about summary refs log tree commit diff
path: root/src/liballoc/rc.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/liballoc/rc.rs')
-rw-r--r--src/liballoc/rc.rs2138
1 files changed, 0 insertions, 2138 deletions
diff --git a/src/liballoc/rc.rs b/src/liballoc/rc.rs
deleted file mode 100644
index 96dfc2f4251..00000000000
--- a/src/liballoc/rc.rs
+++ /dev/null
@@ -1,2138 +0,0 @@
-//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
-//! Counted'.
-//!
-//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
-//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
-//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
-//! given allocation is destroyed, the value stored in that allocation (often
-//! referred to as "inner value") is also dropped.
-//!
-//! Shared references in Rust disallow mutation by default, and [`Rc`]
-//! is no exception: you cannot generally obtain a mutable reference to
-//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
-//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
-//! inside an Rc][mutability].
-//!
-//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
-//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
-//! does not implement [`Send`][send]. As a result, the Rust compiler
-//! will check *at compile time* that you are not sending [`Rc`]s between
-//! threads. If you need multi-threaded, atomic reference counting, use
-//! [`sync::Arc`][arc].
-//!
-//! The [`downgrade`][downgrade] method can be used to create a non-owning
-//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
-//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
-//! already been dropped. In other words, `Weak` pointers do not keep the value
-//! inside the allocation alive; however, they *do* keep the allocation
-//! (the backing store for the inner value) alive.
-//!
-//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
-//! [`Weak`] is used to break cycles. For example, a tree could have strong
-//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
-//! children back to their parents.
-//!
-//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
-//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
-//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
-//! functions, called using function-like syntax:
-//!
-//! ```
-//! use std::rc::Rc;
-//! let my_rc = Rc::new(());
-//!
-//! Rc::downgrade(&my_rc);
-//! ```
-//!
-//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
-//! already been dropped.
-//!
-//! # Cloning references
-//!
-//! Creating a new reference to the same allocation as an existing reference counted pointer
-//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
-//!
-//! ```
-//! use std::rc::Rc;
-//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
-//! // The two syntaxes below are equivalent.
-//! let a = foo.clone();
-//! let b = Rc::clone(&foo);
-//! // a and b both point to the same memory location as foo.
-//! ```
-//!
-//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
-//! the meaning of the code. In the example above, this syntax makes it easier to see that
-//! this code is creating a new reference rather than copying the whole content of foo.
-//!
-//! # Examples
-//!
-//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
-//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
-//! unique ownership, because more than one gadget may belong to the same
-//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
-//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
-//!
-//! ```
-//! use std::rc::Rc;
-//!
-//! struct Owner {
-//!     name: String,
-//!     // ...other fields
-//! }
-//!
-//! struct Gadget {
-//!     id: i32,
-//!     owner: Rc<Owner>,
-//!     // ...other fields
-//! }
-//!
-//! fn main() {
-//!     // Create a reference-counted `Owner`.
-//!     let gadget_owner: Rc<Owner> = Rc::new(
-//!         Owner {
-//!             name: "Gadget Man".to_string(),
-//!         }
-//!     );
-//!
-//!     // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
-//!     // gives us a new pointer to the same `Owner` allocation, incrementing
-//!     // the reference count in the process.
-//!     let gadget1 = Gadget {
-//!         id: 1,
-//!         owner: Rc::clone(&gadget_owner),
-//!     };
-//!     let gadget2 = Gadget {
-//!         id: 2,
-//!         owner: Rc::clone(&gadget_owner),
-//!     };
-//!
-//!     // Dispose of our local variable `gadget_owner`.
-//!     drop(gadget_owner);
-//!
-//!     // Despite dropping `gadget_owner`, we're still able to print out the name
-//!     // of the `Owner` of the `Gadget`s. This is because we've only dropped a
-//!     // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
-//!     // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
-//!     // live. The field projection `gadget1.owner.name` works because
-//!     // `Rc<Owner>` automatically dereferences to `Owner`.
-//!     println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
-//!     println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
-//!
-//!     // At the end of the function, `gadget1` and `gadget2` are destroyed, and
-//!     // with them the last counted references to our `Owner`. Gadget Man now
-//!     // gets destroyed as well.
-//! }
-//! ```
-//!
-//! If our requirements change, and we also need to be able to traverse from
-//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
-//! to `Gadget` introduces a cycle. This means that their
-//! reference counts can never reach 0, and the allocation will never be destroyed:
-//! a memory leak. In order to get around this, we can use [`Weak`]
-//! pointers.
-//!
-//! Rust actually makes it somewhat difficult to produce this loop in the first
-//! place. In order to end up with two values that point at each other, one of
-//! them needs to be mutable. This is difficult because [`Rc`] enforces
-//! memory safety by only giving out shared references to the value it wraps,
-//! and these don't allow direct mutation. We need to wrap the part of the
-//! value we wish to mutate in a [`RefCell`], which provides *interior
-//! mutability*: a method to achieve mutability through a shared reference.
-//! [`RefCell`] enforces Rust's borrowing rules at runtime.
-//!
-//! ```
-//! use std::rc::Rc;
-//! use std::rc::Weak;
-//! use std::cell::RefCell;
-//!
-//! struct Owner {
-//!     name: String,
-//!     gadgets: RefCell<Vec<Weak<Gadget>>>,
-//!     // ...other fields
-//! }
-//!
-//! struct Gadget {
-//!     id: i32,
-//!     owner: Rc<Owner>,
-//!     // ...other fields
-//! }
-//!
-//! fn main() {
-//!     // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
-//!     // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
-//!     // a shared reference.
-//!     let gadget_owner: Rc<Owner> = Rc::new(
-//!         Owner {
-//!             name: "Gadget Man".to_string(),
-//!             gadgets: RefCell::new(vec![]),
-//!         }
-//!     );
-//!
-//!     // Create `Gadget`s belonging to `gadget_owner`, as before.
-//!     let gadget1 = Rc::new(
-//!         Gadget {
-//!             id: 1,
-//!             owner: Rc::clone(&gadget_owner),
-//!         }
-//!     );
-//!     let gadget2 = Rc::new(
-//!         Gadget {
-//!             id: 2,
-//!             owner: Rc::clone(&gadget_owner),
-//!         }
-//!     );
-//!
-//!     // Add the `Gadget`s to their `Owner`.
-//!     {
-//!         let mut gadgets = gadget_owner.gadgets.borrow_mut();
-//!         gadgets.push(Rc::downgrade(&gadget1));
-//!         gadgets.push(Rc::downgrade(&gadget2));
-//!
-//!         // `RefCell` dynamic borrow ends here.
-//!     }
-//!
-//!     // Iterate over our `Gadget`s, printing their details out.
-//!     for gadget_weak in gadget_owner.gadgets.borrow().iter() {
-//!
-//!         // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
-//!         // guarantee the allocation still exists, we need to call
-//!         // `upgrade`, which returns an `Option<Rc<Gadget>>`.
-//!         //
-//!         // In this case we know the allocation still exists, so we simply
-//!         // `unwrap` the `Option`. In a more complicated program, you might
-//!         // need graceful error handling for a `None` result.
-//!
-//!         let gadget = gadget_weak.upgrade().unwrap();
-//!         println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
-//!     }
-//!
-//!     // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
-//!     // are destroyed. There are now no strong (`Rc`) pointers to the
-//!     // gadgets, so they are destroyed. This zeroes the reference count on
-//!     // Gadget Man, so he gets destroyed as well.
-//! }
-//! ```
-//!
-//! [`Rc`]: struct.Rc.html
-//! [`Weak`]: struct.Weak.html
-//! [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
-//! [`Cell`]: ../../std/cell/struct.Cell.html
-//! [`RefCell`]: ../../std/cell/struct.RefCell.html
-//! [send]: ../../std/marker/trait.Send.html
-//! [arc]: ../../std/sync/struct.Arc.html
-//! [`Deref`]: ../../std/ops/trait.Deref.html
-//! [downgrade]: struct.Rc.html#method.downgrade
-//! [upgrade]: struct.Weak.html#method.upgrade
-//! [`None`]: ../../std/option/enum.Option.html#variant.None
-//! [mutability]: ../../std/cell/index.html#introducing-mutability-inside-of-something-immutable
-
-#![stable(feature = "rust1", since = "1.0.0")]
-
-#[cfg(not(test))]
-use crate::boxed::Box;
-#[cfg(test)]
-use std::boxed::Box;
-
-use core::any::Any;
-use core::borrow;
-use core::cell::Cell;
-use core::cmp::Ordering;
-use core::convert::{From, TryFrom};
-use core::fmt;
-use core::hash::{Hash, Hasher};
-use core::intrinsics::abort;
-use core::iter;
-use core::marker::{self, PhantomData, Unpin, Unsize};
-use core::mem::{self, align_of_val_raw, forget, size_of_val};
-use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver};
-use core::pin::Pin;
-use core::ptr::{self, NonNull};
-use core::slice::from_raw_parts_mut;
-
-use crate::alloc::{box_free, handle_alloc_error, AllocInit, AllocRef, Global, Layout};
-use crate::borrow::{Cow, ToOwned};
-use crate::string::String;
-use crate::vec::Vec;
-
-#[cfg(test)]
-mod tests;
-
-// This is repr(C) to future-proof against possible field-reordering, which
-// would interfere with otherwise safe [into|from]_raw() of transmutable
-// inner types.
-#[repr(C)]
-struct RcBox<T: ?Sized> {
-    strong: Cell<usize>,
-    weak: Cell<usize>,
-    value: T,
-}
-
-/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
-/// Counted'.
-///
-/// See the [module-level documentation](./index.html) for more details.
-///
-/// The inherent methods of `Rc` are all associated functions, which means
-/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
-/// `value.get_mut()`. This avoids conflicts with methods of the inner
-/// type `T`.
-///
-/// [get_mut]: #method.get_mut
-#[cfg_attr(not(test), rustc_diagnostic_item = "Rc")]
-#[stable(feature = "rust1", since = "1.0.0")]
-pub struct Rc<T: ?Sized> {
-    ptr: NonNull<RcBox<T>>,
-    phantom: PhantomData<RcBox<T>>,
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized> !marker::Send for Rc<T> {}
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized> !marker::Sync for Rc<T> {}
-
-#[unstable(feature = "coerce_unsized", issue = "27732")]
-impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}
-
-#[unstable(feature = "dispatch_from_dyn", issue = "none")]
-impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
-
-impl<T: ?Sized> Rc<T> {
-    fn from_inner(ptr: NonNull<RcBox<T>>) -> Self {
-        Self { ptr, phantom: PhantomData }
-    }
-
-    unsafe fn from_ptr(ptr: *mut RcBox<T>) -> Self {
-        Self::from_inner(unsafe { NonNull::new_unchecked(ptr) })
-    }
-}
-
-impl<T> Rc<T> {
-    /// Constructs a new `Rc<T>`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn new(value: T) -> Rc<T> {
-        // There is an implicit weak pointer owned by all the strong
-        // pointers, which ensures that the weak destructor never frees
-        // the allocation while the strong destructor is running, even
-        // if the weak pointer is stored inside the strong one.
-        Self::from_inner(
-            Box::leak(box RcBox { strong: Cell::new(1), weak: Cell::new(1), value }).into(),
-        )
-    }
-
-    /// Constructs a new `Rc` with uninitialized contents.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(new_uninit)]
-    /// #![feature(get_mut_unchecked)]
-    ///
-    /// use std::rc::Rc;
-    ///
-    /// let mut five = Rc::<u32>::new_uninit();
-    ///
-    /// let five = unsafe {
-    ///     // Deferred initialization:
-    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
-    ///
-    ///     five.assume_init()
-    /// };
-    ///
-    /// assert_eq!(*five, 5)
-    /// ```
-    #[unstable(feature = "new_uninit", issue = "63291")]
-    pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
-        unsafe {
-            Rc::from_ptr(Rc::allocate_for_layout(Layout::new::<T>(), |mem| {
-                mem as *mut RcBox<mem::MaybeUninit<T>>
-            }))
-        }
-    }
-
-    /// Constructs a new `Rc` with uninitialized contents, with the memory
-    /// being filled with `0` bytes.
-    ///
-    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
-    /// incorrect usage of this method.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(new_uninit)]
-    ///
-    /// use std::rc::Rc;
-    ///
-    /// let zero = Rc::<u32>::new_zeroed();
-    /// let zero = unsafe { zero.assume_init() };
-    ///
-    /// assert_eq!(*zero, 0)
-    /// ```
-    ///
-    /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
-    #[unstable(feature = "new_uninit", issue = "63291")]
-    pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
-        unsafe {
-            let mut uninit = Self::new_uninit();
-            ptr::write_bytes::<T>(Rc::get_mut_unchecked(&mut uninit).as_mut_ptr(), 0, 1);
-            uninit
-        }
-    }
-
-    /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
-    /// `value` will be pinned in memory and unable to be moved.
-    #[stable(feature = "pin", since = "1.33.0")]
-    pub fn pin(value: T) -> Pin<Rc<T>> {
-        unsafe { Pin::new_unchecked(Rc::new(value)) }
-    }
-
-    /// Returns the inner value, if the `Rc` has exactly one strong reference.
-    ///
-    /// Otherwise, an [`Err`][result] is returned with the same `Rc` that was
-    /// passed in.
-    ///
-    /// This will succeed even if there are outstanding weak references.
-    ///
-    /// [result]: ../../std/result/enum.Result.html
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let x = Rc::new(3);
-    /// assert_eq!(Rc::try_unwrap(x), Ok(3));
-    ///
-    /// let x = Rc::new(4);
-    /// let _y = Rc::clone(&x);
-    /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
-    /// ```
-    #[inline]
-    #[stable(feature = "rc_unique", since = "1.4.0")]
-    pub fn try_unwrap(this: Self) -> Result<T, Self> {
-        if Rc::strong_count(&this) == 1 {
-            unsafe {
-                let val = ptr::read(&*this); // copy the contained object
-
-                // Indicate to Weaks that they can't be promoted by decrementing
-                // the strong count, and then remove the implicit "strong weak"
-                // pointer while also handling drop logic by just crafting a
-                // fake Weak.
-                this.dec_strong();
-                let _weak = Weak { ptr: this.ptr };
-                forget(this);
-                Ok(val)
-            }
-        } else {
-            Err(this)
-        }
-    }
-}
-
-impl<T> Rc<[T]> {
-    /// Constructs a new reference-counted slice with uninitialized contents.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(new_uninit)]
-    /// #![feature(get_mut_unchecked)]
-    ///
-    /// use std::rc::Rc;
-    ///
-    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
-    ///
-    /// let values = unsafe {
-    ///     // Deferred initialization:
-    ///     Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
-    ///     Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
-    ///     Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
-    ///
-    ///     values.assume_init()
-    /// };
-    ///
-    /// assert_eq!(*values, [1, 2, 3])
-    /// ```
-    #[unstable(feature = "new_uninit", issue = "63291")]
-    pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
-        unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
-    }
-}
-
-impl<T> Rc<mem::MaybeUninit<T>> {
-    /// Converts to `Rc<T>`.
-    ///
-    /// # Safety
-    ///
-    /// As with [`MaybeUninit::assume_init`],
-    /// it is up to the caller to guarantee that the inner value
-    /// really is in an initialized state.
-    /// Calling this when the content is not yet fully initialized
-    /// causes immediate undefined behavior.
-    ///
-    /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(new_uninit)]
-    /// #![feature(get_mut_unchecked)]
-    ///
-    /// use std::rc::Rc;
-    ///
-    /// let mut five = Rc::<u32>::new_uninit();
-    ///
-    /// let five = unsafe {
-    ///     // Deferred initialization:
-    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
-    ///
-    ///     five.assume_init()
-    /// };
-    ///
-    /// assert_eq!(*five, 5)
-    /// ```
-    #[unstable(feature = "new_uninit", issue = "63291")]
-    #[inline]
-    pub unsafe fn assume_init(self) -> Rc<T> {
-        Rc::from_inner(mem::ManuallyDrop::new(self).ptr.cast())
-    }
-}
-
-impl<T> Rc<[mem::MaybeUninit<T>]> {
-    /// Converts to `Rc<[T]>`.
-    ///
-    /// # Safety
-    ///
-    /// As with [`MaybeUninit::assume_init`],
-    /// it is up to the caller to guarantee that the inner value
-    /// really is in an initialized state.
-    /// Calling this when the content is not yet fully initialized
-    /// causes immediate undefined behavior.
-    ///
-    /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(new_uninit)]
-    /// #![feature(get_mut_unchecked)]
-    ///
-    /// use std::rc::Rc;
-    ///
-    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
-    ///
-    /// let values = unsafe {
-    ///     // Deferred initialization:
-    ///     Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
-    ///     Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
-    ///     Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
-    ///
-    ///     values.assume_init()
-    /// };
-    ///
-    /// assert_eq!(*values, [1, 2, 3])
-    /// ```
-    #[unstable(feature = "new_uninit", issue = "63291")]
-    #[inline]
-    pub unsafe fn assume_init(self) -> Rc<[T]> {
-        unsafe { Rc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _) }
-    }
-}
-
-impl<T: ?Sized> Rc<T> {
-    /// Consumes the `Rc`, returning the wrapped pointer.
-    ///
-    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
-    /// [`Rc::from_raw`][from_raw].
-    ///
-    /// [from_raw]: struct.Rc.html#method.from_raw
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let x = Rc::new("hello".to_owned());
-    /// let x_ptr = Rc::into_raw(x);
-    /// assert_eq!(unsafe { &*x_ptr }, "hello");
-    /// ```
-    #[stable(feature = "rc_raw", since = "1.17.0")]
-    pub fn into_raw(this: Self) -> *const T {
-        let ptr = Self::as_ptr(&this);
-        mem::forget(this);
-        ptr
-    }
-
-    /// Provides a raw pointer to the data.
-    ///
-    /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
-    /// for as long there are strong counts in the `Rc`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let x = Rc::new("hello".to_owned());
-    /// let y = Rc::clone(&x);
-    /// let x_ptr = Rc::as_ptr(&x);
-    /// assert_eq!(x_ptr, Rc::as_ptr(&y));
-    /// assert_eq!(unsafe { &*x_ptr }, "hello");
-    /// ```
-    #[stable(feature = "weak_into_raw", since = "1.45.0")]
-    pub fn as_ptr(this: &Self) -> *const T {
-        let ptr: *mut RcBox<T> = NonNull::as_ptr(this.ptr);
-
-        // SAFETY: This cannot go through Deref::deref or Rc::inner because
-        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
-        // write through the pointer after the Rc is recovered through `from_raw`.
-        unsafe { &raw const (*ptr).value }
-    }
-
-    /// Constructs an `Rc<T>` from a raw pointer.
-    ///
-    /// The raw pointer must have been previously returned by a call to
-    /// [`Rc<U>::into_raw`][into_raw] where `U` must have the same size
-    /// and alignment as `T`. This is trivially true if `U` is `T`.
-    /// Note that if `U` is not `T` but has the same size and alignment, this is
-    /// basically like transmuting references of different types. See
-    /// [`mem::transmute`][transmute] for more information on what
-    /// restrictions apply in this case.
-    ///
-    /// The user of `from_raw` has to make sure a specific value of `T` is only
-    /// dropped once.
-    ///
-    /// This function is unsafe because improper use may lead to memory unsafety,
-    /// even if the returned `Rc<T>` is never accessed.
-    ///
-    /// [into_raw]: struct.Rc.html#method.into_raw
-    /// [transmute]: ../../std/mem/fn.transmute.html
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let x = Rc::new("hello".to_owned());
-    /// let x_ptr = Rc::into_raw(x);
-    ///
-    /// unsafe {
-    ///     // Convert back to an `Rc` to prevent leak.
-    ///     let x = Rc::from_raw(x_ptr);
-    ///     assert_eq!(&*x, "hello");
-    ///
-    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
-    /// }
-    ///
-    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
-    /// ```
-    #[stable(feature = "rc_raw", since = "1.17.0")]
-    pub unsafe fn from_raw(ptr: *const T) -> Self {
-        let offset = unsafe { data_offset(ptr) };
-
-        // Reverse the offset to find the original RcBox.
-        let fake_ptr = ptr as *mut RcBox<T>;
-        let rc_ptr = unsafe { set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset)) };
-
-        unsafe { Self::from_ptr(rc_ptr) }
-    }
-
-    /// Consumes the `Rc`, returning the wrapped pointer as `NonNull<T>`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(rc_into_raw_non_null)]
-    /// #![allow(deprecated)]
-    ///
-    /// use std::rc::Rc;
-    ///
-    /// let x = Rc::new("hello".to_owned());
-    /// let ptr = Rc::into_raw_non_null(x);
-    /// let deref = unsafe { ptr.as_ref() };
-    /// assert_eq!(deref, "hello");
-    /// ```
-    #[unstable(feature = "rc_into_raw_non_null", issue = "47336")]
-    #[rustc_deprecated(since = "1.44.0", reason = "use `Rc::into_raw` instead")]
-    #[inline]
-    pub fn into_raw_non_null(this: Self) -> NonNull<T> {
-        // safe because Rc guarantees its pointer is non-null
-        unsafe { NonNull::new_unchecked(Rc::into_raw(this) as *mut _) }
-    }
-
-    /// Creates a new [`Weak`][weak] pointer to this allocation.
-    ///
-    /// [weak]: struct.Weak.html
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// let weak_five = Rc::downgrade(&five);
-    /// ```
-    #[stable(feature = "rc_weak", since = "1.4.0")]
-    pub fn downgrade(this: &Self) -> Weak<T> {
-        this.inc_weak();
-        // Make sure we do not create a dangling Weak
-        debug_assert!(!is_dangling(this.ptr));
-        Weak { ptr: this.ptr }
-    }
-
-    /// Gets the number of [`Weak`][weak] pointers to this allocation.
-    ///
-    /// [weak]: struct.Weak.html
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    /// let _weak_five = Rc::downgrade(&five);
-    ///
-    /// assert_eq!(1, Rc::weak_count(&five));
-    /// ```
-    #[inline]
-    #[stable(feature = "rc_counts", since = "1.15.0")]
-    pub fn weak_count(this: &Self) -> usize {
-        this.weak() - 1
-    }
-
-    /// Gets the number of strong (`Rc`) pointers to this allocation.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    /// let _also_five = Rc::clone(&five);
-    ///
-    /// assert_eq!(2, Rc::strong_count(&five));
-    /// ```
-    #[inline]
-    #[stable(feature = "rc_counts", since = "1.15.0")]
-    pub fn strong_count(this: &Self) -> usize {
-        this.strong()
-    }
-
-    /// Returns `true` if there are no other `Rc` or [`Weak`][weak] pointers to
-    /// this allocation.
-    ///
-    /// [weak]: struct.Weak.html
-    #[inline]
-    fn is_unique(this: &Self) -> bool {
-        Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
-    }
-
-    /// Returns a mutable reference into the given `Rc`, if there are
-    /// no other `Rc` or [`Weak`][weak] pointers to the same allocation.
-    ///
-    /// Returns [`None`] otherwise, because it is not safe to
-    /// mutate a shared value.
-    ///
-    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
-    /// the inner value when there are other pointers.
-    ///
-    /// [weak]: struct.Weak.html
-    /// [`None`]: ../../std/option/enum.Option.html#variant.None
-    /// [make_mut]: struct.Rc.html#method.make_mut
-    /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let mut x = Rc::new(3);
-    /// *Rc::get_mut(&mut x).unwrap() = 4;
-    /// assert_eq!(*x, 4);
-    ///
-    /// let _y = Rc::clone(&x);
-    /// assert!(Rc::get_mut(&mut x).is_none());
-    /// ```
-    #[inline]
-    #[stable(feature = "rc_unique", since = "1.4.0")]
-    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
-        if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
-    }
-
-    /// Returns a mutable reference into the given `Rc`,
-    /// without any check.
-    ///
-    /// See also [`get_mut`], which is safe and does appropriate checks.
-    ///
-    /// [`get_mut`]: struct.Rc.html#method.get_mut
-    ///
-    /// # Safety
-    ///
-    /// Any other `Rc` or [`Weak`] pointers to the same allocation must not be dereferenced
-    /// for the duration of the returned borrow.
-    /// This is trivially the case if no such pointers exist,
-    /// for example immediately after `Rc::new`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(get_mut_unchecked)]
-    ///
-    /// use std::rc::Rc;
-    ///
-    /// let mut x = Rc::new(String::new());
-    /// unsafe {
-    ///     Rc::get_mut_unchecked(&mut x).push_str("foo")
-    /// }
-    /// assert_eq!(*x, "foo");
-    /// ```
-    #[inline]
-    #[unstable(feature = "get_mut_unchecked", issue = "63292")]
-    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
-        unsafe { &mut this.ptr.as_mut().value }
-    }
-
-    #[inline]
-    #[stable(feature = "ptr_eq", since = "1.17.0")]
-    /// Returns `true` if the two `Rc`s point to the same allocation
-    /// (in a vein similar to [`ptr::eq`]).
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    /// let same_five = Rc::clone(&five);
-    /// let other_five = Rc::new(5);
-    ///
-    /// assert!(Rc::ptr_eq(&five, &same_five));
-    /// assert!(!Rc::ptr_eq(&five, &other_five));
-    /// ```
-    ///
-    /// [`ptr::eq`]: ../../std/ptr/fn.eq.html
-    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
-        this.ptr.as_ptr() == other.ptr.as_ptr()
-    }
-}
-
-impl<T: Clone> Rc<T> {
-    /// Makes a mutable reference into the given `Rc`.
-    ///
-    /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
-    /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
-    /// referred to as clone-on-write.
-    ///
-    /// If there are no other `Rc` pointers to this allocation, then [`Weak`]
-    /// pointers to this allocation will be disassociated.
-    ///
-    /// See also [`get_mut`], which will fail rather than cloning.
-    ///
-    /// [`Weak`]: struct.Weak.html
-    /// [`clone`]: ../../std/clone/trait.Clone.html#tymethod.clone
-    /// [`get_mut`]: struct.Rc.html#method.get_mut
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let mut data = Rc::new(5);
-    ///
-    /// *Rc::make_mut(&mut data) += 1;        // Won't clone anything
-    /// let mut other_data = Rc::clone(&data);    // Won't clone inner data
-    /// *Rc::make_mut(&mut data) += 1;        // Clones inner data
-    /// *Rc::make_mut(&mut data) += 1;        // Won't clone anything
-    /// *Rc::make_mut(&mut other_data) *= 2;  // Won't clone anything
-    ///
-    /// // Now `data` and `other_data` point to different allocations.
-    /// assert_eq!(*data, 8);
-    /// assert_eq!(*other_data, 12);
-    /// ```
-    ///
-    /// [`Weak`] pointers will be disassociated:
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let mut data = Rc::new(75);
-    /// let weak = Rc::downgrade(&data);
-    ///
-    /// assert!(75 == *data);
-    /// assert!(75 == *weak.upgrade().unwrap());
-    ///
-    /// *Rc::make_mut(&mut data) += 1;
-    ///
-    /// assert!(76 == *data);
-    /// assert!(weak.upgrade().is_none());
-    /// ```
-    #[inline]
-    #[stable(feature = "rc_unique", since = "1.4.0")]
-    pub fn make_mut(this: &mut Self) -> &mut T {
-        if Rc::strong_count(this) != 1 {
-            // Gotta clone the data, there are other Rcs
-            *this = Rc::new((**this).clone())
-        } else if Rc::weak_count(this) != 0 {
-            // Can just steal the data, all that's left is Weaks
-            unsafe {
-                let mut swap = Rc::new(ptr::read(&this.ptr.as_ref().value));
-                mem::swap(this, &mut swap);
-                swap.dec_strong();
-                // Remove implicit strong-weak ref (no need to craft a fake
-                // Weak here -- we know other Weaks can clean up for us)
-                swap.dec_weak();
-                forget(swap);
-            }
-        }
-        // This unsafety is ok because we're guaranteed that the pointer
-        // returned is the *only* pointer that will ever be returned to T. Our
-        // reference count is guaranteed to be 1 at this point, and we required
-        // the `Rc<T>` itself to be `mut`, so we're returning the only possible
-        // reference to the allocation.
-        unsafe { &mut this.ptr.as_mut().value }
-    }
-}
-
-impl Rc<dyn Any> {
-    #[inline]
-    #[stable(feature = "rc_downcast", since = "1.29.0")]
-    /// Attempt to downcast the `Rc<dyn Any>` to a concrete type.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::any::Any;
-    /// use std::rc::Rc;
-    ///
-    /// fn print_if_string(value: Rc<dyn Any>) {
-    ///     if let Ok(string) = value.downcast::<String>() {
-    ///         println!("String ({}): {}", string.len(), string);
-    ///     }
-    /// }
-    ///
-    /// let my_string = "Hello World".to_string();
-    /// print_if_string(Rc::new(my_string));
-    /// print_if_string(Rc::new(0i8));
-    /// ```
-    pub fn downcast<T: Any>(self) -> Result<Rc<T>, Rc<dyn Any>> {
-        if (*self).is::<T>() {
-            let ptr = self.ptr.cast::<RcBox<T>>();
-            forget(self);
-            Ok(Rc::from_inner(ptr))
-        } else {
-            Err(self)
-        }
-    }
-}
-
-impl<T: ?Sized> Rc<T> {
-    /// Allocates an `RcBox<T>` with sufficient space for
-    /// a possibly-unsized inner value where the value has the layout provided.
-    ///
-    /// The function `mem_to_rcbox` is called with the data pointer
-    /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
-    unsafe fn allocate_for_layout(
-        value_layout: Layout,
-        mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>,
-    ) -> *mut RcBox<T> {
-        // Calculate layout using the given value layout.
-        // Previously, layout was calculated on the expression
-        // `&*(ptr as *const RcBox<T>)`, but this created a misaligned
-        // reference (see #54908).
-        let layout = Layout::new::<RcBox<()>>().extend(value_layout).unwrap().0.pad_to_align();
-
-        // Allocate for the layout.
-        let mem = Global
-            .alloc(layout, AllocInit::Uninitialized)
-            .unwrap_or_else(|_| handle_alloc_error(layout));
-
-        // Initialize the RcBox
-        let inner = mem_to_rcbox(mem.ptr.as_ptr());
-        unsafe {
-            debug_assert_eq!(Layout::for_value(&*inner), layout);
-
-            ptr::write(&mut (*inner).strong, Cell::new(1));
-            ptr::write(&mut (*inner).weak, Cell::new(1));
-        }
-
-        inner
-    }
-
-    /// Allocates an `RcBox<T>` with sufficient space for an unsized inner value
-    unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> {
-        // Allocate for the `RcBox<T>` using the given value.
-        unsafe {
-            Self::allocate_for_layout(Layout::for_value(&*ptr), |mem| {
-                set_data_ptr(ptr as *mut T, mem) as *mut RcBox<T>
-            })
-        }
-    }
-
-    fn from_box(v: Box<T>) -> Rc<T> {
-        unsafe {
-            let box_unique = Box::into_unique(v);
-            let bptr = box_unique.as_ptr();
-
-            let value_size = size_of_val(&*bptr);
-            let ptr = Self::allocate_for_ptr(bptr);
-
-            // Copy value as bytes
-            ptr::copy_nonoverlapping(
-                bptr as *const T as *const u8,
-                &mut (*ptr).value as *mut _ as *mut u8,
-                value_size,
-            );
-
-            // Free the allocation without dropping its contents
-            box_free(box_unique);
-
-            Self::from_ptr(ptr)
-        }
-    }
-}
-
-impl<T> Rc<[T]> {
-    /// Allocates an `RcBox<[T]>` with the given length.
-    unsafe fn allocate_for_slice(len: usize) -> *mut RcBox<[T]> {
-        unsafe {
-            Self::allocate_for_layout(Layout::array::<T>(len).unwrap(), |mem| {
-                ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut RcBox<[T]>
-            })
-        }
-    }
-}
-
-/// Sets the data pointer of a `?Sized` raw pointer.
-///
-/// For a slice/trait object, this sets the `data` field and leaves the rest
-/// unchanged. For a sized raw pointer, this simply sets the pointer.
-unsafe fn set_data_ptr<T: ?Sized, U>(mut ptr: *mut T, data: *mut U) -> *mut T {
-    unsafe {
-        ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8);
-    }
-    ptr
-}
-
-impl<T> Rc<[T]> {
-    /// Copy elements from slice into newly allocated Rc<\[T\]>
-    ///
-    /// Unsafe because the caller must either take ownership or bind `T: Copy`
-    unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
-        unsafe {
-            let ptr = Self::allocate_for_slice(v.len());
-            ptr::copy_nonoverlapping(v.as_ptr(), &mut (*ptr).value as *mut [T] as *mut T, v.len());
-            Self::from_ptr(ptr)
-        }
-    }
-
-    /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
-    ///
-    /// Behavior is undefined should the size be wrong.
-    unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Rc<[T]> {
-        // Panic guard while cloning T elements.
-        // In the event of a panic, elements that have been written
-        // into the new RcBox will be dropped, then the memory freed.
-        struct Guard<T> {
-            mem: NonNull<u8>,
-            elems: *mut T,
-            layout: Layout,
-            n_elems: usize,
-        }
-
-        impl<T> Drop for Guard<T> {
-            fn drop(&mut self) {
-                unsafe {
-                    let slice = from_raw_parts_mut(self.elems, self.n_elems);
-                    ptr::drop_in_place(slice);
-
-                    Global.dealloc(self.mem, self.layout);
-                }
-            }
-        }
-
-        unsafe {
-            let ptr = Self::allocate_for_slice(len);
-
-            let mem = ptr as *mut _ as *mut u8;
-            let layout = Layout::for_value(&*ptr);
-
-            // Pointer to first element
-            let elems = &mut (*ptr).value as *mut [T] as *mut T;
-
-            let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
-
-            for (i, item) in iter.enumerate() {
-                ptr::write(elems.add(i), item);
-                guard.n_elems += 1;
-            }
-
-            // All clear. Forget the guard so it doesn't free the new RcBox.
-            forget(guard);
-
-            Self::from_ptr(ptr)
-        }
-    }
-}
-
-/// Specialization trait used for `From<&[T]>`.
-trait RcFromSlice<T> {
-    fn from_slice(slice: &[T]) -> Self;
-}
-
-impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
-    #[inline]
-    default fn from_slice(v: &[T]) -> Self {
-        unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
-    }
-}
-
-impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
-    #[inline]
-    fn from_slice(v: &[T]) -> Self {
-        unsafe { Rc::copy_from_slice(v) }
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized> Deref for Rc<T> {
-    type Target = T;
-
-    #[inline(always)]
-    fn deref(&self) -> &T {
-        &self.inner().value
-    }
-}
-
-#[unstable(feature = "receiver_trait", issue = "none")]
-impl<T: ?Sized> Receiver for Rc<T> {}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {
-    /// Drops the `Rc`.
-    ///
-    /// This will decrement the strong reference count. If the strong reference
-    /// count reaches zero then the only other references (if any) are
-    /// [`Weak`], so we `drop` the inner value.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// struct Foo;
-    ///
-    /// impl Drop for Foo {
-    ///     fn drop(&mut self) {
-    ///         println!("dropped!");
-    ///     }
-    /// }
-    ///
-    /// let foo  = Rc::new(Foo);
-    /// let foo2 = Rc::clone(&foo);
-    ///
-    /// drop(foo);    // Doesn't print anything
-    /// drop(foo2);   // Prints "dropped!"
-    /// ```
-    ///
-    /// [`Weak`]: ../../std/rc/struct.Weak.html
-    fn drop(&mut self) {
-        unsafe {
-            self.dec_strong();
-            if self.strong() == 0 {
-                // destroy the contained object
-                ptr::drop_in_place(self.ptr.as_mut());
-
-                // remove the implicit "strong weak" pointer now that we've
-                // destroyed the contents.
-                self.dec_weak();
-
-                if self.weak() == 0 {
-                    Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
-                }
-            }
-        }
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized> Clone for Rc<T> {
-    /// Makes a clone of the `Rc` pointer.
-    ///
-    /// This creates another pointer to the same allocation, increasing the
-    /// strong reference count.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// let _ = Rc::clone(&five);
-    /// ```
-    #[inline]
-    fn clone(&self) -> Rc<T> {
-        self.inc_strong();
-        Self::from_inner(self.ptr)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Default> Default for Rc<T> {
-    /// Creates a new `Rc<T>`, with the `Default` value for `T`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let x: Rc<i32> = Default::default();
-    /// assert_eq!(*x, 0);
-    /// ```
-    #[inline]
-    fn default() -> Rc<T> {
-        Rc::new(Default::default())
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-trait RcEqIdent<T: ?Sized + PartialEq> {
-    fn eq(&self, other: &Rc<T>) -> bool;
-    fn ne(&self, other: &Rc<T>) -> bool;
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + PartialEq> RcEqIdent<T> for Rc<T> {
-    #[inline]
-    default fn eq(&self, other: &Rc<T>) -> bool {
-        **self == **other
-    }
-
-    #[inline]
-    default fn ne(&self, other: &Rc<T>) -> bool {
-        **self != **other
-    }
-}
-
-// Hack to allow specializing on `Eq` even though `Eq` has a method.
-#[rustc_unsafe_specialization_marker]
-pub(crate) trait MarkerEq: PartialEq<Self> {}
-
-impl<T: Eq> MarkerEq for T {}
-
-/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
-/// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
-/// store large values, that are slow to clone, but also heavy to check for equality, causing this
-/// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
-/// the same value, than two `&T`s.
-///
-/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + MarkerEq> RcEqIdent<T> for Rc<T> {
-    #[inline]
-    fn eq(&self, other: &Rc<T>) -> bool {
-        Rc::ptr_eq(self, other) || **self == **other
-    }
-
-    #[inline]
-    fn ne(&self, other: &Rc<T>) -> bool {
-        !Rc::ptr_eq(self, other) && **self != **other
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + PartialEq> PartialEq for Rc<T> {
-    /// Equality for two `Rc`s.
-    ///
-    /// Two `Rc`s are equal if their inner values are equal, even if they are
-    /// stored in different allocation.
-    ///
-    /// If `T` also implements `Eq` (implying reflexivity of equality),
-    /// two `Rc`s that point to the same allocation are
-    /// always equal.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// assert!(five == Rc::new(5));
-    /// ```
-    #[inline]
-    fn eq(&self, other: &Rc<T>) -> bool {
-        RcEqIdent::eq(self, other)
-    }
-
-    /// Inequality for two `Rc`s.
-    ///
-    /// Two `Rc`s are unequal if their inner values are unequal.
-    ///
-    /// If `T` also implements `Eq` (implying reflexivity of equality),
-    /// two `Rc`s that point to the same allocation are
-    /// never unequal.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// assert!(five != Rc::new(6));
-    /// ```
-    #[inline]
-    fn ne(&self, other: &Rc<T>) -> bool {
-        RcEqIdent::ne(self, other)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + Eq> Eq for Rc<T> {}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + PartialOrd> PartialOrd for Rc<T> {
-    /// Partial comparison for two `Rc`s.
-    ///
-    /// The two are compared by calling `partial_cmp()` on their inner values.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    /// use std::cmp::Ordering;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
-    /// ```
-    #[inline(always)]
-    fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
-        (**self).partial_cmp(&**other)
-    }
-
-    /// Less-than comparison for two `Rc`s.
-    ///
-    /// The two are compared by calling `<` on their inner values.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// assert!(five < Rc::new(6));
-    /// ```
-    #[inline(always)]
-    fn lt(&self, other: &Rc<T>) -> bool {
-        **self < **other
-    }
-
-    /// 'Less than or equal to' comparison for two `Rc`s.
-    ///
-    /// The two are compared by calling `<=` on their inner values.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// assert!(five <= Rc::new(5));
-    /// ```
-    #[inline(always)]
-    fn le(&self, other: &Rc<T>) -> bool {
-        **self <= **other
-    }
-
-    /// Greater-than comparison for two `Rc`s.
-    ///
-    /// The two are compared by calling `>` on their inner values.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// assert!(five > Rc::new(4));
-    /// ```
-    #[inline(always)]
-    fn gt(&self, other: &Rc<T>) -> bool {
-        **self > **other
-    }
-
-    /// 'Greater than or equal to' comparison for two `Rc`s.
-    ///
-    /// The two are compared by calling `>=` on their inner values.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// assert!(five >= Rc::new(5));
-    /// ```
-    #[inline(always)]
-    fn ge(&self, other: &Rc<T>) -> bool {
-        **self >= **other
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + Ord> Ord for Rc<T> {
-    /// Comparison for two `Rc`s.
-    ///
-    /// The two are compared by calling `cmp()` on their inner values.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    /// use std::cmp::Ordering;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
-    /// ```
-    #[inline]
-    fn cmp(&self, other: &Rc<T>) -> Ordering {
-        (**self).cmp(&**other)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + Hash> Hash for Rc<T> {
-    fn hash<H: Hasher>(&self, state: &mut H) {
-        (**self).hash(state);
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + fmt::Display> fmt::Display for Rc<T> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        fmt::Display::fmt(&**self, f)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + fmt::Debug> fmt::Debug for Rc<T> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        fmt::Debug::fmt(&**self, f)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized> fmt::Pointer for Rc<T> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        fmt::Pointer::fmt(&(&**self as *const T), f)
-    }
-}
-
-#[stable(feature = "from_for_ptrs", since = "1.6.0")]
-impl<T> From<T> for Rc<T> {
-    fn from(t: T) -> Self {
-        Rc::new(t)
-    }
-}
-
-#[stable(feature = "shared_from_slice", since = "1.21.0")]
-impl<T: Clone> From<&[T]> for Rc<[T]> {
-    #[inline]
-    fn from(v: &[T]) -> Rc<[T]> {
-        <Self as RcFromSlice<T>>::from_slice(v)
-    }
-}
-
-#[stable(feature = "shared_from_slice", since = "1.21.0")]
-impl From<&str> for Rc<str> {
-    #[inline]
-    fn from(v: &str) -> Rc<str> {
-        let rc = Rc::<[u8]>::from(v.as_bytes());
-        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
-    }
-}
-
-#[stable(feature = "shared_from_slice", since = "1.21.0")]
-impl From<String> for Rc<str> {
-    #[inline]
-    fn from(v: String) -> Rc<str> {
-        Rc::from(&v[..])
-    }
-}
-
-#[stable(feature = "shared_from_slice", since = "1.21.0")]
-impl<T: ?Sized> From<Box<T>> for Rc<T> {
-    #[inline]
-    fn from(v: Box<T>) -> Rc<T> {
-        Rc::from_box(v)
-    }
-}
-
-#[stable(feature = "shared_from_slice", since = "1.21.0")]
-impl<T> From<Vec<T>> for Rc<[T]> {
-    #[inline]
-    fn from(mut v: Vec<T>) -> Rc<[T]> {
-        unsafe {
-            let rc = Rc::copy_from_slice(&v);
-
-            // Allow the Vec to free its memory, but not destroy its contents
-            v.set_len(0);
-
-            rc
-        }
-    }
-}
-
-#[stable(feature = "shared_from_cow", since = "1.45.0")]
-impl<'a, B> From<Cow<'a, B>> for Rc<B>
-where
-    B: ToOwned + ?Sized,
-    Rc<B>: From<&'a B> + From<B::Owned>,
-{
-    #[inline]
-    fn from(cow: Cow<'a, B>) -> Rc<B> {
-        match cow {
-            Cow::Borrowed(s) => Rc::from(s),
-            Cow::Owned(s) => Rc::from(s),
-        }
-    }
-}
-
-#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
-impl<T, const N: usize> TryFrom<Rc<[T]>> for Rc<[T; N]> {
-    type Error = Rc<[T]>;
-
-    fn try_from(boxed_slice: Rc<[T]>) -> Result<Self, Self::Error> {
-        if boxed_slice.len() == N {
-            Ok(unsafe { Rc::from_raw(Rc::into_raw(boxed_slice) as *mut [T; N]) })
-        } else {
-            Err(boxed_slice)
-        }
-    }
-}
-
-#[stable(feature = "shared_from_iter", since = "1.37.0")]
-impl<T> iter::FromIterator<T> for Rc<[T]> {
-    /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
-    ///
-    /// # Performance characteristics
-    ///
-    /// ## The general case
-    ///
-    /// In the general case, collecting into `Rc<[T]>` is done by first
-    /// collecting into a `Vec<T>`. That is, when writing the following:
-    ///
-    /// ```rust
-    /// # use std::rc::Rc;
-    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
-    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
-    /// ```
-    ///
-    /// this behaves as if we wrote:
-    ///
-    /// ```rust
-    /// # use std::rc::Rc;
-    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
-    ///     .collect::<Vec<_>>() // The first set of allocations happens here.
-    ///     .into(); // A second allocation for `Rc<[T]>` happens here.
-    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
-    /// ```
-    ///
-    /// This will allocate as many times as needed for constructing the `Vec<T>`
-    /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
-    ///
-    /// ## Iterators of known length
-    ///
-    /// When your `Iterator` implements `TrustedLen` and is of an exact size,
-    /// a single allocation will be made for the `Rc<[T]>`. For example:
-    ///
-    /// ```rust
-    /// # use std::rc::Rc;
-    /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
-    /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
-    /// ```
-    fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
-        ToRcSlice::to_rc_slice(iter.into_iter())
-    }
-}
-
-/// Specialization trait used for collecting into `Rc<[T]>`.
-trait ToRcSlice<T>: Iterator<Item = T> + Sized {
-    fn to_rc_slice(self) -> Rc<[T]>;
-}
-
-impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I {
-    default fn to_rc_slice(self) -> Rc<[T]> {
-        self.collect::<Vec<T>>().into()
-    }
-}
-
-impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I {
-    fn to_rc_slice(self) -> Rc<[T]> {
-        // This is the case for a `TrustedLen` iterator.
-        let (low, high) = self.size_hint();
-        if let Some(high) = high {
-            debug_assert_eq!(
-                low,
-                high,
-                "TrustedLen iterator's size hint is not exact: {:?}",
-                (low, high)
-            );
-
-            unsafe {
-                // SAFETY: We need to ensure that the iterator has an exact length and we have.
-                Rc::from_iter_exact(self, low)
-            }
-        } else {
-            // Fall back to normal implementation.
-            self.collect::<Vec<T>>().into()
-        }
-    }
-}
-
-/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
-/// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
-/// pointer, which returns an [`Option`]`<`[`Rc`]`<T>>`.
-///
-/// Since a `Weak` reference does not count towards ownership, it will not
-/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
-/// guarantees about the value still being present. Thus it may return [`None`]
-/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
-/// itself (the backing store) from being deallocated.
-///
-/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
-/// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
-/// prevent circular references between [`Rc`] pointers, since mutual owning references
-/// would never allow either [`Rc`] to be dropped. For example, a tree could
-/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
-/// pointers from children back to their parents.
-///
-/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
-///
-/// [`Rc`]: struct.Rc.html
-/// [`Rc::downgrade`]: struct.Rc.html#method.downgrade
-/// [`upgrade`]: struct.Weak.html#method.upgrade
-/// [`Option`]: ../../std/option/enum.Option.html
-/// [`None`]: ../../std/option/enum.Option.html#variant.None
-#[stable(feature = "rc_weak", since = "1.4.0")]
-pub struct Weak<T: ?Sized> {
-    // This is a `NonNull` to allow optimizing the size of this type in enums,
-    // but it is not necessarily a valid pointer.
-    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
-    // to allocate space on the heap.  That's not a value a real pointer
-    // will ever have because RcBox has alignment at least 2.
-    // This is only possible when `T: Sized`; unsized `T` never dangle.
-    ptr: NonNull<RcBox<T>>,
-}
-
-#[stable(feature = "rc_weak", since = "1.4.0")]
-impl<T: ?Sized> !marker::Send for Weak<T> {}
-#[stable(feature = "rc_weak", since = "1.4.0")]
-impl<T: ?Sized> !marker::Sync for Weak<T> {}
-
-#[unstable(feature = "coerce_unsized", issue = "27732")]
-impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
-
-#[unstable(feature = "dispatch_from_dyn", issue = "none")]
-impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
-
-impl<T> Weak<T> {
-    /// Constructs a new `Weak<T>`, without allocating any memory.
-    /// Calling [`upgrade`] on the return value always gives [`None`].
-    ///
-    /// [`upgrade`]: #method.upgrade
-    /// [`None`]: ../../std/option/enum.Option.html
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Weak;
-    ///
-    /// let empty: Weak<i64> = Weak::new();
-    /// assert!(empty.upgrade().is_none());
-    /// ```
-    #[stable(feature = "downgraded_weak", since = "1.10.0")]
-    pub fn new() -> Weak<T> {
-        Weak { ptr: NonNull::new(usize::MAX as *mut RcBox<T>).expect("MAX is not 0") }
-    }
-
-    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
-    ///
-    /// The pointer is valid only if there are some strong references. The pointer may be dangling,
-    /// unaligned or even [`null`] otherwise.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    /// use std::ptr;
-    ///
-    /// let strong = Rc::new("hello".to_owned());
-    /// let weak = Rc::downgrade(&strong);
-    /// // Both point to the same object
-    /// assert!(ptr::eq(&*strong, weak.as_ptr()));
-    /// // The strong here keeps it alive, so we can still access the object.
-    /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
-    ///
-    /// drop(strong);
-    /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
-    /// // undefined behaviour.
-    /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
-    /// ```
-    ///
-    /// [`null`]: ../../std/ptr/fn.null.html
-    #[stable(feature = "rc_as_ptr", since = "1.45.0")]
-    pub fn as_ptr(&self) -> *const T {
-        let ptr: *mut RcBox<T> = NonNull::as_ptr(self.ptr);
-
-        // SAFETY: we must offset the pointer manually, and said pointer may be
-        // a dangling weak (usize::MAX) if T is sized. data_offset is safe to call,
-        // because we know that a pointer to unsized T was derived from a real
-        // unsized T, as dangling weaks are only created for sized T. wrapping_offset
-        // is used so that we can use the same code path for the non-dangling
-        // unsized case and the potentially dangling sized case.
-        unsafe {
-            let offset = data_offset(ptr as *mut T);
-            set_data_ptr(ptr as *mut T, (ptr as *mut u8).wrapping_offset(offset))
-        }
-    }
-
-    /// Consumes the `Weak<T>` and turns it into a raw pointer.
-    ///
-    /// This converts the weak pointer into a raw pointer, preserving the original weak count. It
-    /// can be turned back into the `Weak<T>` with [`from_raw`].
-    ///
-    /// The same restrictions of accessing the target of the pointer as with
-    /// [`as_ptr`] apply.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::{Rc, Weak};
-    ///
-    /// let strong = Rc::new("hello".to_owned());
-    /// let weak = Rc::downgrade(&strong);
-    /// let raw = weak.into_raw();
-    ///
-    /// assert_eq!(1, Rc::weak_count(&strong));
-    /// assert_eq!("hello", unsafe { &*raw });
-    ///
-    /// drop(unsafe { Weak::from_raw(raw) });
-    /// assert_eq!(0, Rc::weak_count(&strong));
-    /// ```
-    ///
-    /// [`from_raw`]: struct.Weak.html#method.from_raw
-    /// [`as_ptr`]: struct.Weak.html#method.as_ptr
-    #[stable(feature = "weak_into_raw", since = "1.45.0")]
-    pub fn into_raw(self) -> *const T {
-        let result = self.as_ptr();
-        mem::forget(self);
-        result
-    }
-
-    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
-    ///
-    /// This can be used to safely get a strong reference (by calling [`upgrade`]
-    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
-    ///
-    /// It takes ownership of one weak count (with the exception of pointers created by [`new`],
-    /// as these don't have any corresponding weak count).
-    ///
-    /// # Safety
-    ///
-    /// The pointer must have originated from the [`into_raw`]  and must still own its potential
-    /// weak reference count.
-    ///
-    /// It is allowed for the strong count to be 0 at the time of calling this, but the weak count
-    /// must be non-zero or the pointer must have originated from a dangling `Weak<T>` (one created
-    /// by [`new`]).
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::{Rc, Weak};
-    ///
-    /// let strong = Rc::new("hello".to_owned());
-    ///
-    /// let raw_1 = Rc::downgrade(&strong).into_raw();
-    /// let raw_2 = Rc::downgrade(&strong).into_raw();
-    ///
-    /// assert_eq!(2, Rc::weak_count(&strong));
-    ///
-    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
-    /// assert_eq!(1, Rc::weak_count(&strong));
-    ///
-    /// drop(strong);
-    ///
-    /// // Decrement the last weak count.
-    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
-    /// ```
-    ///
-    /// [`into_raw`]: struct.Weak.html#method.into_raw
-    /// [`upgrade`]: struct.Weak.html#method.upgrade
-    /// [`Rc`]: struct.Rc.html
-    /// [`Weak`]: struct.Weak.html
-    /// [`new`]: struct.Weak.html#method.new
-    /// [`forget`]: ../../std/mem/fn.forget.html
-    #[stable(feature = "weak_into_raw", since = "1.45.0")]
-    pub unsafe fn from_raw(ptr: *const T) -> Self {
-        if ptr.is_null() {
-            Self::new()
-        } else {
-            // See Rc::from_raw for details
-            unsafe {
-                let offset = data_offset(ptr);
-                let fake_ptr = ptr as *mut RcBox<T>;
-                let ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));
-                Weak { ptr: NonNull::new(ptr).expect("Invalid pointer passed to from_raw") }
-            }
-        }
-    }
-}
-
-pub(crate) fn is_dangling<T: ?Sized>(ptr: NonNull<T>) -> bool {
-    let address = ptr.as_ptr() as *mut () as usize;
-    address == usize::MAX
-}
-
-impl<T: ?Sized> Weak<T> {
-    /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
-    /// dropping of the inner value if successful.
-    ///
-    /// Returns [`None`] if the inner value has since been dropped.
-    ///
-    /// [`Rc`]: struct.Rc.html
-    /// [`None`]: ../../std/option/enum.Option.html
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let five = Rc::new(5);
-    ///
-    /// let weak_five = Rc::downgrade(&five);
-    ///
-    /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
-    /// assert!(strong_five.is_some());
-    ///
-    /// // Destroy all strong pointers.
-    /// drop(strong_five);
-    /// drop(five);
-    ///
-    /// assert!(weak_five.upgrade().is_none());
-    /// ```
-    #[stable(feature = "rc_weak", since = "1.4.0")]
-    pub fn upgrade(&self) -> Option<Rc<T>> {
-        let inner = self.inner()?;
-        if inner.strong() == 0 {
-            None
-        } else {
-            inner.inc_strong();
-            Some(Rc::from_inner(self.ptr))
-        }
-    }
-
-    /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
-    ///
-    /// If `self` was created using [`Weak::new`], this will return 0.
-    ///
-    /// [`Weak::new`]: #method.new
-    #[stable(feature = "weak_counts", since = "1.41.0")]
-    pub fn strong_count(&self) -> usize {
-        if let Some(inner) = self.inner() { inner.strong() } else { 0 }
-    }
-
-    /// Gets the number of `Weak` pointers pointing to this allocation.
-    ///
-    /// If no strong pointers remain, this will return zero.
-    #[stable(feature = "weak_counts", since = "1.41.0")]
-    pub fn weak_count(&self) -> usize {
-        self.inner()
-            .map(|inner| {
-                if inner.strong() > 0 {
-                    inner.weak() - 1 // subtract the implicit weak ptr
-                } else {
-                    0
-                }
-            })
-            .unwrap_or(0)
-    }
-
-    /// Returns `None` when the pointer is dangling and there is no allocated `RcBox`
-    /// (i.e., when this `Weak` was created by `Weak::new`).
-    #[inline]
-    fn inner(&self) -> Option<&RcBox<T>> {
-        if is_dangling(self.ptr) { None } else { Some(unsafe { self.ptr.as_ref() }) }
-    }
-
-    /// Returns `true` if the two `Weak`s point to the same allocation (similar to
-    /// [`ptr::eq`]), or if both don't point to any allocation
-    /// (because they were created with `Weak::new()`).
-    ///
-    /// # Notes
-    ///
-    /// Since this compares pointers it means that `Weak::new()` will equal each
-    /// other, even though they don't point to any allocation.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Rc;
-    ///
-    /// let first_rc = Rc::new(5);
-    /// let first = Rc::downgrade(&first_rc);
-    /// let second = Rc::downgrade(&first_rc);
-    ///
-    /// assert!(first.ptr_eq(&second));
-    ///
-    /// let third_rc = Rc::new(5);
-    /// let third = Rc::downgrade(&third_rc);
-    ///
-    /// assert!(!first.ptr_eq(&third));
-    /// ```
-    ///
-    /// Comparing `Weak::new`.
-    ///
-    /// ```
-    /// use std::rc::{Rc, Weak};
-    ///
-    /// let first = Weak::new();
-    /// let second = Weak::new();
-    /// assert!(first.ptr_eq(&second));
-    ///
-    /// let third_rc = Rc::new(());
-    /// let third = Rc::downgrade(&third_rc);
-    /// assert!(!first.ptr_eq(&third));
-    /// ```
-    ///
-    /// [`ptr::eq`]: ../../std/ptr/fn.eq.html
-    #[inline]
-    #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
-    pub fn ptr_eq(&self, other: &Self) -> bool {
-        self.ptr.as_ptr() == other.ptr.as_ptr()
-    }
-}
-
-#[stable(feature = "rc_weak", since = "1.4.0")]
-impl<T: ?Sized> Drop for Weak<T> {
-    /// Drops the `Weak` pointer.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::{Rc, Weak};
-    ///
-    /// struct Foo;
-    ///
-    /// impl Drop for Foo {
-    ///     fn drop(&mut self) {
-    ///         println!("dropped!");
-    ///     }
-    /// }
-    ///
-    /// let foo = Rc::new(Foo);
-    /// let weak_foo = Rc::downgrade(&foo);
-    /// let other_weak_foo = Weak::clone(&weak_foo);
-    ///
-    /// drop(weak_foo);   // Doesn't print anything
-    /// drop(foo);        // Prints "dropped!"
-    ///
-    /// assert!(other_weak_foo.upgrade().is_none());
-    /// ```
-    fn drop(&mut self) {
-        if let Some(inner) = self.inner() {
-            inner.dec_weak();
-            // the weak count starts at 1, and will only go to zero if all
-            // the strong pointers have disappeared.
-            if inner.weak() == 0 {
-                unsafe {
-                    Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
-                }
-            }
-        }
-    }
-}
-
-#[stable(feature = "rc_weak", since = "1.4.0")]
-impl<T: ?Sized> Clone for Weak<T> {
-    /// Makes a clone of the `Weak` pointer that points to the same allocation.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::{Rc, Weak};
-    ///
-    /// let weak_five = Rc::downgrade(&Rc::new(5));
-    ///
-    /// let _ = Weak::clone(&weak_five);
-    /// ```
-    #[inline]
-    fn clone(&self) -> Weak<T> {
-        if let Some(inner) = self.inner() {
-            inner.inc_weak()
-        }
-        Weak { ptr: self.ptr }
-    }
-}
-
-#[stable(feature = "rc_weak", since = "1.4.0")]
-impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        write!(f, "(Weak)")
-    }
-}
-
-#[stable(feature = "downgraded_weak", since = "1.10.0")]
-impl<T> Default for Weak<T> {
-    /// Constructs a new `Weak<T>`, allocating memory for `T` without initializing
-    /// it. Calling [`upgrade`] on the return value always gives [`None`].
-    ///
-    /// [`None`]: ../../std/option/enum.Option.html
-    /// [`upgrade`]: ../../std/rc/struct.Weak.html#method.upgrade
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::rc::Weak;
-    ///
-    /// let empty: Weak<i64> = Default::default();
-    /// assert!(empty.upgrade().is_none());
-    /// ```
-    fn default() -> Weak<T> {
-        Weak::new()
-    }
-}
-
-// NOTE: We checked_add here to deal with mem::forget safely. In particular
-// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
-// you can free the allocation while outstanding Rcs (or Weaks) exist.
-// We abort because this is such a degenerate scenario that we don't care about
-// what happens -- no real program should ever experience this.
-//
-// This should have negligible overhead since you don't actually need to
-// clone these much in Rust thanks to ownership and move-semantics.
-
-#[doc(hidden)]
-trait RcBoxPtr<T: ?Sized> {
-    fn inner(&self) -> &RcBox<T>;
-
-    #[inline]
-    fn strong(&self) -> usize {
-        self.inner().strong.get()
-    }
-
-    #[inline]
-    fn inc_strong(&self) {
-        let strong = self.strong();
-
-        // We want to abort on overflow instead of dropping the value.
-        // The reference count will never be zero when this is called;
-        // nevertheless, we insert an abort here to hint LLVM at
-        // an otherwise missed optimization.
-        if strong == 0 || strong == usize::MAX {
-            abort();
-        }
-        self.inner().strong.set(strong + 1);
-    }
-
-    #[inline]
-    fn dec_strong(&self) {
-        self.inner().strong.set(self.strong() - 1);
-    }
-
-    #[inline]
-    fn weak(&self) -> usize {
-        self.inner().weak.get()
-    }
-
-    #[inline]
-    fn inc_weak(&self) {
-        let weak = self.weak();
-
-        // We want to abort on overflow instead of dropping the value.
-        // The reference count will never be zero when this is called;
-        // nevertheless, we insert an abort here to hint LLVM at
-        // an otherwise missed optimization.
-        if weak == 0 || weak == usize::MAX {
-            abort();
-        }
-        self.inner().weak.set(weak + 1);
-    }
-
-    #[inline]
-    fn dec_weak(&self) {
-        self.inner().weak.set(self.weak() - 1);
-    }
-}
-
-impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
-    #[inline(always)]
-    fn inner(&self) -> &RcBox<T> {
-        unsafe { self.ptr.as_ref() }
-    }
-}
-
-impl<T: ?Sized> RcBoxPtr<T> for RcBox<T> {
-    #[inline(always)]
-    fn inner(&self) -> &RcBox<T> {
-        self
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized> borrow::Borrow<T> for Rc<T> {
-    fn borrow(&self) -> &T {
-        &**self
-    }
-}
-
-#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
-impl<T: ?Sized> AsRef<T> for Rc<T> {
-    fn as_ref(&self) -> &T {
-        &**self
-    }
-}
-
-#[stable(feature = "pin", since = "1.33.0")]
-impl<T: ?Sized> Unpin for Rc<T> {}
-
-/// Get the offset within an `ArcInner` for
-/// a payload of type described by a pointer.
-///
-/// # Safety
-///
-/// This has the same safety requirements as `align_of_val_raw`. In effect:
-///
-/// - This function is safe for any argument if `T` is sized, and
-/// - if `T` is unsized, the pointer must have appropriate pointer metadata
-///   aquired from the real instance that you are getting this offset for.
-unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> isize {
-    // Align the unsized value to the end of the `RcBox`.
-    // Because it is ?Sized, it will always be the last field in memory.
-    // Note: This is a detail of the current implementation of the compiler,
-    // and is not a guaranteed language detail. Do not rely on it outside of std.
-    unsafe { data_offset_align(align_of_val_raw(ptr)) }
-}
-
-#[inline]
-fn data_offset_align(align: usize) -> isize {
-    let layout = Layout::new::<RcBox<()>>();
-    (layout.size() + layout.padding_needed_for(align)) as isize
-}