    // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0));
-    // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm()));
-    // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f128::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f128::MAX));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f128::INFINITY));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan()));
-
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::INFINITY));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::MAX));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::MIN_POSITIVE));
-    // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm()));
-    // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0));
-    // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm()));
-    // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f128::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f128::MAX));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f128::INFINITY));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
-}
-
-#[test]
-fn test_algebraic() {
-    let a: f128 = 123.0;
-    let b: f128 = 456.0;
-
-    // Check that individual operations match their primitive counterparts.
-    //
-    // This is a check of current implementations and does NOT imply any form of
-    // guarantee about future behavior. The compiler reserves the right to make
-    // these operations inexact matches in the future.
-    let eps = if cfg!(miri) { 1e-6 } else { 0.0 };
-
-    assert_approx_eq!(a.algebraic_add(b), a + b, eps);
-    assert_approx_eq!(a.algebraic_sub(b), a - b, eps);
-    assert_approx_eq!(a.algebraic_mul(b), a * b, eps);
-    assert_approx_eq!(a.algebraic_div(b), a / b, eps);
-    assert_approx_eq!(a.algebraic_rem(b), a % b, eps);
-}
-
-#[test]
-fn test_from() {
-    assert_eq!(f128::from(false), 0.0);
-    assert_eq!(f128::from(true), 1.0);
-    assert_eq!(f128::from(u8::MIN), 0.0);
-    assert_eq!(f128::from(42_u8), 42.0);
-    assert_eq!(f128::from(u8::MAX), 255.0);
-    assert_eq!(f128::from(i8::MIN), -128.0);
-    assert_eq!(f128::from(42_i8), 42.0);
-    assert_eq!(f128::from(i8::MAX), 127.0);
-    assert_eq!(f128::from(u16::MIN), 0.0);
-    assert_eq!(f128::from(42_u16), 42.0);
-    assert_eq!(f128::from(u16::MAX), 65535.0);
-    assert_eq!(f128::from(i16::MIN), -32768.0);
-    assert_eq!(f128::from(42_i16), 42.0);
-    assert_eq!(f128::from(i16::MAX), 32767.0);
-    assert_eq!(f128::from(u32::MIN), 0.0);
-    assert_eq!(f128::from(42_u32), 42.0);
-    assert_eq!(f128::from(u32::MAX), 4294967295.0);
-    assert_eq!(f128::from(i32::MIN), -2147483648.0);
-    assert_eq!(f128::from(42_i32), 42.0);
-    assert_eq!(f128::from(i32::MAX), 2147483647.0);
-    // FIXME(f16_f128): Uncomment these tests once the From<{u64,i64}> impls are added.
-    // assert_eq!(f128::from(u64::MIN), 0.0);
-    // assert_eq!(f128::from(42_u64), 42.0);
-    // assert_eq!(f128::from(u64::MAX), 18446744073709551615.0);
-    // assert_eq!(f128::from(i64::MIN), -9223372036854775808.0);
-    // assert_eq!(f128::from(42_i64), 42.0);
-    // assert_eq!(f128::from(i64::MAX), 9223372036854775807.0);
-}
diff --git a/library/std/tests/floats/f16.rs b/library/std/tests/floats/f16.rs
index 70bbcd07160..0f8b4138d22 100644
--- a/library/std/tests/floats/f16.rs
+++ b/library/std/tests/floats/f16.rs
@@ -2,7 +2,6 @@
 #![cfg(target_has_reliable_f16)]
 
 use std::f16::consts;
-use std::num::FpCategory as Fp;
 
 /// Tolerance for results on the order of 10.0e-2
 #[allow(unused)]
@@ -20,27 +19,6 @@ const TOL_P2: f16 = 0.5;
 #[allow(unused)]
 const TOL_P4: f16 = 10.0;
 
-/// Smallest number
-const TINY_BITS: u16 = 0x1;
-
-/// Next smallest number
-const TINY_UP_BITS: u16 = 0x2;
-
-/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0
-const MAX_DOWN_BITS: u16 = 0x7bfe;
-
-/// Zeroed exponent, full significant
-const LARGEST_SUBNORMAL_BITS: u16 = 0x03ff;
-
-/// Exponent = 0b1, zeroed significand
-const SMALLEST_NORMAL_BITS: u16 = 0x0400;
-
-/// First pattern over the mantissa
-const NAN_MASK1: u16 = 0x02aa;
-
-/// Second pattern over the mantissa
-const NAN_MASK2: u16 = 0x0155;
-
 /// Compare by representation
 #[allow(unused_macros)]
 macro_rules! assert_f16_biteq {
@@ -53,446 +31,6 @@ macro_rules! assert_f16_biteq {
 }
 
 #[test]
-fn test_num_f16() {
-    crate::test_num(10f16, 2f16);
-}
-
-// FIXME(f16_f128,miri): many of these have to be disabled since miri does not yet support
-// the intrinsics.
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_min_nan() {
-    assert_eq!(f16::NAN.min(2.0), 2.0);
-    assert_eq!(2.0f16.min(f16::NAN), 2.0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_max_nan() {
-    assert_eq!(f16::NAN.max(2.0), 2.0);
-    assert_eq!(2.0f16.max(f16::NAN), 2.0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_minimum() {
-    assert!(f16::NAN.minimum(2.0).is_nan());
-    assert!(2.0f16.minimum(f16::NAN).is_nan());
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_maximum() {
-    assert!(f16::NAN.maximum(2.0).is_nan());
-    assert!(2.0f16.maximum(f16::NAN).is_nan());
-}
-
-#[test]
-fn test_nan() {
-    let nan: f16 = f16::NAN;
-    assert!(nan.is_nan());
-    assert!(!nan.is_infinite());
-    assert!(!nan.is_finite());
-    assert!(nan.is_sign_positive());
-    assert!(!nan.is_sign_negative());
-    assert!(!nan.is_normal());
-    assert_eq!(Fp::Nan, nan.classify());
-    // Ensure the quiet bit is set.
-    assert!(nan.to_bits() & (1 << (f16::MANTISSA_DIGITS - 2)) != 0);
-}
-
-#[test]
-fn test_infinity() {
-    let inf: f16 = f16::INFINITY;
-    assert!(inf.is_infinite());
-    assert!(!inf.is_finite());
-    assert!(inf.is_sign_positive());
-    assert!(!inf.is_sign_negative());
-    assert!(!inf.is_nan());
-    assert!(!inf.is_normal());
-    assert_eq!(Fp::Infinite, inf.classify());
-}
-
-#[test]
-fn test_neg_infinity() {
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    assert!(neg_inf.is_infinite());
-    assert!(!neg_inf.is_finite());
-    assert!(!neg_inf.is_sign_positive());
-    assert!(neg_inf.is_sign_negative());
-    assert!(!neg_inf.is_nan());
-    assert!(!neg_inf.is_normal());
-    assert_eq!(Fp::Infinite, neg_inf.classify());
-}
-
-#[test]
-fn test_zero() {
-    let zero: f16 = 0.0f16;
-    assert_eq!(0.0, zero);
-    assert!(!zero.is_infinite());
-    assert!(zero.is_finite());
-    assert!(zero.is_sign_positive());
-    assert!(!zero.is_sign_negative());
-    assert!(!zero.is_nan());
-    assert!(!zero.is_normal());
-    assert_eq!(Fp::Zero, zero.classify());
-}
-
-#[test]
-fn test_neg_zero() {
-    let neg_zero: f16 = -0.0;
-    assert_eq!(0.0, neg_zero);
-    assert!(!neg_zero.is_infinite());
-    assert!(neg_zero.is_finite());
-    assert!(!neg_zero.is_sign_positive());
-    assert!(neg_zero.is_sign_negative());
-    assert!(!neg_zero.is_nan());
-    assert!(!neg_zero.is_normal());
-    assert_eq!(Fp::Zero, neg_zero.classify());
-}
-
-#[test]
-fn test_one() {
-    let one: f16 = 1.0f16;
-    assert_eq!(1.0, one);
-    assert!(!one.is_infinite());
-    assert!(one.is_finite());
-    assert!(one.is_sign_positive());
-    assert!(!one.is_sign_negative());
-    assert!(!one.is_nan());
-    assert!(one.is_normal());
-    assert_eq!(Fp::Normal, one.classify());
-}
-
-#[test]
-fn test_is_nan() {
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    assert!(nan.is_nan());
-    assert!(!0.0f16.is_nan());
-    assert!(!5.3f16.is_nan());
-    assert!(!(-10.732f16).is_nan());
-    assert!(!inf.is_nan());
-    assert!(!neg_inf.is_nan());
-}
-
-#[test]
-fn test_is_infinite() {
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    assert!(!nan.is_infinite());
-    assert!(inf.is_infinite());
-    assert!(neg_inf.is_infinite());
-    assert!(!0.0f16.is_infinite());
-    assert!(!42.8f16.is_infinite());
-    assert!(!(-109.2f16).is_infinite());
-}
-
-#[test]
-fn test_is_finite() {
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    assert!(!nan.is_finite());
-    assert!(!inf.is_finite());
-    assert!(!neg_inf.is_finite());
-    assert!(0.0f16.is_finite());
-    assert!(42.8f16.is_finite());
-    assert!((-109.2f16).is_finite());
-}
-
-#[test]
-fn test_is_normal() {
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    let zero: f16 = 0.0f16;
-    let neg_zero: f16 = -0.0;
-    assert!(!nan.is_normal());
-    assert!(!inf.is_normal());
-    assert!(!neg_inf.is_normal());
-    assert!(!zero.is_normal());
-    assert!(!neg_zero.is_normal());
-    assert!(1f16.is_normal());
-    assert!(1e-4f16.is_normal());
-    assert!(!1e-5f16.is_normal());
-}
-
-#[test]
-fn test_classify() {
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    let zero: f16 = 0.0f16;
-    let neg_zero: f16 = -0.0;
-    assert_eq!(nan.classify(), Fp::Nan);
-    assert_eq!(inf.classify(), Fp::Infinite);
-    assert_eq!(neg_inf.classify(), Fp::Infinite);
-    assert_eq!(zero.classify(), Fp::Zero);
-    assert_eq!(neg_zero.classify(), Fp::Zero);
-    assert_eq!(1f16.classify(), Fp::Normal);
-    assert_eq!(1e-4f16.classify(), Fp::Normal);
-    assert_eq!(1e-5f16.classify(), Fp::Subnormal);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_floor() {
-    assert_approx_eq!(1.0f16.floor(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.3f16.floor(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.5f16.floor(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.7f16.floor(), 1.0f16, TOL_0);
-    assert_approx_eq!(0.0f16.floor(), 0.0f16, TOL_0);
-    assert_approx_eq!((-0.0f16).floor(), -0.0f16, TOL_0);
-    assert_approx_eq!((-1.0f16).floor(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.3f16).floor(), -2.0f16, TOL_0);
-    assert_approx_eq!((-1.5f16).floor(), -2.0f16, TOL_0);
-    assert_approx_eq!((-1.7f16).floor(), -2.0f16, TOL_0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_ceil() {
-    assert_approx_eq!(1.0f16.ceil(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.3f16.ceil(), 2.0f16, TOL_0);
-    assert_approx_eq!(1.5f16.ceil(), 2.0f16, TOL_0);
-    assert_approx_eq!(1.7f16.ceil(), 2.0f16, TOL_0);
-    assert_approx_eq!(0.0f16.ceil(), 0.0f16, TOL_0);
-    assert_approx_eq!((-0.0f16).ceil(), -0.0f16, TOL_0);
-    assert_approx_eq!((-1.0f16).ceil(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.3f16).ceil(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.5f16).ceil(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.7f16).ceil(), -1.0f16, TOL_0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_round() {
-    assert_approx_eq!(2.5f16.round(), 3.0f16, TOL_0);
-    assert_approx_eq!(1.0f16.round(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.3f16.round(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.5f16.round(), 2.0f16, TOL_0);
-    assert_approx_eq!(1.7f16.round(), 2.0f16, TOL_0);
-    assert_approx_eq!(0.0f16.round(), 0.0f16, TOL_0);
-    assert_approx_eq!((-0.0f16).round(), -0.0f16, TOL_0);
-    assert_approx_eq!((-1.0f16).round(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.3f16).round(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.5f16).round(), -2.0f16, TOL_0);
-    assert_approx_eq!((-1.7f16).round(), -2.0f16, TOL_0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_round_ties_even() {
-    assert_approx_eq!(2.5f16.round_ties_even(), 2.0f16, TOL_0);
-    assert_approx_eq!(1.0f16.round_ties_even(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.3f16.round_ties_even(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.5f16.round_ties_even(), 2.0f16, TOL_0);
-    assert_approx_eq!(1.7f16.round_ties_even(), 2.0f16, TOL_0);
-    assert_approx_eq!(0.0f16.round_ties_even(), 0.0f16, TOL_0);
-    assert_approx_eq!((-0.0f16).round_ties_even(), -0.0f16, TOL_0);
-    assert_approx_eq!((-1.0f16).round_ties_even(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.3f16).round_ties_even(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.5f16).round_ties_even(), -2.0f16, TOL_0);
-    assert_approx_eq!((-1.7f16).round_ties_even(), -2.0f16, TOL_0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_trunc() {
-    assert_approx_eq!(1.0f16.trunc(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.3f16.trunc(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.5f16.trunc(), 1.0f16, TOL_0);
-    assert_approx_eq!(1.7f16.trunc(), 1.0f16, TOL_0);
-    assert_approx_eq!(0.0f16.trunc(), 0.0f16, TOL_0);
-    assert_approx_eq!((-0.0f16).trunc(), -0.0f16, TOL_0);
-    assert_approx_eq!((-1.0f16).trunc(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.3f16).trunc(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.5f16).trunc(), -1.0f16, TOL_0);
-    assert_approx_eq!((-1.7f16).trunc(), -1.0f16, TOL_0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_fract() {
-    assert_approx_eq!(1.0f16.fract(), 0.0f16, TOL_0);
-    assert_approx_eq!(1.3f16.fract(), 0.3f16, TOL_0);
-    assert_approx_eq!(1.5f16.fract(), 0.5f16, TOL_0);
-    assert_approx_eq!(1.7f16.fract(), 0.7f16, TOL_0);
-    assert_approx_eq!(0.0f16.fract(), 0.0f16, TOL_0);
-    assert_approx_eq!((-0.0f16).fract(), -0.0f16, TOL_0);
-    assert_approx_eq!((-1.0f16).fract(), -0.0f16, TOL_0);
-    assert_approx_eq!((-1.3f16).fract(), -0.3f16, TOL_0);
-    assert_approx_eq!((-1.5f16).fract(), -0.5f16, TOL_0);
-    assert_approx_eq!((-1.7f16).fract(), -0.7f16, TOL_0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_abs() {
-    assert_eq!(f16::INFINITY.abs(), f16::INFINITY);
-    assert_eq!(1f16.abs(), 1f16);
-    assert_eq!(0f16.abs(), 0f16);
-    assert_eq!((-0f16).abs(), 0f16);
-    assert_eq!((-1f16).abs(), 1f16);
-    assert_eq!(f16::NEG_INFINITY.abs(), f16::INFINITY);
-    assert_eq!((1f16 / f16::NEG_INFINITY).abs(), 0f16);
-    assert!(f16::NAN.abs().is_nan());
-}
-
-#[test]
-fn test_is_sign_positive() {
-    assert!(f16::INFINITY.is_sign_positive());
-    assert!(1f16.is_sign_positive());
-    assert!(0f16.is_sign_positive());
-    assert!(!(-0f16).is_sign_positive());
-    assert!(!(-1f16).is_sign_positive());
-    assert!(!f16::NEG_INFINITY.is_sign_positive());
-    assert!(!(1f16 / f16::NEG_INFINITY).is_sign_positive());
-    assert!(f16::NAN.is_sign_positive());
-    assert!(!(-f16::NAN).is_sign_positive());
-}
-
-#[test]
-fn test_is_sign_negative() {
-    assert!(!f16::INFINITY.is_sign_negative());
-    assert!(!1f16.is_sign_negative());
-    assert!(!0f16.is_sign_negative());
-    assert!((-0f16).is_sign_negative());
-    assert!((-1f16).is_sign_negative());
-    assert!(f16::NEG_INFINITY.is_sign_negative());
-    assert!((1f16 / f16::NEG_INFINITY).is_sign_negative());
-    assert!(!f16::NAN.is_sign_negative());
-    assert!((-f16::NAN).is_sign_negative());
-}
-
-#[test]
-fn test_next_up() {
-    let tiny = f16::from_bits(TINY_BITS);
-    let tiny_up = f16::from_bits(TINY_UP_BITS);
-    let max_down = f16::from_bits(MAX_DOWN_BITS);
-    let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS);
-    let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS);
-    assert_f16_biteq!(f16::NEG_INFINITY.next_up(), f16::MIN);
-    assert_f16_biteq!(f16::MIN.next_up(), -max_down);
-    assert_f16_biteq!((-1.0 - f16::EPSILON).next_up(), -1.0);
-    assert_f16_biteq!((-smallest_normal).next_up(), -largest_subnormal);
-    assert_f16_biteq!((-tiny_up).next_up(), -tiny);
-    assert_f16_biteq!((-tiny).next_up(), -0.0f16);
-    assert_f16_biteq!((-0.0f16).next_up(), tiny);
-    assert_f16_biteq!(0.0f16.next_up(), tiny);
-    assert_f16_biteq!(tiny.next_up(), tiny_up);
-    assert_f16_biteq!(largest_subnormal.next_up(), smallest_normal);
-    assert_f16_biteq!(1.0f16.next_up(), 1.0 + f16::EPSILON);
-    assert_f16_biteq!(f16::MAX.next_up(), f16::INFINITY);
-    assert_f16_biteq!(f16::INFINITY.next_up(), f16::INFINITY);
-
-    // Check that NaNs roundtrip.
-    let nan0 = f16::NAN;
-    let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1);
-    let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2);
-    assert_f16_biteq!(nan0.next_up(), nan0);
-    assert_f16_biteq!(nan1.next_up(), nan1);
-    assert_f16_biteq!(nan2.next_up(), nan2);
-}
-
-#[test]
-fn test_next_down() {
-    let tiny = f16::from_bits(TINY_BITS);
-    let tiny_up = f16::from_bits(TINY_UP_BITS);
-    let max_down = f16::from_bits(MAX_DOWN_BITS);
-    let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS);
-    let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS);
-    assert_f16_biteq!(f16::NEG_INFINITY.next_down(), f16::NEG_INFINITY);
-    assert_f16_biteq!(f16::MIN.next_down(), f16::NEG_INFINITY);
-    assert_f16_biteq!((-max_down).next_down(), f16::MIN);
-    assert_f16_biteq!((-1.0f16).next_down(), -1.0 - f16::EPSILON);
-    assert_f16_biteq!((-largest_subnormal).next_down(), -smallest_normal);
-    assert_f16_biteq!((-tiny).next_down(), -tiny_up);
-    assert_f16_biteq!((-0.0f16).next_down(), -tiny);
-    assert_f16_biteq!((0.0f16).next_down(), -tiny);
-    assert_f16_biteq!(tiny.next_down(), 0.0f16);
-    assert_f16_biteq!(tiny_up.next_down(), tiny);
-    assert_f16_biteq!(smallest_normal.next_down(), largest_subnormal);
-    assert_f16_biteq!((1.0 + f16::EPSILON).next_down(), 1.0f16);
-    assert_f16_biteq!(f16::MAX.next_down(), max_down);
-    assert_f16_biteq!(f16::INFINITY.next_down(), f16::MAX);
-
-    // Check that NaNs roundtrip.
-    let nan0 = f16::NAN;
-    let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1);
-    let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2);
-    assert_f16_biteq!(nan0.next_down(), nan0);
-    assert_f16_biteq!(nan1.next_down(), nan1);
-    assert_f16_biteq!(nan2.next_down(), nan2);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_mul_add() {
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    assert_approx_eq!(12.3f16.mul_add(4.5, 6.7), 62.05, TOL_P2);
-    assert_approx_eq!((-12.3f16).mul_add(-4.5, -6.7), 48.65, TOL_P2);
-    assert_approx_eq!(0.0f16.mul_add(8.9, 1.2), 1.2, TOL_0);
-    assert_approx_eq!(3.4f16.mul_add(-0.0, 5.6), 5.6, TOL_0);
-    assert!(nan.mul_add(7.8, 9.0).is_nan());
-    assert_eq!(inf.mul_add(7.8, 9.0), inf);
-    assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
-    assert_eq!(8.9f16.mul_add(inf, 3.2), inf);
-    assert_eq!((-3.2f16).mul_add(2.4, neg_inf), neg_inf);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_recip() {
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    assert_eq!(1.0f16.recip(), 1.0);
-    assert_eq!(2.0f16.recip(), 0.5);
-    assert_eq!((-0.4f16).recip(), -2.5);
-    assert_eq!(0.0f16.recip(), inf);
-    assert_approx_eq!(f16::MAX.recip(), 1.526624e-5f16, 1e-4);
-    assert!(nan.recip().is_nan());
-    assert_eq!(inf.recip(), 0.0);
-    assert_eq!(neg_inf.recip(), 0.0);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_powi() {
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    assert_eq!(1.0f16.powi(1), 1.0);
-    assert_approx_eq!((-3.1f16).powi(2), 9.61, TOL_0);
-    assert_approx_eq!(5.9f16.powi(-2), 0.028727, TOL_N2);
-    assert_eq!(8.3f16.powi(0), 1.0);
-    assert!(nan.powi(2).is_nan());
-    assert_eq!(inf.powi(3), inf);
-    assert_eq!(neg_inf.powi(2), inf);
-}
-
-#[test]
 #[cfg(not(miri))]
 #[cfg(target_has_reliable_f16_math)]
 fn test_powf() {
@@ -513,19 +51,6 @@ fn test_powf() {
 #[test]
 #[cfg(not(miri))]
 #[cfg(target_has_reliable_f16_math)]
-fn test_sqrt_domain() {
-    assert!(f16::NAN.sqrt().is_nan());
-    assert!(f16::NEG_INFINITY.sqrt().is_nan());
-    assert!((-1.0f16).sqrt().is_nan());
-    assert_eq!((-0.0f16).sqrt(), -0.0);
-    assert_eq!(0.0f16.sqrt(), 0.0);
-    assert_eq!(1.0f16.sqrt(), 1.0);
-    assert_eq!(f16::INFINITY.sqrt(), f16::INFINITY);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
 fn test_exp() {
     assert_eq!(1.0, 0.0f16.exp());
     assert_approx_eq!(2.718282, 1.0f16.exp(), TOL_0);
@@ -629,36 +154,6 @@ fn test_log10() {
 }
 
 #[test]
-fn test_to_degrees() {
-    let pi: f16 = consts::PI;
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    assert_eq!(0.0f16.to_degrees(), 0.0);
-    assert_approx_eq!((-5.8f16).to_degrees(), -332.315521, TOL_P2);
-    assert_approx_eq!(pi.to_degrees(), 180.0, TOL_P2);
-    assert!(nan.to_degrees().is_nan());
-    assert_eq!(inf.to_degrees(), inf);
-    assert_eq!(neg_inf.to_degrees(), neg_inf);
-    assert_eq!(1_f16.to_degrees(), 57.2957795130823208767981548141051703);
-}
-
-#[test]
-fn test_to_radians() {
-    let pi: f16 = consts::PI;
-    let nan: f16 = f16::NAN;
-    let inf: f16 = f16::INFINITY;
-    let neg_inf: f16 = f16::NEG_INFINITY;
-    assert_eq!(0.0f16.to_radians(), 0.0);
-    assert_approx_eq!(154.6f16.to_radians(), 2.698279, TOL_0);
-    assert_approx_eq!((-332.31f16).to_radians(), -5.799903, TOL_0);
-    assert_approx_eq!(180.0f16.to_radians(), pi, TOL_0);
-    assert!(nan.to_radians().is_nan());
-    assert_eq!(inf.to_radians(), inf);
-    assert_eq!(neg_inf.to_radians(), neg_inf);
-}
-
-#[test]
 #[cfg(not(miri))]
 #[cfg(target_has_reliable_f16_math)]
 fn test_asinh() {
@@ -803,220 +298,3 @@ fn test_real_consts() {
         assert_approx_eq!(ln_10, 10f16.ln(), TOL_0);
     }
 }
-
-#[test]
-fn test_float_bits_conv() {
-    assert_eq!((1f16).to_bits(), 0x3c00);
-    assert_eq!((12.5f16).to_bits(), 0x4a40);
-    assert_eq!((1337f16).to_bits(), 0x6539);
-    assert_eq!((-14.25f16).to_bits(), 0xcb20);
-    assert_approx_eq!(f16::from_bits(0x3c00), 1.0, TOL_0);
-    assert_approx_eq!(f16::from_bits(0x4a40), 12.5, TOL_0);
-    assert_approx_eq!(f16::from_bits(0x6539), 1337.0, TOL_P4);
-    assert_approx_eq!(f16::from_bits(0xcb20), -14.25, TOL_0);
-
-    // Check that NaNs roundtrip their bits regardless of signaling-ness
-    let masked_nan1 = f16::NAN.to_bits() ^ NAN_MASK1;
-    let masked_nan2 = f16::NAN.to_bits() ^ NAN_MASK2;
-    assert!(f16::from_bits(masked_nan1).is_nan());
-    assert!(f16::from_bits(masked_nan2).is_nan());
-
-    assert_eq!(f16::from_bits(masked_nan1).to_bits(), masked_nan1);
-    assert_eq!(f16::from_bits(masked_nan2).to_bits(), masked_nan2);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_min_greater_than_max() {
-    let _ = 1.0f16.clamp(3.0, 1.0);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_min_is_nan() {
-    let _ = 1.0f16.clamp(f16::NAN, 1.0);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_max_is_nan() {
-    let _ = 1.0f16.clamp(3.0, f16::NAN);
-}
-
-#[test]
-#[cfg(not(miri))]
-#[cfg(target_has_reliable_f16_math)]
-fn test_total_cmp() {
-    use core::cmp::Ordering;
-
-    fn quiet_bit_mask() -> u16 {
-        1 << (f16::MANTISSA_DIGITS - 2)
-    }
-
-    fn min_subnorm() -> f16 {
-        f16::MIN_POSITIVE / f16::powf(2.0, f16::MANTISSA_DIGITS as f16 - 1.0)
-    }
-
-    fn max_subnorm() -> f16 {
-        f16::MIN_POSITIVE - min_subnorm()
-    }
-
-    fn q_nan() -> f16 {
-        f16::from_bits(f16::NAN.to_bits() | quiet_bit_mask())
-    }
-
-    fn s_nan() -> f16 {
-        f16::from_bits((f16::NAN.to_bits() & !quiet_bit_mask()) + 42)
-    }
-
-    assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan()));
-    assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Equal, (-f16::INFINITY).total_cmp(&-f16::INFINITY));
-    assert_eq!(Ordering::Equal, (-f16::MAX).total_cmp(&-f16::MAX));
-    assert_eq!(Ordering::Equal, (-2.5_f16).total_cmp(&-2.5));
-    assert_eq!(Ordering::Equal, (-1.0_f16).total_cmp(&-1.0));
-    assert_eq!(Ordering::Equal, (-1.5_f16).total_cmp(&-1.5));
-    assert_eq!(Ordering::Equal, (-0.5_f16).total_cmp(&-0.5));
-    assert_eq!(Ordering::Equal, (-f16::MIN_POSITIVE).total_cmp(&-f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Equal, (-0.0_f16).total_cmp(&-0.0));
-    assert_eq!(Ordering::Equal, 0.0_f16.total_cmp(&0.0));
-    assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Equal, f16::MIN_POSITIVE.total_cmp(&f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Equal, 0.5_f16.total_cmp(&0.5));
-    assert_eq!(Ordering::Equal, 1.0_f16.total_cmp(&1.0));
-    assert_eq!(Ordering::Equal, 1.5_f16.total_cmp(&1.5));
-    assert_eq!(Ordering::Equal, 2.5_f16.total_cmp(&2.5));
-    assert_eq!(Ordering::Equal, f16::MAX.total_cmp(&f16::MAX));
-    assert_eq!(Ordering::Equal, f16::INFINITY.total_cmp(&f16::INFINITY));
-    assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan()));
-    assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan()));
-
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY));
-    assert_eq!(Ordering::Less, (-f16::INFINITY).total_cmp(&-f16::MAX));
-    assert_eq!(Ordering::Less, (-f16::MAX).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-2.5_f16).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-1.5_f16).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-1.0_f16).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-0.5_f16).total_cmp(&-f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-f16::MIN_POSITIVE).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-0.0_f16).total_cmp(&0.0));
-    assert_eq!(Ordering::Less, 0.0_f16.total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, f16::MIN_POSITIVE.total_cmp(&0.5));
-    assert_eq!(Ordering::Less, 0.5_f16.total_cmp(&1.0));
-    assert_eq!(Ordering::Less, 1.0_f16.total_cmp(&1.5));
-    assert_eq!(Ordering::Less, 1.5_f16.total_cmp(&2.5));
-    assert_eq!(Ordering::Less, 2.5_f16.total_cmp(&f16::MAX));
-    assert_eq!(Ordering::Less, f16::MAX.total_cmp(&f16::INFINITY));
-    assert_eq!(Ordering::Less, f16::INFINITY.total_cmp(&s_nan()));
-    assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan()));
-
-    assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan()));
-    assert_eq!(Ordering::Greater, (-f16::INFINITY).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Greater, (-f16::MAX).total_cmp(&-f16::INFINITY));
-    assert_eq!(Ordering::Greater, (-2.5_f16).total_cmp(&-f16::MAX));
-    assert_eq!(Ordering::Greater, (-1.5_f16).total_cmp(&-2.5));
-    assert_eq!(Ordering::Greater, (-1.0_f16).total_cmp(&-1.5));
-    assert_eq!(Ordering::Greater, (-0.5_f16).total_cmp(&-1.0));
-    assert_eq!(Ordering::Greater, (-f16::MIN_POSITIVE).total_cmp(&-0.5));
-    assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Greater, (-0.0_f16).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Greater, 0.0_f16.total_cmp(&-0.0));
-    assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0));
-    assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Greater, f16::MIN_POSITIVE.total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Greater, 0.5_f16.total_cmp(&f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Greater, 1.0_f16.total_cmp(&0.5));
-    assert_eq!(Ordering::Greater, 1.5_f16.total_cmp(&1.0));
-    assert_eq!(Ordering::Greater, 2.5_f16.total_cmp(&1.5));
-    assert_eq!(Ordering::Greater, f16::MAX.total_cmp(&2.5));
-    assert_eq!(Ordering::Greater, f16::INFINITY.total_cmp(&f16::MAX));
-    assert_eq!(Ordering::Greater, s_nan().total_cmp(&f16::INFINITY));
-    assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan()));
-
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::INFINITY));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MAX));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MAX));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::INFINITY));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan()));
-
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MAX));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MAX));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::INFINITY));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
-}
-
-#[test]
-fn test_algebraic() {
-    let a: f16 = 123.0;
-    let b: f16 = 456.0;
-
-    // Check that individual operations match their primitive counterparts.
-    //
-    // This is a check of current implementations and does NOT imply any form of
-    // guarantee about future behavior. The compiler reserves the right to make
-    // these operations inexact matches in the future.
-    let eps_add = if cfg!(miri) { 1e1 } else { 0.0 };
-    let eps_mul = if cfg!(miri) { 1e3 } else { 0.0 };
-    let eps_div = if cfg!(miri) { 1e0 } else { 0.0 };
-
-    assert_approx_eq!(a.algebraic_add(b), a + b, eps_add);
-    assert_approx_eq!(a.algebraic_sub(b), a - b, eps_add);
-    assert_approx_eq!(a.algebraic_mul(b), a * b, eps_mul);
-    assert_approx_eq!(a.algebraic_div(b), a / b, eps_div);
-    assert_approx_eq!(a.algebraic_rem(b), a % b, eps_div);
-}
-
-#[test]
-fn test_from() {
-    assert_eq!(f16::from(false), 0.0);
-    assert_eq!(f16::from(true), 1.0);
-    assert_eq!(f16::from(u8::MIN), 0.0);
-    assert_eq!(f16::from(42_u8), 42.0);
-    assert_eq!(f16::from(u8::MAX), 255.0);
-    assert_eq!(f16::from(i8::MIN), -128.0);
-    assert_eq!(f16::from(42_i8), 42.0);
-    assert_eq!(f16::from(i8::MAX), 127.0);
-}
diff --git a/library/std/tests/floats/f32.rs b/library/std/tests/floats/f32.rs
index 9af23afc5bb..e54f227bb77 100644
--- a/library/std/tests/floats/f32.rs
+++ b/library/std/tests/floats/f32.rs
@@ -1,26 +1,4 @@
 use std::f32::consts;
-use std::num::FpCategory as Fp;
-
-/// Smallest number
-const TINY_BITS: u32 = 0x1;
-
-/// Next smallest number
-const TINY_UP_BITS: u32 = 0x2;
-
-/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0
-const MAX_DOWN_BITS: u32 = 0x7f7f_fffe;
-
-/// Zeroed exponent, full significant
-const LARGEST_SUBNORMAL_BITS: u32 = 0x007f_ffff;
-
-/// Exponent = 0b1, zeroed significand
-const SMALLEST_NORMAL_BITS: u32 = 0x0080_0000;
-
-/// First pattern over the mantissa
-const NAN_MASK1: u32 = 0x002a_aaaa;
-
-/// Second pattern over the mantissa
-const NAN_MASK2: u32 = 0x0055_5555;
 
 #[allow(unused_macros)]
 macro_rules! assert_f32_biteq {
@@ -34,426 +12,6 @@ macro_rules! assert_f32_biteq {
 }
 
 #[test]
-fn test_num_f32() {
-    crate::test_num(10f32, 2f32);
-}
-
-#[test]
-fn test_min_nan() {
-    assert_eq!(f32::NAN.min(2.0), 2.0);
-    assert_eq!(2.0f32.min(f32::NAN), 2.0);
-}
-
-#[test]
-fn test_max_nan() {
-    assert_eq!(f32::NAN.max(2.0), 2.0);
-    assert_eq!(2.0f32.max(f32::NAN), 2.0);
-}
-
-#[test]
-fn test_minimum() {
-    assert!(f32::NAN.minimum(2.0).is_nan());
-    assert!(2.0f32.minimum(f32::NAN).is_nan());
-}
-
-#[test]
-fn test_maximum() {
-    assert!(f32::NAN.maximum(2.0).is_nan());
-    assert!(2.0f32.maximum(f32::NAN).is_nan());
-}
-
-#[test]
-fn test_nan() {
-    let nan: f32 = f32::NAN;
-    assert!(nan.is_nan());
-    assert!(!nan.is_infinite());
-    assert!(!nan.is_finite());
-    assert!(!nan.is_normal());
-    assert!(nan.is_sign_positive());
-    assert!(!nan.is_sign_negative());
-    assert_eq!(Fp::Nan, nan.classify());
-    // Ensure the quiet bit is set.
-    assert!(nan.to_bits() & (1 << (f32::MANTISSA_DIGITS - 2)) != 0);
-}
-
-#[test]
-fn test_infinity() {
-    let inf: f32 = f32::INFINITY;
-    assert!(inf.is_infinite());
-    assert!(!inf.is_finite());
-    assert!(inf.is_sign_positive());
-    assert!(!inf.is_sign_negative());
-    assert!(!inf.is_nan());
-    assert!(!inf.is_normal());
-    assert_eq!(Fp::Infinite, inf.classify());
-}
-
-#[test]
-fn test_neg_infinity() {
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    assert!(neg_inf.is_infinite());
-    assert!(!neg_inf.is_finite());
-    assert!(!neg_inf.is_sign_positive());
-    assert!(neg_inf.is_sign_negative());
-    assert!(!neg_inf.is_nan());
-    assert!(!neg_inf.is_normal());
-    assert_eq!(Fp::Infinite, neg_inf.classify());
-}
-
-#[test]
-fn test_zero() {
-    let zero: f32 = 0.0f32;
-    assert_eq!(0.0, zero);
-    assert!(!zero.is_infinite());
-    assert!(zero.is_finite());
-    assert!(zero.is_sign_positive());
-    assert!(!zero.is_sign_negative());
-    assert!(!zero.is_nan());
-    assert!(!zero.is_normal());
-    assert_eq!(Fp::Zero, zero.classify());
-}
-
-#[test]
-fn test_neg_zero() {
-    let neg_zero: f32 = -0.0;
-    assert_eq!(0.0, neg_zero);
-    assert!(!neg_zero.is_infinite());
-    assert!(neg_zero.is_finite());
-    assert!(!neg_zero.is_sign_positive());
-    assert!(neg_zero.is_sign_negative());
-    assert!(!neg_zero.is_nan());
-    assert!(!neg_zero.is_normal());
-    assert_eq!(Fp::Zero, neg_zero.classify());
-}
-
-#[test]
-fn test_one() {
-    let one: f32 = 1.0f32;
-    assert_eq!(1.0, one);
-    assert!(!one.is_infinite());
-    assert!(one.is_finite());
-    assert!(one.is_sign_positive());
-    assert!(!one.is_sign_negative());
-    assert!(!one.is_nan());
-    assert!(one.is_normal());
-    assert_eq!(Fp::Normal, one.classify());
-}
-
-#[test]
-fn test_is_nan() {
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    assert!(nan.is_nan());
-    assert!(!0.0f32.is_nan());
-    assert!(!5.3f32.is_nan());
-    assert!(!(-10.732f32).is_nan());
-    assert!(!inf.is_nan());
-    assert!(!neg_inf.is_nan());
-}
-
-#[test]
-fn test_is_infinite() {
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    assert!(!nan.is_infinite());
-    assert!(inf.is_infinite());
-    assert!(neg_inf.is_infinite());
-    assert!(!0.0f32.is_infinite());
-    assert!(!42.8f32.is_infinite());
-    assert!(!(-109.2f32).is_infinite());
-}
-
-#[test]
-fn test_is_finite() {
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    assert!(!nan.is_finite());
-    assert!(!inf.is_finite());
-    assert!(!neg_inf.is_finite());
-    assert!(0.0f32.is_finite());
-    assert!(42.8f32.is_finite());
-    assert!((-109.2f32).is_finite());
-}
-
-#[test]
-fn test_is_normal() {
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    let zero: f32 = 0.0f32;
-    let neg_zero: f32 = -0.0;
-    assert!(!nan.is_normal());
-    assert!(!inf.is_normal());
-    assert!(!neg_inf.is_normal());
-    assert!(!zero.is_normal());
-    assert!(!neg_zero.is_normal());
-    assert!(1f32.is_normal());
-    assert!(1e-37f32.is_normal());
-    assert!(!1e-38f32.is_normal());
-}
-
-#[test]
-fn test_classify() {
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    let zero: f32 = 0.0f32;
-    let neg_zero: f32 = -0.0;
-    assert_eq!(nan.classify(), Fp::Nan);
-    assert_eq!(inf.classify(), Fp::Infinite);
-    assert_eq!(neg_inf.classify(), Fp::Infinite);
-    assert_eq!(zero.classify(), Fp::Zero);
-    assert_eq!(neg_zero.classify(), Fp::Zero);
-    assert_eq!(1f32.classify(), Fp::Normal);
-    assert_eq!(1e-37f32.classify(), Fp::Normal);
-    assert_eq!(1e-38f32.classify(), Fp::Subnormal);
-}
-
-#[test]
-fn test_floor() {
-    assert_approx_eq!(1.0f32.floor(), 1.0f32);
-    assert_approx_eq!(1.3f32.floor(), 1.0f32);
-    assert_approx_eq!(1.5f32.floor(), 1.0f32);
-    assert_approx_eq!(1.7f32.floor(), 1.0f32);
-    assert_approx_eq!(0.0f32.floor(), 0.0f32);
-    assert_approx_eq!((-0.0f32).floor(), -0.0f32);
-    assert_approx_eq!((-1.0f32).floor(), -1.0f32);
-    assert_approx_eq!((-1.3f32).floor(), -2.0f32);
-    assert_approx_eq!((-1.5f32).floor(), -2.0f32);
-    assert_approx_eq!((-1.7f32).floor(), -2.0f32);
-}
-
-#[test]
-fn test_ceil() {
-    assert_approx_eq!(1.0f32.ceil(), 1.0f32);
-    assert_approx_eq!(1.3f32.ceil(), 2.0f32);
-    assert_approx_eq!(1.5f32.ceil(), 2.0f32);
-    assert_approx_eq!(1.7f32.ceil(), 2.0f32);
-    assert_approx_eq!(0.0f32.ceil(), 0.0f32);
-    assert_approx_eq!((-0.0f32).ceil(), -0.0f32);
-    assert_approx_eq!((-1.0f32).ceil(), -1.0f32);
-    assert_approx_eq!((-1.3f32).ceil(), -1.0f32);
-    assert_approx_eq!((-1.5f32).ceil(), -1.0f32);
-    assert_approx_eq!((-1.7f32).ceil(), -1.0f32);
-}
-
-#[test]
-fn test_round() {
-    assert_approx_eq!(2.5f32.round(), 3.0f32);
-    assert_approx_eq!(1.0f32.round(), 1.0f32);
-    assert_approx_eq!(1.3f32.round(), 1.0f32);
-    assert_approx_eq!(1.5f32.round(), 2.0f32);
-    assert_approx_eq!(1.7f32.round(), 2.0f32);
-    assert_approx_eq!(0.0f32.round(), 0.0f32);
-    assert_approx_eq!((-0.0f32).round(), -0.0f32);
-    assert_approx_eq!((-1.0f32).round(), -1.0f32);
-    assert_approx_eq!((-1.3f32).round(), -1.0f32);
-    assert_approx_eq!((-1.5f32).round(), -2.0f32);
-    assert_approx_eq!((-1.7f32).round(), -2.0f32);
-}
-
-#[test]
-fn test_round_ties_even() {
-    assert_approx_eq!(2.5f32.round_ties_even(), 2.0f32);
-    assert_approx_eq!(1.0f32.round_ties_even(), 1.0f32);
-    assert_approx_eq!(1.3f32.round_ties_even(), 1.0f32);
-    assert_approx_eq!(1.5f32.round_ties_even(), 2.0f32);
-    assert_approx_eq!(1.7f32.round_ties_even(), 2.0f32);
-    assert_approx_eq!(0.0f32.round_ties_even(), 0.0f32);
-    assert_approx_eq!((-0.0f32).round_ties_even(), -0.0f32);
-    assert_approx_eq!((-1.0f32).round_ties_even(), -1.0f32);
-    assert_approx_eq!((-1.3f32).round_ties_even(), -1.0f32);
-    assert_approx_eq!((-1.5f32).round_ties_even(), -2.0f32);
-    assert_approx_eq!((-1.7f32).round_ties_even(), -2.0f32);
-}
-
-#[test]
-fn test_trunc() {
-    assert_approx_eq!(1.0f32.trunc(), 1.0f32);
-    assert_approx_eq!(1.3f32.trunc(), 1.0f32);
-    assert_approx_eq!(1.5f32.trunc(), 1.0f32);
-    assert_approx_eq!(1.7f32.trunc(), 1.0f32);
-    assert_approx_eq!(0.0f32.trunc(), 0.0f32);
-    assert_approx_eq!((-0.0f32).trunc(), -0.0f32);
-    assert_approx_eq!((-1.0f32).trunc(), -1.0f32);
-    assert_approx_eq!((-1.3f32).trunc(), -1.0f32);
-    assert_approx_eq!((-1.5f32).trunc(), -1.0f32);
-    assert_approx_eq!((-1.7f32).trunc(), -1.0f32);
-}
-
-#[test]
-fn test_fract() {
-    assert_approx_eq!(1.0f32.fract(), 0.0f32);
-    assert_approx_eq!(1.3f32.fract(), 0.3f32);
-    assert_approx_eq!(1.5f32.fract(), 0.5f32);
-    assert_approx_eq!(1.7f32.fract(), 0.7f32);
-    assert_approx_eq!(0.0f32.fract(), 0.0f32);
-    assert_approx_eq!((-0.0f32).fract(), -0.0f32);
-    assert_approx_eq!((-1.0f32).fract(), -0.0f32);
-    assert_approx_eq!((-1.3f32).fract(), -0.3f32);
-    assert_approx_eq!((-1.5f32).fract(), -0.5f32);
-    assert_approx_eq!((-1.7f32).fract(), -0.7f32);
-}
-
-#[test]
-fn test_abs() {
-    assert_eq!(f32::INFINITY.abs(), f32::INFINITY);
-    assert_eq!(1f32.abs(), 1f32);
-    assert_eq!(0f32.abs(), 0f32);
-    assert_eq!((-0f32).abs(), 0f32);
-    assert_eq!((-1f32).abs(), 1f32);
-    assert_eq!(f32::NEG_INFINITY.abs(), f32::INFINITY);
-    assert_eq!((1f32 / f32::NEG_INFINITY).abs(), 0f32);
-    assert!(f32::NAN.abs().is_nan());
-}
-
-#[test]
-fn test_signum() {
-    assert_eq!(f32::INFINITY.signum(), 1f32);
-    assert_eq!(1f32.signum(), 1f32);
-    assert_eq!(0f32.signum(), 1f32);
-    assert_eq!((-0f32).signum(), -1f32);
-    assert_eq!((-1f32).signum(), -1f32);
-    assert_eq!(f32::NEG_INFINITY.signum(), -1f32);
-    assert_eq!((1f32 / f32::NEG_INFINITY).signum(), -1f32);
-    assert!(f32::NAN.signum().is_nan());
-}
-
-#[test]
-fn test_is_sign_positive() {
-    assert!(f32::INFINITY.is_sign_positive());
-    assert!(1f32.is_sign_positive());
-    assert!(0f32.is_sign_positive());
-    assert!(!(-0f32).is_sign_positive());
-    assert!(!(-1f32).is_sign_positive());
-    assert!(!f32::NEG_INFINITY.is_sign_positive());
-    assert!(!(1f32 / f32::NEG_INFINITY).is_sign_positive());
-    assert!(f32::NAN.is_sign_positive());
-    assert!(!(-f32::NAN).is_sign_positive());
-}
-
-#[test]
-fn test_is_sign_negative() {
-    assert!(!f32::INFINITY.is_sign_negative());
-    assert!(!1f32.is_sign_negative());
-    assert!(!0f32.is_sign_negative());
-    assert!((-0f32).is_sign_negative());
-    assert!((-1f32).is_sign_negative());
-    assert!(f32::NEG_INFINITY.is_sign_negative());
-    assert!((1f32 / f32::NEG_INFINITY).is_sign_negative());
-    assert!(!f32::NAN.is_sign_negative());
-    assert!((-f32::NAN).is_sign_negative());
-}
-
-#[test]
-fn test_next_up() {
-    let tiny = f32::from_bits(TINY_BITS);
-    let tiny_up = f32::from_bits(TINY_UP_BITS);
-    let max_down = f32::from_bits(MAX_DOWN_BITS);
-    let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS);
-    let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS);
-    assert_f32_biteq!(f32::NEG_INFINITY.next_up(), f32::MIN);
-    assert_f32_biteq!(f32::MIN.next_up(), -max_down);
-    assert_f32_biteq!((-1.0 - f32::EPSILON).next_up(), -1.0);
-    assert_f32_biteq!((-smallest_normal).next_up(), -largest_subnormal);
-    assert_f32_biteq!((-tiny_up).next_up(), -tiny);
-    assert_f32_biteq!((-tiny).next_up(), -0.0f32);
-    assert_f32_biteq!((-0.0f32).next_up(), tiny);
-    assert_f32_biteq!(0.0f32.next_up(), tiny);
-    assert_f32_biteq!(tiny.next_up(), tiny_up);
-    assert_f32_biteq!(largest_subnormal.next_up(), smallest_normal);
-    assert_f32_biteq!(1.0f32.next_up(), 1.0 + f32::EPSILON);
-    assert_f32_biteq!(f32::MAX.next_up(), f32::INFINITY);
-    assert_f32_biteq!(f32::INFINITY.next_up(), f32::INFINITY);
-
-    // Check that NaNs roundtrip.
-    let nan0 = f32::NAN;
-    let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1);
-    let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2);
-    assert_f32_biteq!(nan0.next_up(), nan0);
-    assert_f32_biteq!(nan1.next_up(), nan1);
-    assert_f32_biteq!(nan2.next_up(), nan2);
-}
-
-#[test]
-fn test_next_down() {
-    let tiny = f32::from_bits(TINY_BITS);
-    let tiny_up = f32::from_bits(TINY_UP_BITS);
-    let max_down = f32::from_bits(MAX_DOWN_BITS);
-    let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS);
-    let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS);
-    assert_f32_biteq!(f32::NEG_INFINITY.next_down(), f32::NEG_INFINITY);
-    assert_f32_biteq!(f32::MIN.next_down(), f32::NEG_INFINITY);
-    assert_f32_biteq!((-max_down).next_down(), f32::MIN);
-    assert_f32_biteq!((-1.0f32).next_down(), -1.0 - f32::EPSILON);
-    assert_f32_biteq!((-largest_subnormal).next_down(), -smallest_normal);
-    assert_f32_biteq!((-tiny).next_down(), -tiny_up);
-    assert_f32_biteq!((-0.0f32).next_down(), -tiny);
-    assert_f32_biteq!((0.0f32).next_down(), -tiny);
-    assert_f32_biteq!(tiny.next_down(), 0.0f32);
-    assert_f32_biteq!(tiny_up.next_down(), tiny);
-    assert_f32_biteq!(smallest_normal.next_down(), largest_subnormal);
-    assert_f32_biteq!((1.0 + f32::EPSILON).next_down(), 1.0f32);
-    assert_f32_biteq!(f32::MAX.next_down(), max_down);
-    assert_f32_biteq!(f32::INFINITY.next_down(), f32::MAX);
-
-    // Check that NaNs roundtrip.
-    let nan0 = f32::NAN;
-    let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1);
-    let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2);
-    assert_f32_biteq!(nan0.next_down(), nan0);
-    assert_f32_biteq!(nan1.next_down(), nan1);
-    assert_f32_biteq!(nan2.next_down(), nan2);
-}
-
-#[test]
-fn test_mul_add() {
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    assert_approx_eq!(12.3f32.mul_add(4.5, 6.7), 62.05);
-    assert_approx_eq!((-12.3f32).mul_add(-4.5, -6.7), 48.65);
-    assert_approx_eq!(0.0f32.mul_add(8.9, 1.2), 1.2);
-    assert_approx_eq!(3.4f32.mul_add(-0.0, 5.6), 5.6);
-    assert!(nan.mul_add(7.8, 9.0).is_nan());
-    assert_eq!(inf.mul_add(7.8, 9.0), inf);
-    assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
-    assert_eq!(8.9f32.mul_add(inf, 3.2), inf);
-    assert_eq!((-3.2f32).mul_add(2.4, neg_inf), neg_inf);
-}
-
-#[test]
-fn test_recip() {
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    assert_eq!(1.0f32.recip(), 1.0);
-    assert_eq!(2.0f32.recip(), 0.5);
-    assert_eq!((-0.4f32).recip(), -2.5);
-    assert_eq!(0.0f32.recip(), inf);
-    assert!(nan.recip().is_nan());
-    assert_eq!(inf.recip(), 0.0);
-    assert_eq!(neg_inf.recip(), 0.0);
-}
-
-#[test]
-fn test_powi() {
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    assert_eq!(1.0f32.powi(1), 1.0);
-    assert_approx_eq!((-3.1f32).powi(2), 9.61);
-    assert_approx_eq!(5.9f32.powi(-2), 0.028727);
-    assert_eq!(8.3f32.powi(0), 1.0);
-    assert!(nan.powi(2).is_nan());
-    assert_eq!(inf.powi(3), inf);
-    assert_eq!(neg_inf.powi(2), inf);
-}
-
-#[test]
 fn test_powf() {
     let nan: f32 = f32::NAN;
     let inf: f32 = f32::INFINITY;
@@ -470,17 +28,6 @@ fn test_powf() {
 }
 
 #[test]
-fn test_sqrt_domain() {
-    assert!(f32::NAN.sqrt().is_nan());
-    assert!(f32::NEG_INFINITY.sqrt().is_nan());
-    assert!((-1.0f32).sqrt().is_nan());
-    assert_eq!((-0.0f32).sqrt(), -0.0);
-    assert_eq!(0.0f32.sqrt(), 0.0);
-    assert_eq!(1.0f32.sqrt(), 1.0);
-    assert_eq!(f32::INFINITY.sqrt(), f32::INFINITY);
-}
-
-#[test]
 fn test_exp() {
     assert_eq!(1.0, 0.0f32.exp());
     assert_approx_eq!(2.718282, 1.0f32.exp());
@@ -574,36 +121,6 @@ fn test_log10() {
 }
 
 #[test]
-fn test_to_degrees() {
-    let pi: f32 = consts::PI;
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    assert_eq!(0.0f32.to_degrees(), 0.0);
-    assert_approx_eq!((-5.8f32).to_degrees(), -332.315521);
-    assert_eq!(pi.to_degrees(), 180.0);
-    assert!(nan.to_degrees().is_nan());
-    assert_eq!(inf.to_degrees(), inf);
-    assert_eq!(neg_inf.to_degrees(), neg_inf);
-    assert_eq!(1_f32.to_degrees(), 57.2957795130823208767981548141051703);
-}
-
-#[test]
-fn test_to_radians() {
-    let pi: f32 = consts::PI;
-    let nan: f32 = f32::NAN;
-    let inf: f32 = f32::INFINITY;
-    let neg_inf: f32 = f32::NEG_INFINITY;
-    assert_eq!(0.0f32.to_radians(), 0.0);
-    assert_approx_eq!(154.6f32.to_radians(), 2.698279);
-    assert_approx_eq!((-332.31f32).to_radians(), -5.799903);
-    assert_eq!(180.0f32.to_radians(), pi);
-    assert!(nan.to_radians().is_nan());
-    assert_eq!(inf.to_radians(), inf);
-    assert_eq!(neg_inf.to_radians(), neg_inf);
-}
-
-#[test]
 fn test_asinh() {
     assert_eq!(0.0f32.asinh(), 0.0f32);
     assert_eq!((-0.0f32).asinh(), -0.0f32);
@@ -734,207 +251,3 @@ fn test_real_consts() {
     assert_approx_eq!(ln_2, 2f32.ln());
     assert_approx_eq!(ln_10, 10f32.ln());
 }
-
-#[test]
-fn test_float_bits_conv() {
-    assert_eq!((1f32).to_bits(), 0x3f800000);
-    assert_eq!((12.5f32).to_bits(), 0x41480000);
-    assert_eq!((1337f32).to_bits(), 0x44a72000);
-    assert_eq!((-14.25f32).to_bits(), 0xc1640000);
-    assert_approx_eq!(f32::from_bits(0x3f800000), 1.0);
-    assert_approx_eq!(f32::from_bits(0x41480000), 12.5);
-    assert_approx_eq!(f32::from_bits(0x44a72000), 1337.0);
-    assert_approx_eq!(f32::from_bits(0xc1640000), -14.25);
-
-    // Check that NaNs roundtrip their bits regardless of signaling-ness
-    // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
-    let masked_nan1 = f32::NAN.to_bits() ^ NAN_MASK1;
-    let masked_nan2 = f32::NAN.to_bits() ^ NAN_MASK2;
-    assert!(f32::from_bits(masked_nan1).is_nan());
-    assert!(f32::from_bits(masked_nan2).is_nan());
-
-    assert_eq!(f32::from_bits(masked_nan1).to_bits(), masked_nan1);
-    assert_eq!(f32::from_bits(masked_nan2).to_bits(), masked_nan2);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_min_greater_than_max() {
-    let _ = 1.0f32.clamp(3.0, 1.0);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_min_is_nan() {
-    let _ = 1.0f32.clamp(f32::NAN, 1.0);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_max_is_nan() {
-    let _ = 1.0f32.clamp(3.0, f32::NAN);
-}
-
-#[test]
-fn test_total_cmp() {
-    use core::cmp::Ordering;
-
-    fn quiet_bit_mask() -> u32 {
-        1 << (f32::MANTISSA_DIGITS - 2)
-    }
-
-    fn min_subnorm() -> f32 {
-        f32::MIN_POSITIVE / f32::powf(2.0, f32::MANTISSA_DIGITS as f32 - 1.0)
-    }
-
-    fn max_subnorm() -> f32 {
-        f32::MIN_POSITIVE - min_subnorm()
-    }
-
-    fn q_nan() -> f32 {
-        f32::from_bits(f32::NAN.to_bits() | quiet_bit_mask())
-    }
-
-    fn s_nan() -> f32 {
-        f32::from_bits((f32::NAN.to_bits() & !quiet_bit_mask()) + 42)
-    }
-
-    assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan()));
-    assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Equal, (-f32::INFINITY).total_cmp(&-f32::INFINITY));
-    assert_eq!(Ordering::Equal, (-f32::MAX).total_cmp(&-f32::MAX));
-    assert_eq!(Ordering::Equal, (-2.5_f32).total_cmp(&-2.5));
-    assert_eq!(Ordering::Equal, (-1.0_f32).total_cmp(&-1.0));
-    assert_eq!(Ordering::Equal, (-1.5_f32).total_cmp(&-1.5));
-    assert_eq!(Ordering::Equal, (-0.5_f32).total_cmp(&-0.5));
-    assert_eq!(Ordering::Equal, (-f32::MIN_POSITIVE).total_cmp(&-f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Equal, (-0.0_f32).total_cmp(&-0.0));
-    assert_eq!(Ordering::Equal, 0.0_f32.total_cmp(&0.0));
-    assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Equal, f32::MIN_POSITIVE.total_cmp(&f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Equal, 0.5_f32.total_cmp(&0.5));
-    assert_eq!(Ordering::Equal, 1.0_f32.total_cmp(&1.0));
-    assert_eq!(Ordering::Equal, 1.5_f32.total_cmp(&1.5));
-    assert_eq!(Ordering::Equal, 2.5_f32.total_cmp(&2.5));
-    assert_eq!(Ordering::Equal, f32::MAX.total_cmp(&f32::MAX));
-    assert_eq!(Ordering::Equal, f32::INFINITY.total_cmp(&f32::INFINITY));
-    assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan()));
-    assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan()));
-
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::INFINITY));
-    assert_eq!(Ordering::Less, (-f32::INFINITY).total_cmp(&-f32::MAX));
-    assert_eq!(Ordering::Less, (-f32::MAX).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-2.5_f32).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-1.5_f32).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-1.0_f32).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-0.5_f32).total_cmp(&-f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-f32::MIN_POSITIVE).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-0.0_f32).total_cmp(&0.0));
-    assert_eq!(Ordering::Less, 0.0_f32.total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, f32::MIN_POSITIVE.total_cmp(&0.5));
-    assert_eq!(Ordering::Less, 0.5_f32.total_cmp(&1.0));
-    assert_eq!(Ordering::Less, 1.0_f32.total_cmp(&1.5));
-    assert_eq!(Ordering::Less, 1.5_f32.total_cmp(&2.5));
-    assert_eq!(Ordering::Less, 2.5_f32.total_cmp(&f32::MAX));
-    assert_eq!(Ordering::Less, f32::MAX.total_cmp(&f32::INFINITY));
-    assert_eq!(Ordering::Less, f32::INFINITY.total_cmp(&s_nan()));
-    assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan()));
-
-    assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan()));
-    assert_eq!(Ordering::Greater, (-f32::INFINITY).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Greater, (-f32::MAX).total_cmp(&-f32::INFINITY));
-    assert_eq!(Ordering::Greater, (-2.5_f32).total_cmp(&-f32::MAX));
-    assert_eq!(Ordering::Greater, (-1.5_f32).total_cmp(&-2.5));
-    assert_eq!(Ordering::Greater, (-1.0_f32).total_cmp(&-1.5));
-    assert_eq!(Ordering::Greater, (-0.5_f32).total_cmp(&-1.0));
-    assert_eq!(Ordering::Greater, (-f32::MIN_POSITIVE).total_cmp(&-0.5));
-    assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Greater, (-0.0_f32).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Greater, 0.0_f32.total_cmp(&-0.0));
-    assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0));
-    assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Greater, f32::MIN_POSITIVE.total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Greater, 0.5_f32.total_cmp(&f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Greater, 1.0_f32.total_cmp(&0.5));
-    assert_eq!(Ordering::Greater, 1.5_f32.total_cmp(&1.0));
-    assert_eq!(Ordering::Greater, 2.5_f32.total_cmp(&1.5));
-    assert_eq!(Ordering::Greater, f32::MAX.total_cmp(&2.5));
-    assert_eq!(Ordering::Greater, f32::INFINITY.total_cmp(&f32::MAX));
-    assert_eq!(Ordering::Greater, s_nan().total_cmp(&f32::INFINITY));
-    assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan()));
-
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::INFINITY));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::MAX));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::MAX));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::INFINITY));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan()));
-
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::INFINITY));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::MAX));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::MAX));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::INFINITY));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
-}
-
-#[test]
-fn test_algebraic() {
-    let a: f32 = 123.0;
-    let b: f32 = 456.0;
-
-    // Check that individual operations match their primitive counterparts.
-    //
-    // This is a check of current implementations and does NOT imply any form of
-    // guarantee about future behavior. The compiler reserves the right to make
-    // these operations inexact matches in the future.
-    let eps_add = if cfg!(miri) { 1e-3 } else { 0.0 };
-    let eps_mul = if cfg!(miri) { 1e-1 } else { 0.0 };
-    let eps_div = if cfg!(miri) { 1e-4 } else { 0.0 };
-
-    assert_approx_eq!(a.algebraic_add(b), a + b, eps_add);
-    assert_approx_eq!(a.algebraic_sub(b), a - b, eps_add);
-    assert_approx_eq!(a.algebraic_mul(b), a * b, eps_mul);
-    assert_approx_eq!(a.algebraic_div(b), a / b, eps_div);
-    assert_approx_eq!(a.algebraic_rem(b), a % b, eps_div);
-}
diff --git a/library/std/tests/floats/f64.rs b/library/std/tests/floats/f64.rs
index de9c27eb33d..2d8dd1cf091 100644
--- a/library/std/tests/floats/f64.rs
+++ b/library/std/tests/floats/f64.rs
@@ -1,26 +1,4 @@
 use std::f64::consts;
-use std::num::FpCategory as Fp;
-
-/// Smallest number
-const TINY_BITS: u64 = 0x1;
-
-/// Next smallest number
-const TINY_UP_BITS: u64 = 0x2;
-
-/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0
-const MAX_DOWN_BITS: u64 = 0x7fef_ffff_ffff_fffe;
-
-/// Zeroed exponent, full significant
-const LARGEST_SUBNORMAL_BITS: u64 = 0x000f_ffff_ffff_ffff;
-
-/// Exponent = 0b1, zeroed significand
-const SMALLEST_NORMAL_BITS: u64 = 0x0010_0000_0000_0000;
-
-/// First pattern over the mantissa
-const NAN_MASK1: u64 = 0x000a_aaaa_aaaa_aaaa;
-
-/// Second pattern over the mantissa
-const NAN_MASK2: u64 = 0x0005_5555_5555_5555;
 
 #[allow(unused_macros)]
 macro_rules! assert_f64_biteq {
@@ -34,411 +12,6 @@ macro_rules! assert_f64_biteq {
 }
 
 #[test]
-fn test_num_f64() {
-    crate::test_num(10f64, 2f64);
-}
-
-#[test]
-fn test_min_nan() {
-    assert_eq!(f64::NAN.min(2.0), 2.0);
-    assert_eq!(2.0f64.min(f64::NAN), 2.0);
-}
-
-#[test]
-fn test_max_nan() {
-    assert_eq!(f64::NAN.max(2.0), 2.0);
-    assert_eq!(2.0f64.max(f64::NAN), 2.0);
-}
-
-#[test]
-fn test_nan() {
-    let nan: f64 = f64::NAN;
-    assert!(nan.is_nan());
-    assert!(!nan.is_infinite());
-    assert!(!nan.is_finite());
-    assert!(!nan.is_normal());
-    assert!(nan.is_sign_positive());
-    assert!(!nan.is_sign_negative());
-    assert_eq!(Fp::Nan, nan.classify());
-    // Ensure the quiet bit is set.
-    assert!(nan.to_bits() & (1 << (f64::MANTISSA_DIGITS - 2)) != 0);
-}
-
-#[test]
-fn test_infinity() {
-    let inf: f64 = f64::INFINITY;
-    assert!(inf.is_infinite());
-    assert!(!inf.is_finite());
-    assert!(inf.is_sign_positive());
-    assert!(!inf.is_sign_negative());
-    assert!(!inf.is_nan());
-    assert!(!inf.is_normal());
-    assert_eq!(Fp::Infinite, inf.classify());
-}
-
-#[test]
-fn test_neg_infinity() {
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    assert!(neg_inf.is_infinite());
-    assert!(!neg_inf.is_finite());
-    assert!(!neg_inf.is_sign_positive());
-    assert!(neg_inf.is_sign_negative());
-    assert!(!neg_inf.is_nan());
-    assert!(!neg_inf.is_normal());
-    assert_eq!(Fp::Infinite, neg_inf.classify());
-}
-
-#[test]
-fn test_zero() {
-    let zero: f64 = 0.0f64;
-    assert_eq!(0.0, zero);
-    assert!(!zero.is_infinite());
-    assert!(zero.is_finite());
-    assert!(zero.is_sign_positive());
-    assert!(!zero.is_sign_negative());
-    assert!(!zero.is_nan());
-    assert!(!zero.is_normal());
-    assert_eq!(Fp::Zero, zero.classify());
-}
-
-#[test]
-fn test_neg_zero() {
-    let neg_zero: f64 = -0.0;
-    assert_eq!(0.0, neg_zero);
-    assert!(!neg_zero.is_infinite());
-    assert!(neg_zero.is_finite());
-    assert!(!neg_zero.is_sign_positive());
-    assert!(neg_zero.is_sign_negative());
-    assert!(!neg_zero.is_nan());
-    assert!(!neg_zero.is_normal());
-    assert_eq!(Fp::Zero, neg_zero.classify());
-}
-
-#[test]
-fn test_one() {
-    let one: f64 = 1.0f64;
-    assert_eq!(1.0, one);
-    assert!(!one.is_infinite());
-    assert!(one.is_finite());
-    assert!(one.is_sign_positive());
-    assert!(!one.is_sign_negative());
-    assert!(!one.is_nan());
-    assert!(one.is_normal());
-    assert_eq!(Fp::Normal, one.classify());
-}
-
-#[test]
-fn test_is_nan() {
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    assert!(nan.is_nan());
-    assert!(!0.0f64.is_nan());
-    assert!(!5.3f64.is_nan());
-    assert!(!(-10.732f64).is_nan());
-    assert!(!inf.is_nan());
-    assert!(!neg_inf.is_nan());
-}
-
-#[test]
-fn test_is_infinite() {
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    assert!(!nan.is_infinite());
-    assert!(inf.is_infinite());
-    assert!(neg_inf.is_infinite());
-    assert!(!0.0f64.is_infinite());
-    assert!(!42.8f64.is_infinite());
-    assert!(!(-109.2f64).is_infinite());
-}
-
-#[test]
-fn test_is_finite() {
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    assert!(!nan.is_finite());
-    assert!(!inf.is_finite());
-    assert!(!neg_inf.is_finite());
-    assert!(0.0f64.is_finite());
-    assert!(42.8f64.is_finite());
-    assert!((-109.2f64).is_finite());
-}
-
-#[test]
-fn test_is_normal() {
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    let zero: f64 = 0.0f64;
-    let neg_zero: f64 = -0.0;
-    assert!(!nan.is_normal());
-    assert!(!inf.is_normal());
-    assert!(!neg_inf.is_normal());
-    assert!(!zero.is_normal());
-    assert!(!neg_zero.is_normal());
-    assert!(1f64.is_normal());
-    assert!(1e-307f64.is_normal());
-    assert!(!1e-308f64.is_normal());
-}
-
-#[test]
-fn test_classify() {
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    let zero: f64 = 0.0f64;
-    let neg_zero: f64 = -0.0;
-    assert_eq!(nan.classify(), Fp::Nan);
-    assert_eq!(inf.classify(), Fp::Infinite);
-    assert_eq!(neg_inf.classify(), Fp::Infinite);
-    assert_eq!(zero.classify(), Fp::Zero);
-    assert_eq!(neg_zero.classify(), Fp::Zero);
-    assert_eq!(1e-307f64.classify(), Fp::Normal);
-    assert_eq!(1e-308f64.classify(), Fp::Subnormal);
-}
-
-#[test]
-fn test_floor() {
-    assert_approx_eq!(1.0f64.floor(), 1.0f64);
-    assert_approx_eq!(1.3f64.floor(), 1.0f64);
-    assert_approx_eq!(1.5f64.floor(), 1.0f64);
-    assert_approx_eq!(1.7f64.floor(), 1.0f64);
-    assert_approx_eq!(0.0f64.floor(), 0.0f64);
-    assert_approx_eq!((-0.0f64).floor(), -0.0f64);
-    assert_approx_eq!((-1.0f64).floor(), -1.0f64);
-    assert_approx_eq!((-1.3f64).floor(), -2.0f64);
-    assert_approx_eq!((-1.5f64).floor(), -2.0f64);
-    assert_approx_eq!((-1.7f64).floor(), -2.0f64);
-}
-
-#[test]
-fn test_ceil() {
-    assert_approx_eq!(1.0f64.ceil(), 1.0f64);
-    assert_approx_eq!(1.3f64.ceil(), 2.0f64);
-    assert_approx_eq!(1.5f64.ceil(), 2.0f64);
-    assert_approx_eq!(1.7f64.ceil(), 2.0f64);
-    assert_approx_eq!(0.0f64.ceil(), 0.0f64);
-    assert_approx_eq!((-0.0f64).ceil(), -0.0f64);
-    assert_approx_eq!((-1.0f64).ceil(), -1.0f64);
-    assert_approx_eq!((-1.3f64).ceil(), -1.0f64);
-    assert_approx_eq!((-1.5f64).ceil(), -1.0f64);
-    assert_approx_eq!((-1.7f64).ceil(), -1.0f64);
-}
-
-#[test]
-fn test_round() {
-    assert_approx_eq!(2.5f64.round(), 3.0f64);
-    assert_approx_eq!(1.0f64.round(), 1.0f64);
-    assert_approx_eq!(1.3f64.round(), 1.0f64);
-    assert_approx_eq!(1.5f64.round(), 2.0f64);
-    assert_approx_eq!(1.7f64.round(), 2.0f64);
-    assert_approx_eq!(0.0f64.round(), 0.0f64);
-    assert_approx_eq!((-0.0f64).round(), -0.0f64);
-    assert_approx_eq!((-1.0f64).round(), -1.0f64);
-    assert_approx_eq!((-1.3f64).round(), -1.0f64);
-    assert_approx_eq!((-1.5f64).round(), -2.0f64);
-    assert_approx_eq!((-1.7f64).round(), -2.0f64);
-}
-
-#[test]
-fn test_round_ties_even() {
-    assert_approx_eq!(2.5f64.round_ties_even(), 2.0f64);
-    assert_approx_eq!(1.0f64.round_ties_even(), 1.0f64);
-    assert_approx_eq!(1.3f64.round_ties_even(), 1.0f64);
-    assert_approx_eq!(1.5f64.round_ties_even(), 2.0f64);
-    assert_approx_eq!(1.7f64.round_ties_even(), 2.0f64);
-    assert_approx_eq!(0.0f64.round_ties_even(), 0.0f64);
-    assert_approx_eq!((-0.0f64).round_ties_even(), -0.0f64);
-    assert_approx_eq!((-1.0f64).round_ties_even(), -1.0f64);
-    assert_approx_eq!((-1.3f64).round_ties_even(), -1.0f64);
-    assert_approx_eq!((-1.5f64).round_ties_even(), -2.0f64);
-    assert_approx_eq!((-1.7f64).round_ties_even(), -2.0f64);
-}
-
-#[test]
-fn test_trunc() {
-    assert_approx_eq!(1.0f64.trunc(), 1.0f64);
-    assert_approx_eq!(1.3f64.trunc(), 1.0f64);
-    assert_approx_eq!(1.5f64.trunc(), 1.0f64);
-    assert_approx_eq!(1.7f64.trunc(), 1.0f64);
-    assert_approx_eq!(0.0f64.trunc(), 0.0f64);
-    assert_approx_eq!((-0.0f64).trunc(), -0.0f64);
-    assert_approx_eq!((-1.0f64).trunc(), -1.0f64);
-    assert_approx_eq!((-1.3f64).trunc(), -1.0f64);
-    assert_approx_eq!((-1.5f64).trunc(), -1.0f64);
-    assert_approx_eq!((-1.7f64).trunc(), -1.0f64);
-}
-
-#[test]
-fn test_fract() {
-    assert_approx_eq!(1.0f64.fract(), 0.0f64);
-    assert_approx_eq!(1.3f64.fract(), 0.3f64);
-    assert_approx_eq!(1.5f64.fract(), 0.5f64);
-    assert_approx_eq!(1.7f64.fract(), 0.7f64);
-    assert_approx_eq!(0.0f64.fract(), 0.0f64);
-    assert_approx_eq!((-0.0f64).fract(), -0.0f64);
-    assert_approx_eq!((-1.0f64).fract(), -0.0f64);
-    assert_approx_eq!((-1.3f64).fract(), -0.3f64);
-    assert_approx_eq!((-1.5f64).fract(), -0.5f64);
-    assert_approx_eq!((-1.7f64).fract(), -0.7f64);
-}
-
-#[test]
-fn test_abs() {
-    assert_eq!(f64::INFINITY.abs(), f64::INFINITY);
-    assert_eq!(1f64.abs(), 1f64);
-    assert_eq!(0f64.abs(), 0f64);
-    assert_eq!((-0f64).abs(), 0f64);
-    assert_eq!((-1f64).abs(), 1f64);
-    assert_eq!(f64::NEG_INFINITY.abs(), f64::INFINITY);
-    assert_eq!((1f64 / f64::NEG_INFINITY).abs(), 0f64);
-    assert!(f64::NAN.abs().is_nan());
-}
-
-#[test]
-fn test_signum() {
-    assert_eq!(f64::INFINITY.signum(), 1f64);
-    assert_eq!(1f64.signum(), 1f64);
-    assert_eq!(0f64.signum(), 1f64);
-    assert_eq!((-0f64).signum(), -1f64);
-    assert_eq!((-1f64).signum(), -1f64);
-    assert_eq!(f64::NEG_INFINITY.signum(), -1f64);
-    assert_eq!((1f64 / f64::NEG_INFINITY).signum(), -1f64);
-    assert!(f64::NAN.signum().is_nan());
-}
-
-#[test]
-fn test_is_sign_positive() {
-    assert!(f64::INFINITY.is_sign_positive());
-    assert!(1f64.is_sign_positive());
-    assert!(0f64.is_sign_positive());
-    assert!(!(-0f64).is_sign_positive());
-    assert!(!(-1f64).is_sign_positive());
-    assert!(!f64::NEG_INFINITY.is_sign_positive());
-    assert!(!(1f64 / f64::NEG_INFINITY).is_sign_positive());
-    assert!(f64::NAN.is_sign_positive());
-    assert!(!(-f64::NAN).is_sign_positive());
-}
-
-#[test]
-fn test_is_sign_negative() {
-    assert!(!f64::INFINITY.is_sign_negative());
-    assert!(!1f64.is_sign_negative());
-    assert!(!0f64.is_sign_negative());
-    assert!((-0f64).is_sign_negative());
-    assert!((-1f64).is_sign_negative());
-    assert!(f64::NEG_INFINITY.is_sign_negative());
-    assert!((1f64 / f64::NEG_INFINITY).is_sign_negative());
-    assert!(!f64::NAN.is_sign_negative());
-    assert!((-f64::NAN).is_sign_negative());
-}
-
-#[test]
-fn test_next_up() {
-    let tiny = f64::from_bits(TINY_BITS);
-    let tiny_up = f64::from_bits(TINY_UP_BITS);
-    let max_down = f64::from_bits(MAX_DOWN_BITS);
-    let largest_subnormal = f64::from_bits(LARGEST_SUBNORMAL_BITS);
-    let smallest_normal = f64::from_bits(SMALLEST_NORMAL_BITS);
-    assert_f64_biteq!(f64::NEG_INFINITY.next_up(), f64::MIN);
-    assert_f64_biteq!(f64::MIN.next_up(), -max_down);
-    assert_f64_biteq!((-1.0 - f64::EPSILON).next_up(), -1.0);
-    assert_f64_biteq!((-smallest_normal).next_up(), -largest_subnormal);
-    assert_f64_biteq!((-tiny_up).next_up(), -tiny);
-    assert_f64_biteq!((-tiny).next_up(), -0.0f64);
-    assert_f64_biteq!((-0.0f64).next_up(), tiny);
-    assert_f64_biteq!(0.0f64.next_up(), tiny);
-    assert_f64_biteq!(tiny.next_up(), tiny_up);
-    assert_f64_biteq!(largest_subnormal.next_up(), smallest_normal);
-    assert_f64_biteq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
-    assert_f64_biteq!(f64::MAX.next_up(), f64::INFINITY);
-    assert_f64_biteq!(f64::INFINITY.next_up(), f64::INFINITY);
-
-    let nan0 = f64::NAN;
-    let nan1 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK1);
-    let nan2 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK2);
-    assert_f64_biteq!(nan0.next_up(), nan0);
-    assert_f64_biteq!(nan1.next_up(), nan1);
-    assert_f64_biteq!(nan2.next_up(), nan2);
-}
-
-#[test]
-fn test_next_down() {
-    let tiny = f64::from_bits(TINY_BITS);
-    let tiny_up = f64::from_bits(TINY_UP_BITS);
-    let max_down = f64::from_bits(MAX_DOWN_BITS);
-    let largest_subnormal = f64::from_bits(LARGEST_SUBNORMAL_BITS);
-    let smallest_normal = f64::from_bits(SMALLEST_NORMAL_BITS);
-    assert_f64_biteq!(f64::NEG_INFINITY.next_down(), f64::NEG_INFINITY);
-    assert_f64_biteq!(f64::MIN.next_down(), f64::NEG_INFINITY);
-    assert_f64_biteq!((-max_down).next_down(), f64::MIN);
-    assert_f64_biteq!((-1.0f64).next_down(), -1.0 - f64::EPSILON);
-    assert_f64_biteq!((-largest_subnormal).next_down(), -smallest_normal);
-    assert_f64_biteq!((-tiny).next_down(), -tiny_up);
-    assert_f64_biteq!((-0.0f64).next_down(), -tiny);
-    assert_f64_biteq!((0.0f64).next_down(), -tiny);
-    assert_f64_biteq!(tiny.next_down(), 0.0f64);
-    assert_f64_biteq!(tiny_up.next_down(), tiny);
-    assert_f64_biteq!(smallest_normal.next_down(), largest_subnormal);
-    assert_f64_biteq!((1.0 + f64::EPSILON).next_down(), 1.0f64);
-    assert_f64_biteq!(f64::MAX.next_down(), max_down);
-    assert_f64_biteq!(f64::INFINITY.next_down(), f64::MAX);
-
-    let nan0 = f64::NAN;
-    let nan1 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK1);
-    let nan2 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK2);
-    assert_f64_biteq!(nan0.next_down(), nan0);
-    assert_f64_biteq!(nan1.next_down(), nan1);
-    assert_f64_biteq!(nan2.next_down(), nan2);
-}
-
-#[test]
-fn test_mul_add() {
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    assert_approx_eq!(12.3f64.mul_add(4.5, 6.7), 62.05);
-    assert_approx_eq!((-12.3f64).mul_add(-4.5, -6.7), 48.65);
-    assert_approx_eq!(0.0f64.mul_add(8.9, 1.2), 1.2);
-    assert_approx_eq!(3.4f64.mul_add(-0.0, 5.6), 5.6);
-    assert!(nan.mul_add(7.8, 9.0).is_nan());
-    assert_eq!(inf.mul_add(7.8, 9.0), inf);
-    assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
-    assert_eq!(8.9f64.mul_add(inf, 3.2), inf);
-    assert_eq!((-3.2f64).mul_add(2.4, neg_inf), neg_inf);
-}
-
-#[test]
-fn test_recip() {
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    assert_eq!(1.0f64.recip(), 1.0);
-    assert_eq!(2.0f64.recip(), 0.5);
-    assert_eq!((-0.4f64).recip(), -2.5);
-    assert_eq!(0.0f64.recip(), inf);
-    assert!(nan.recip().is_nan());
-    assert_eq!(inf.recip(), 0.0);
-    assert_eq!(neg_inf.recip(), 0.0);
-}
-
-#[test]
-fn test_powi() {
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    assert_eq!(1.0f64.powi(1), 1.0);
-    assert_approx_eq!((-3.1f64).powi(2), 9.61);
-    assert_approx_eq!(5.9f64.powi(-2), 0.028727);
-    assert_eq!(8.3f64.powi(0), 1.0);
-    assert!(nan.powi(2).is_nan());
-    assert_eq!(inf.powi(3), inf);
-    assert_eq!(neg_inf.powi(2), inf);
-}
-
-#[test]
 fn test_powf() {
     let nan: f64 = f64::NAN;
     let inf: f64 = f64::INFINITY;
@@ -455,17 +28,6 @@ fn test_powf() {
 }
 
 #[test]
-fn test_sqrt_domain() {
-    assert!(f64::NAN.sqrt().is_nan());
-    assert!(f64::NEG_INFINITY.sqrt().is_nan());
-    assert!((-1.0f64).sqrt().is_nan());
-    assert_eq!((-0.0f64).sqrt(), -0.0);
-    assert_eq!(0.0f64.sqrt(), 0.0);
-    assert_eq!(1.0f64.sqrt(), 1.0);
-    assert_eq!(f64::INFINITY.sqrt(), f64::INFINITY);
-}
-
-#[test]
 fn test_exp() {
     assert_eq!(1.0, 0.0f64.exp());
     assert_approx_eq!(2.718282, 1.0f64.exp());
@@ -559,35 +121,6 @@ fn test_log10() {
 }
 
 #[test]
-fn test_to_degrees() {
-    let pi: f64 = consts::PI;
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    assert_eq!(0.0f64.to_degrees(), 0.0);
-    assert_approx_eq!((-5.8f64).to_degrees(), -332.315521);
-    assert_eq!(pi.to_degrees(), 180.0);
-    assert!(nan.to_degrees().is_nan());
-    assert_eq!(inf.to_degrees(), inf);
-    assert_eq!(neg_inf.to_degrees(), neg_inf);
-}
-
-#[test]
-fn test_to_radians() {
-    let pi: f64 = consts::PI;
-    let nan: f64 = f64::NAN;
-    let inf: f64 = f64::INFINITY;
-    let neg_inf: f64 = f64::NEG_INFINITY;
-    assert_eq!(0.0f64.to_radians(), 0.0);
-    assert_approx_eq!(154.6f64.to_radians(), 2.698279);
-    assert_approx_eq!((-332.31f64).to_radians(), -5.799903);
-    assert_eq!(180.0f64.to_radians(), pi);
-    assert!(nan.to_radians().is_nan());
-    assert_eq!(inf.to_radians(), inf);
-    assert_eq!(neg_inf.to_radians(), neg_inf);
-}
-
-#[test]
 fn test_asinh() {
     assert_eq!(0.0f64.asinh(), 0.0f64);
     assert_eq!((-0.0f64).asinh(), -0.0f64);
@@ -714,204 +247,3 @@ fn test_real_consts() {
     assert_approx_eq!(ln_2, 2f64.ln());
     assert_approx_eq!(ln_10, 10f64.ln());
 }
-
-#[test]
-fn test_float_bits_conv() {
-    assert_eq!((1f64).to_bits(), 0x3ff0000000000000);
-    assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
-    assert_eq!((1337f64).to_bits(), 0x4094e40000000000);
-    assert_eq!((-14.25f64).to_bits(), 0xc02c800000000000);
-    assert_approx_eq!(f64::from_bits(0x3ff0000000000000), 1.0);
-    assert_approx_eq!(f64::from_bits(0x4029000000000000), 12.5);
-    assert_approx_eq!(f64::from_bits(0x4094e40000000000), 1337.0);
-    assert_approx_eq!(f64::from_bits(0xc02c800000000000), -14.25);
-
-    // Check that NaNs roundtrip their bits regardless of signaling-ness
-    let masked_nan1 = f64::NAN.to_bits() ^ NAN_MASK1;
-    let masked_nan2 = f64::NAN.to_bits() ^ NAN_MASK2;
-    assert!(f64::from_bits(masked_nan1).is_nan());
-    assert!(f64::from_bits(masked_nan2).is_nan());
-
-    assert_eq!(f64::from_bits(masked_nan1).to_bits(), masked_nan1);
-    assert_eq!(f64::from_bits(masked_nan2).to_bits(), masked_nan2);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_min_greater_than_max() {
-    let _ = 1.0f64.clamp(3.0, 1.0);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_min_is_nan() {
-    let _ = 1.0f64.clamp(f64::NAN, 1.0);
-}
-
-#[test]
-#[should_panic]
-fn test_clamp_max_is_nan() {
-    let _ = 1.0f64.clamp(3.0, f64::NAN);
-}
-
-#[test]
-fn test_total_cmp() {
-    use core::cmp::Ordering;
-
-    fn quiet_bit_mask() -> u64 {
-        1 << (f64::MANTISSA_DIGITS - 2)
-    }
-
-    fn min_subnorm() -> f64 {
-        f64::MIN_POSITIVE / f64::powf(2.0, f64::MANTISSA_DIGITS as f64 - 1.0)
-    }
-
-    fn max_subnorm() -> f64 {
-        f64::MIN_POSITIVE - min_subnorm()
-    }
-
-    fn q_nan() -> f64 {
-        f64::from_bits(f64::NAN.to_bits() | quiet_bit_mask())
-    }
-
-    fn s_nan() -> f64 {
-        f64::from_bits((f64::NAN.to_bits() & !quiet_bit_mask()) + 42)
-    }
-
-    assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan()));
-    assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Equal, (-f64::INFINITY).total_cmp(&-f64::INFINITY));
-    assert_eq!(Ordering::Equal, (-f64::MAX).total_cmp(&-f64::MAX));
-    assert_eq!(Ordering::Equal, (-2.5_f64).total_cmp(&-2.5));
-    assert_eq!(Ordering::Equal, (-1.0_f64).total_cmp(&-1.0));
-    assert_eq!(Ordering::Equal, (-1.5_f64).total_cmp(&-1.5));
-    assert_eq!(Ordering::Equal, (-0.5_f64).total_cmp(&-0.5));
-    assert_eq!(Ordering::Equal, (-f64::MIN_POSITIVE).total_cmp(&-f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Equal, (-0.0_f64).total_cmp(&-0.0));
-    assert_eq!(Ordering::Equal, 0.0_f64.total_cmp(&0.0));
-    assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Equal, f64::MIN_POSITIVE.total_cmp(&f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Equal, 0.5_f64.total_cmp(&0.5));
-    assert_eq!(Ordering::Equal, 1.0_f64.total_cmp(&1.0));
-    assert_eq!(Ordering::Equal, 1.5_f64.total_cmp(&1.5));
-    assert_eq!(Ordering::Equal, 2.5_f64.total_cmp(&2.5));
-    assert_eq!(Ordering::Equal, f64::MAX.total_cmp(&f64::MAX));
-    assert_eq!(Ordering::Equal, f64::INFINITY.total_cmp(&f64::INFINITY));
-    assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan()));
-    assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan()));
-
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::INFINITY));
-    assert_eq!(Ordering::Less, (-f64::INFINITY).total_cmp(&-f64::MAX));
-    assert_eq!(Ordering::Less, (-f64::MAX).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-2.5_f64).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-1.5_f64).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-1.0_f64).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-0.5_f64).total_cmp(&-f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-f64::MIN_POSITIVE).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-0.0_f64).total_cmp(&0.0));
-    assert_eq!(Ordering::Less, 0.0_f64.total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, f64::MIN_POSITIVE.total_cmp(&0.5));
-    assert_eq!(Ordering::Less, 0.5_f64.total_cmp(&1.0));
-    assert_eq!(Ordering::Less, 1.0_f64.total_cmp(&1.5));
-    assert_eq!(Ordering::Less, 1.5_f64.total_cmp(&2.5));
-    assert_eq!(Ordering::Less, 2.5_f64.total_cmp(&f64::MAX));
-    assert_eq!(Ordering::Less, f64::MAX.total_cmp(&f64::INFINITY));
-    assert_eq!(Ordering::Less, f64::INFINITY.total_cmp(&s_nan()));
-    assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan()));
-
-    assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan()));
-    assert_eq!(Ordering::Greater, (-f64::INFINITY).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Greater, (-f64::MAX).total_cmp(&-f64::INFINITY));
-    assert_eq!(Ordering::Greater, (-2.5_f64).total_cmp(&-f64::MAX));
-    assert_eq!(Ordering::Greater, (-1.5_f64).total_cmp(&-2.5));
-    assert_eq!(Ordering::Greater, (-1.0_f64).total_cmp(&-1.5));
-    assert_eq!(Ordering::Greater, (-0.5_f64).total_cmp(&-1.0));
-    assert_eq!(Ordering::Greater, (-f64::MIN_POSITIVE).total_cmp(&-0.5));
-    assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Greater, (-0.0_f64).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Greater, 0.0_f64.total_cmp(&-0.0));
-    assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0));
-    assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Greater, f64::MIN_POSITIVE.total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Greater, 0.5_f64.total_cmp(&f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Greater, 1.0_f64.total_cmp(&0.5));
-    assert_eq!(Ordering::Greater, 1.5_f64.total_cmp(&1.0));
-    assert_eq!(Ordering::Greater, 2.5_f64.total_cmp(&1.5));
-    assert_eq!(Ordering::Greater, f64::MAX.total_cmp(&2.5));
-    assert_eq!(Ordering::Greater, f64::INFINITY.total_cmp(&f64::MAX));
-    assert_eq!(Ordering::Greater, s_nan().total_cmp(&f64::INFINITY));
-    assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan()));
-
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::INFINITY));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::MAX));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::MAX));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::INFINITY));
-    assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan()));
-
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::INFINITY));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::MAX));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm()));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::MIN_POSITIVE));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::MAX));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::INFINITY));
-    assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
-}
-
-#[test]
-fn test_algebraic() {
-    let a: f64 = 123.0;
-    let b: f64 = 456.0;
-
-    // Check that individual operations match their primitive counterparts.
-    //
-    // This is a check of current implementations and does NOT imply any form of
-    // guarantee about future behavior. The compiler reserves the right to make
-    // these operations inexact matches in the future.
-    let eps = if cfg!(miri) { 1e-6 } else { 0.0 };
-
-    assert_approx_eq!(a.algebraic_add(b), a + b, eps);
-    assert_approx_eq!(a.algebraic_sub(b), a - b, eps);
-    assert_approx_eq!(a.algebraic_mul(b), a * b, eps);
-    assert_approx_eq!(a.algebraic_div(b), a / b, eps);
-    assert_approx_eq!(a.algebraic_rem(b), a % b, eps);
-}
diff --git a/library/std/tests/floats/lib.rs b/library/std/tests/floats/lib.rs
index 453a2d533ab..8bb8eb4bfc1 100644
--- a/library/std/tests/floats/lib.rs
+++ b/library/std/tests/floats/lib.rs
@@ -1,5 +1,4 @@
-#![feature(f16, f128, float_algebraic, float_gamma, float_minimum_maximum)]
-#![feature(cfg_target_has_reliable_f16_f128)]
+#![feature(f16, f128, float_gamma, float_minimum_maximum, cfg_target_has_reliable_f16_f128)]
 #![expect(internal_features)] // for reliable_f16_f128
 
 use std::fmt;