about summary refs log tree commit diff
path: root/library/test/src/stats.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/test/src/stats.rs')
-rw-r--r--library/test/src/stats.rs319
1 files changed, 319 insertions, 0 deletions
diff --git a/library/test/src/stats.rs b/library/test/src/stats.rs
new file mode 100644
index 00000000000..077005371c0
--- /dev/null
+++ b/library/test/src/stats.rs
@@ -0,0 +1,319 @@
+#![allow(missing_docs)]
+#![allow(deprecated)] // Float
+
+use std::cmp::Ordering::{self, Equal, Greater, Less};
+use std::mem;
+
+#[cfg(test)]
+mod tests;
+
+fn local_cmp(x: f64, y: f64) -> Ordering {
+    // arbitrarily decide that NaNs are larger than everything.
+    if y.is_nan() {
+        Less
+    } else if x.is_nan() {
+        Greater
+    } else if x < y {
+        Less
+    } else if x == y {
+        Equal
+    } else {
+        Greater
+    }
+}
+
+fn local_sort(v: &mut [f64]) {
+    v.sort_by(|x: &f64, y: &f64| local_cmp(*x, *y));
+}
+
+/// Trait that provides simple descriptive statistics on a univariate set of numeric samples.
+pub trait Stats {
+    /// Sum of the samples.
+    ///
+    /// Note: this method sacrifices performance at the altar of accuracy
+    /// Depends on IEEE-754 arithmetic guarantees. See proof of correctness at:
+    /// ["Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
+    /// Predicates"][paper]
+    ///
+    /// [paper]: http://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps
+    fn sum(&self) -> f64;
+
+    /// Minimum value of the samples.
+    fn min(&self) -> f64;
+
+    /// Maximum value of the samples.
+    fn max(&self) -> f64;
+
+    /// Arithmetic mean (average) of the samples: sum divided by sample-count.
+    ///
+    /// See: <https://en.wikipedia.org/wiki/Arithmetic_mean>
+    fn mean(&self) -> f64;
+
+    /// Median of the samples: value separating the lower half of the samples from the higher half.
+    /// Equal to `self.percentile(50.0)`.
+    ///
+    /// See: <https://en.wikipedia.org/wiki/Median>
+    fn median(&self) -> f64;
+
+    /// Variance of the samples: bias-corrected mean of the squares of the differences of each
+    /// sample from the sample mean. Note that this calculates the _sample variance_ rather than the
+    /// population variance, which is assumed to be unknown. It therefore corrects the `(n-1)/n`
+    /// bias that would appear if we calculated a population variance, by dividing by `(n-1)` rather
+    /// than `n`.
+    ///
+    /// See: <https://en.wikipedia.org/wiki/Variance>
+    fn var(&self) -> f64;
+
+    /// Standard deviation: the square root of the sample variance.
+    ///
+    /// Note: this is not a robust statistic for non-normal distributions. Prefer the
+    /// `median_abs_dev` for unknown distributions.
+    ///
+    /// See: <https://en.wikipedia.org/wiki/Standard_deviation>
+    fn std_dev(&self) -> f64;
+
+    /// Standard deviation as a percent of the mean value. See `std_dev` and `mean`.
+    ///
+    /// Note: this is not a robust statistic for non-normal distributions. Prefer the
+    /// `median_abs_dev_pct` for unknown distributions.
+    fn std_dev_pct(&self) -> f64;
+
+    /// Scaled median of the absolute deviations of each sample from the sample median. This is a
+    /// robust (distribution-agnostic) estimator of sample variability. Use this in preference to
+    /// `std_dev` if you cannot assume your sample is normally distributed. Note that this is scaled
+    /// by the constant `1.4826` to allow its use as a consistent estimator for the standard
+    /// deviation.
+    ///
+    /// See: <http://en.wikipedia.org/wiki/Median_absolute_deviation>
+    fn median_abs_dev(&self) -> f64;
+
+    /// Median absolute deviation as a percent of the median. See `median_abs_dev` and `median`.
+    fn median_abs_dev_pct(&self) -> f64;
+
+    /// Percentile: the value below which `pct` percent of the values in `self` fall. For example,
+    /// percentile(95.0) will return the value `v` such that 95% of the samples `s` in `self`
+    /// satisfy `s <= v`.
+    ///
+    /// Calculated by linear interpolation between closest ranks.
+    ///
+    /// See: <http://en.wikipedia.org/wiki/Percentile>
+    fn percentile(&self, pct: f64) -> f64;
+
+    /// Quartiles of the sample: three values that divide the sample into four equal groups, each
+    /// with 1/4 of the data. The middle value is the median. See `median` and `percentile`. This
+    /// function may calculate the 3 quartiles more efficiently than 3 calls to `percentile`, but
+    /// is otherwise equivalent.
+    ///
+    /// See also: <https://en.wikipedia.org/wiki/Quartile>
+    fn quartiles(&self) -> (f64, f64, f64);
+
+    /// Inter-quartile range: the difference between the 25th percentile (1st quartile) and the 75th
+    /// percentile (3rd quartile). See `quartiles`.
+    ///
+    /// See also: <https://en.wikipedia.org/wiki/Interquartile_range>
+    fn iqr(&self) -> f64;
+}
+
+/// Extracted collection of all the summary statistics of a sample set.
+#[derive(Debug, Clone, PartialEq, Copy)]
+#[allow(missing_docs)]
+pub struct Summary {
+    pub sum: f64,
+    pub min: f64,
+    pub max: f64,
+    pub mean: f64,
+    pub median: f64,
+    pub var: f64,
+    pub std_dev: f64,
+    pub std_dev_pct: f64,
+    pub median_abs_dev: f64,
+    pub median_abs_dev_pct: f64,
+    pub quartiles: (f64, f64, f64),
+    pub iqr: f64,
+}
+
+impl Summary {
+    /// Construct a new summary of a sample set.
+    pub fn new(samples: &[f64]) -> Summary {
+        Summary {
+            sum: samples.sum(),
+            min: samples.min(),
+            max: samples.max(),
+            mean: samples.mean(),
+            median: samples.median(),
+            var: samples.var(),
+            std_dev: samples.std_dev(),
+            std_dev_pct: samples.std_dev_pct(),
+            median_abs_dev: samples.median_abs_dev(),
+            median_abs_dev_pct: samples.median_abs_dev_pct(),
+            quartiles: samples.quartiles(),
+            iqr: samples.iqr(),
+        }
+    }
+}
+
+impl Stats for [f64] {
+    // FIXME #11059 handle NaN, inf and overflow
+    fn sum(&self) -> f64 {
+        let mut partials = vec![];
+
+        for &x in self {
+            let mut x = x;
+            let mut j = 0;
+            // This inner loop applies `hi`/`lo` summation to each
+            // partial so that the list of partial sums remains exact.
+            for i in 0..partials.len() {
+                let mut y: f64 = partials[i];
+                if x.abs() < y.abs() {
+                    mem::swap(&mut x, &mut y);
+                }
+                // Rounded `x+y` is stored in `hi` with round-off stored in
+                // `lo`. Together `hi+lo` are exactly equal to `x+y`.
+                let hi = x + y;
+                let lo = y - (hi - x);
+                if lo != 0.0 {
+                    partials[j] = lo;
+                    j += 1;
+                }
+                x = hi;
+            }
+            if j >= partials.len() {
+                partials.push(x);
+            } else {
+                partials[j] = x;
+                partials.truncate(j + 1);
+            }
+        }
+        let zero: f64 = 0.0;
+        partials.iter().fold(zero, |p, q| p + *q)
+    }
+
+    fn min(&self) -> f64 {
+        assert!(!self.is_empty());
+        self.iter().fold(self[0], |p, q| p.min(*q))
+    }
+
+    fn max(&self) -> f64 {
+        assert!(!self.is_empty());
+        self.iter().fold(self[0], |p, q| p.max(*q))
+    }
+
+    fn mean(&self) -> f64 {
+        assert!(!self.is_empty());
+        self.sum() / (self.len() as f64)
+    }
+
+    fn median(&self) -> f64 {
+        self.percentile(50_f64)
+    }
+
+    fn var(&self) -> f64 {
+        if self.len() < 2 {
+            0.0
+        } else {
+            let mean = self.mean();
+            let mut v: f64 = 0.0;
+            for s in self {
+                let x = *s - mean;
+                v = v + x * x;
+            }
+            // N.B., this is _supposed to be_ len-1, not len. If you
+            // change it back to len, you will be calculating a
+            // population variance, not a sample variance.
+            let denom = (self.len() - 1) as f64;
+            v / denom
+        }
+    }
+
+    fn std_dev(&self) -> f64 {
+        self.var().sqrt()
+    }
+
+    fn std_dev_pct(&self) -> f64 {
+        let hundred = 100_f64;
+        (self.std_dev() / self.mean()) * hundred
+    }
+
+    fn median_abs_dev(&self) -> f64 {
+        let med = self.median();
+        let abs_devs: Vec<f64> = self.iter().map(|&v| (med - v).abs()).collect();
+        // This constant is derived by smarter statistics brains than me, but it is
+        // consistent with how R and other packages treat the MAD.
+        let number = 1.4826;
+        abs_devs.median() * number
+    }
+
+    fn median_abs_dev_pct(&self) -> f64 {
+        let hundred = 100_f64;
+        (self.median_abs_dev() / self.median()) * hundred
+    }
+
+    fn percentile(&self, pct: f64) -> f64 {
+        let mut tmp = self.to_vec();
+        local_sort(&mut tmp);
+        percentile_of_sorted(&tmp, pct)
+    }
+
+    fn quartiles(&self) -> (f64, f64, f64) {
+        let mut tmp = self.to_vec();
+        local_sort(&mut tmp);
+        let first = 25_f64;
+        let a = percentile_of_sorted(&tmp, first);
+        let second = 50_f64;
+        let b = percentile_of_sorted(&tmp, second);
+        let third = 75_f64;
+        let c = percentile_of_sorted(&tmp, third);
+        (a, b, c)
+    }
+
+    fn iqr(&self) -> f64 {
+        let (a, _, c) = self.quartiles();
+        c - a
+    }
+}
+
+// Helper function: extract a value representing the `pct` percentile of a sorted sample-set, using
+// linear interpolation. If samples are not sorted, return nonsensical value.
+fn percentile_of_sorted(sorted_samples: &[f64], pct: f64) -> f64 {
+    assert!(!sorted_samples.is_empty());
+    if sorted_samples.len() == 1 {
+        return sorted_samples[0];
+    }
+    let zero: f64 = 0.0;
+    assert!(zero <= pct);
+    let hundred = 100_f64;
+    assert!(pct <= hundred);
+    if pct == hundred {
+        return sorted_samples[sorted_samples.len() - 1];
+    }
+    let length = (sorted_samples.len() - 1) as f64;
+    let rank = (pct / hundred) * length;
+    let lrank = rank.floor();
+    let d = rank - lrank;
+    let n = lrank as usize;
+    let lo = sorted_samples[n];
+    let hi = sorted_samples[n + 1];
+    lo + (hi - lo) * d
+}
+
+/// Winsorize a set of samples, replacing values above the `100-pct` percentile
+/// and below the `pct` percentile with those percentiles themselves. This is a
+/// way of minimizing the effect of outliers, at the cost of biasing the sample.
+/// It differs from trimming in that it does not change the number of samples,
+/// just changes the values of those that are outliers.
+///
+/// See: <http://en.wikipedia.org/wiki/Winsorising>
+pub fn winsorize(samples: &mut [f64], pct: f64) {
+    let mut tmp = samples.to_vec();
+    local_sort(&mut tmp);
+    let lo = percentile_of_sorted(&tmp, pct);
+    let hundred = 100_f64;
+    let hi = percentile_of_sorted(&tmp, hundred - pct);
+    for samp in samples {
+        if *samp > hi {
+            *samp = hi
+        } else if *samp < lo {
+            *samp = lo
+        }
+    }
+}