about summary refs log tree commit diff
path: root/src/liballoc/slice.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/liballoc/slice.rs')
-rw-r--r--src/liballoc/slice.rs1943
1 files changed, 1943 insertions, 0 deletions
diff --git a/src/liballoc/slice.rs b/src/liballoc/slice.rs
new file mode 100644
index 00000000000..88876999d76
--- /dev/null
+++ b/src/liballoc/slice.rs
@@ -0,0 +1,1943 @@
+// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! A dynamically-sized view into a contiguous sequence, `[T]`.
+//!
+//! Slices are a view into a block of memory represented as a pointer and a
+//! length.
+//!
+//! ```
+//! // slicing a Vec
+//! let vec = vec![1, 2, 3];
+//! let int_slice = &vec[..];
+//! // coercing an array to a slice
+//! let str_slice: &[&str] = &["one", "two", "three"];
+//! ```
+//!
+//! Slices are either mutable or shared. The shared slice type is `&[T]`,
+//! while the mutable slice type is `&mut [T]`, where `T` represents the element
+//! type. For example, you can mutate the block of memory that a mutable slice
+//! points to:
+//!
+//! ```
+//! let x = &mut [1, 2, 3];
+//! x[1] = 7;
+//! assert_eq!(x, &[1, 7, 3]);
+//! ```
+//!
+//! Here are some of the things this module contains:
+//!
+//! ## Structs
+//!
+//! There are several structs that are useful for slices, such as [`Iter`], which
+//! represents iteration over a slice.
+//!
+//! ## Trait Implementations
+//!
+//! There are several implementations of common traits for slices. Some examples
+//! include:
+//!
+//! * [`Clone`]
+//! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`].
+//! * [`Hash`] - for slices whose element type is [`Hash`].
+//!
+//! ## Iteration
+//!
+//! The slices implement `IntoIterator`. The iterator yields references to the
+//! slice elements.
+//!
+//! ```
+//! let numbers = &[0, 1, 2];
+//! for n in numbers {
+//!     println!("{} is a number!", n);
+//! }
+//! ```
+//!
+//! The mutable slice yields mutable references to the elements:
+//!
+//! ```
+//! let mut scores = [7, 8, 9];
+//! for score in &mut scores[..] {
+//!     *score += 1;
+//! }
+//! ```
+//!
+//! This iterator yields mutable references to the slice's elements, so while
+//! the element type of the slice is `i32`, the element type of the iterator is
+//! `&mut i32`.
+//!
+//! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default
+//!   iterators.
+//! * Further methods that return iterators are [`.split`], [`.splitn`],
+//!   [`.chunks`], [`.windows`] and more.
+//!
+//! *[See also the slice primitive type](../../std/primitive.slice.html).*
+//!
+//! [`Clone`]: ../../std/clone/trait.Clone.html
+//! [`Eq`]: ../../std/cmp/trait.Eq.html
+//! [`Ord`]: ../../std/cmp/trait.Ord.html
+//! [`Iter`]: struct.Iter.html
+//! [`Hash`]: ../../std/hash/trait.Hash.html
+//! [`.iter`]: ../../std/primitive.slice.html#method.iter
+//! [`.iter_mut`]: ../../std/primitive.slice.html#method.iter_mut
+//! [`.split`]: ../../std/primitive.slice.html#method.split
+//! [`.splitn`]: ../../std/primitive.slice.html#method.splitn
+//! [`.chunks`]: ../../std/primitive.slice.html#method.chunks
+//! [`.windows`]: ../../std/primitive.slice.html#method.windows
+#![stable(feature = "rust1", since = "1.0.0")]
+
+// Many of the usings in this module are only used in the test configuration.
+// It's cleaner to just turn off the unused_imports warning than to fix them.
+#![cfg_attr(test, allow(unused_imports, dead_code))]
+
+use core::cmp::Ordering::{self, Less};
+use core::mem::size_of;
+use core::mem;
+use core::ptr;
+use core::slice as core_slice;
+
+use borrow::{Borrow, BorrowMut, ToOwned};
+use boxed::Box;
+use vec::Vec;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{Chunks, Windows};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{Iter, IterMut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{SplitMut, ChunksMut, Split};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut};
+#[unstable(feature = "slice_rsplit", issue = "41020")]
+pub use core::slice::{RSplit, RSplitMut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{from_raw_parts, from_raw_parts_mut};
+#[unstable(feature = "slice_get_slice", issue = "35729")]
+pub use core::slice::SliceIndex;
+
+////////////////////////////////////////////////////////////////////////////////
+// Basic slice extension methods
+////////////////////////////////////////////////////////////////////////////////
+
+// HACK(japaric) needed for the implementation of `vec!` macro during testing
+// NB see the hack module in this file for more details
+#[cfg(test)]
+pub use self::hack::into_vec;
+
+// HACK(japaric) needed for the implementation of `Vec::clone` during testing
+// NB see the hack module in this file for more details
+#[cfg(test)]
+pub use self::hack::to_vec;
+
+// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
+// functions are actually methods that are in `impl [T]` but not in
+// `core::slice::SliceExt` - we need to supply these functions for the
+// `test_permutations` test
+mod hack {
+    use boxed::Box;
+    use core::mem;
+
+    #[cfg(test)]
+    use string::ToString;
+    use vec::Vec;
+
+    pub fn into_vec<T>(mut b: Box<[T]>) -> Vec<T> {
+        unsafe {
+            let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len());
+            mem::forget(b);
+            xs
+        }
+    }
+
+    #[inline]
+    pub fn to_vec<T>(s: &[T]) -> Vec<T>
+        where T: Clone
+    {
+        let mut vector = Vec::with_capacity(s.len());
+        vector.extend_from_slice(s);
+        vector
+    }
+}
+
+#[lang = "slice"]
+#[cfg(not(test))]
+impl<T> [T] {
+    /// Returns the number of elements in the slice.
+    ///
+    /// # Example
+    ///
+    /// ```
+    /// let a = [1, 2, 3];
+    /// assert_eq!(a.len(), 3);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn len(&self) -> usize {
+        core_slice::SliceExt::len(self)
+    }
+
+    /// Returns `true` if the slice has a length of 0.
+    ///
+    /// # Example
+    ///
+    /// ```
+    /// let a = [1, 2, 3];
+    /// assert!(!a.is_empty());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn is_empty(&self) -> bool {
+        core_slice::SliceExt::is_empty(self)
+    }
+
+    /// Returns the first element of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert_eq!(Some(&10), v.first());
+    ///
+    /// let w: &[i32] = &[];
+    /// assert_eq!(None, w.first());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn first(&self) -> Option<&T> {
+        core_slice::SliceExt::first(self)
+    }
+
+    /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some(first) = x.first_mut() {
+    ///     *first = 5;
+    /// }
+    /// assert_eq!(x, &[5, 1, 2]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn first_mut(&mut self) -> Option<&mut T> {
+        core_slice::SliceExt::first_mut(self)
+    }
+
+    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[0, 1, 2];
+    ///
+    /// if let Some((first, elements)) = x.split_first() {
+    ///     assert_eq!(first, &0);
+    ///     assert_eq!(elements, &[1, 2]);
+    /// }
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_first(&self) -> Option<(&T, &[T])> {
+        core_slice::SliceExt::split_first(self)
+    }
+
+    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some((first, elements)) = x.split_first_mut() {
+    ///     *first = 3;
+    ///     elements[0] = 4;
+    ///     elements[1] = 5;
+    /// }
+    /// assert_eq!(x, &[3, 4, 5]);
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
+        core_slice::SliceExt::split_first_mut(self)
+    }
+
+    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[0, 1, 2];
+    ///
+    /// if let Some((last, elements)) = x.split_last() {
+    ///     assert_eq!(last, &2);
+    ///     assert_eq!(elements, &[0, 1]);
+    /// }
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_last(&self) -> Option<(&T, &[T])> {
+        core_slice::SliceExt::split_last(self)
+
+    }
+
+    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some((last, elements)) = x.split_last_mut() {
+    ///     *last = 3;
+    ///     elements[0] = 4;
+    ///     elements[1] = 5;
+    /// }
+    /// assert_eq!(x, &[4, 5, 3]);
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
+        core_slice::SliceExt::split_last_mut(self)
+    }
+
+    /// Returns the last element of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert_eq!(Some(&30), v.last());
+    ///
+    /// let w: &[i32] = &[];
+    /// assert_eq!(None, w.last());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn last(&self) -> Option<&T> {
+        core_slice::SliceExt::last(self)
+    }
+
+    /// Returns a mutable pointer to the last item in the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some(last) = x.last_mut() {
+    ///     *last = 10;
+    /// }
+    /// assert_eq!(x, &[0, 1, 10]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn last_mut(&mut self) -> Option<&mut T> {
+        core_slice::SliceExt::last_mut(self)
+    }
+
+    /// Returns a reference to an element or subslice depending on the type of
+    /// index.
+    ///
+    /// - If given a position, returns a reference to the element at that
+    ///   position or `None` if out of bounds.
+    /// - If given a range, returns the subslice corresponding to that range,
+    ///   or `None` if out of bounds.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert_eq!(Some(&40), v.get(1));
+    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
+    /// assert_eq!(None, v.get(3));
+    /// assert_eq!(None, v.get(0..4));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn get<I>(&self, index: I) -> Option<&I::Output>
+        where I: SliceIndex<Self>
+    {
+        core_slice::SliceExt::get(self, index)
+    }
+
+    /// Returns a mutable reference to an element or subslice depending on the
+    /// type of index (see [`get`]) or `None` if the index is out of bounds.
+    ///
+    /// [`get`]: #method.get
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some(elem) = x.get_mut(1) {
+    ///     *elem = 42;
+    /// }
+    /// assert_eq!(x, &[0, 42, 2]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
+        where I: SliceIndex<Self>
+    {
+        core_slice::SliceExt::get_mut(self, index)
+    }
+
+    /// Returns a reference to an element or subslice, without doing bounds
+    /// checking.
+    ///
+    /// This is generally not recommended, use with caution! For a safe
+    /// alternative see [`get`].
+    ///
+    /// [`get`]: #method.get
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[1, 2, 4];
+    ///
+    /// unsafe {
+    ///     assert_eq!(x.get_unchecked(1), &2);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
+        where I: SliceIndex<Self>
+    {
+        core_slice::SliceExt::get_unchecked(self, index)
+    }
+
+    /// Returns a mutable reference to an element or subslice, without doing
+    /// bounds checking.
+    ///
+    /// This is generally not recommended, use with caution! For a safe
+    /// alternative see [`get_mut`].
+    ///
+    /// [`get_mut`]: #method.get_mut
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [1, 2, 4];
+    ///
+    /// unsafe {
+    ///     let elem = x.get_unchecked_mut(1);
+    ///     *elem = 13;
+    /// }
+    /// assert_eq!(x, &[1, 13, 4]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
+        where I: SliceIndex<Self>
+    {
+        core_slice::SliceExt::get_unchecked_mut(self, index)
+    }
+
+    /// Returns a raw pointer to the slice's buffer.
+    ///
+    /// The caller must ensure that the slice outlives the pointer this
+    /// function returns, or else it will end up pointing to garbage.
+    ///
+    /// Modifying the container referenced by this slice may cause its buffer
+    /// to be reallocated, which would also make any pointers to it invalid.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[1, 2, 4];
+    /// let x_ptr = x.as_ptr();
+    ///
+    /// unsafe {
+    ///     for i in 0..x.len() {
+    ///         assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize));
+    ///     }
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn as_ptr(&self) -> *const T {
+        core_slice::SliceExt::as_ptr(self)
+    }
+
+    /// Returns an unsafe mutable pointer to the slice's buffer.
+    ///
+    /// The caller must ensure that the slice outlives the pointer this
+    /// function returns, or else it will end up pointing to garbage.
+    ///
+    /// Modifying the container referenced by this slice may cause its buffer
+    /// to be reallocated, which would also make any pointers to it invalid.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [1, 2, 4];
+    /// let x_ptr = x.as_mut_ptr();
+    ///
+    /// unsafe {
+    ///     for i in 0..x.len() {
+    ///         *x_ptr.offset(i as isize) += 2;
+    ///     }
+    /// }
+    /// assert_eq!(x, &[3, 4, 6]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn as_mut_ptr(&mut self) -> *mut T {
+        core_slice::SliceExt::as_mut_ptr(self)
+    }
+
+    /// Swaps two elements in the slice.
+    ///
+    /// # Arguments
+    ///
+    /// * a - The index of the first element
+    /// * b - The index of the second element
+    ///
+    /// # Panics
+    ///
+    /// Panics if `a` or `b` are out of bounds.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = ["a", "b", "c", "d"];
+    /// v.swap(1, 3);
+    /// assert!(v == ["a", "d", "c", "b"]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn swap(&mut self, a: usize, b: usize) {
+        core_slice::SliceExt::swap(self, a, b)
+    }
+
+    /// Reverses the order of elements in the slice, in place.
+    ///
+    /// # Example
+    ///
+    /// ```
+    /// let mut v = [1, 2, 3];
+    /// v.reverse();
+    /// assert!(v == [3, 2, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn reverse(&mut self) {
+        core_slice::SliceExt::reverse(self)
+    }
+
+    /// Returns an iterator over the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[1, 2, 4];
+    /// let mut iterator = x.iter();
+    ///
+    /// assert_eq!(iterator.next(), Some(&1));
+    /// assert_eq!(iterator.next(), Some(&2));
+    /// assert_eq!(iterator.next(), Some(&4));
+    /// assert_eq!(iterator.next(), None);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn iter(&self) -> Iter<T> {
+        core_slice::SliceExt::iter(self)
+    }
+
+    /// Returns an iterator that allows modifying each value.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [1, 2, 4];
+    /// for elem in x.iter_mut() {
+    ///     *elem += 2;
+    /// }
+    /// assert_eq!(x, &[3, 4, 6]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn iter_mut(&mut self) -> IterMut<T> {
+        core_slice::SliceExt::iter_mut(self)
+    }
+
+    /// Returns an iterator over all contiguous windows of length
+    /// `size`. The windows overlap. If the slice is shorter than
+    /// `size`, the iterator returns no values.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `size` is 0.
+    ///
+    /// # Example
+    ///
+    /// ```
+    /// let slice = ['r', 'u', 's', 't'];
+    /// let mut iter = slice.windows(2);
+    /// assert_eq!(iter.next().unwrap(), &['r', 'u']);
+    /// assert_eq!(iter.next().unwrap(), &['u', 's']);
+    /// assert_eq!(iter.next().unwrap(), &['s', 't']);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If the slice is shorter than `size`:
+    ///
+    /// ```
+    /// let slice = ['f', 'o', 'o'];
+    /// let mut iter = slice.windows(4);
+    /// assert!(iter.next().is_none());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn windows(&self, size: usize) -> Windows<T> {
+        core_slice::SliceExt::windows(self, size)
+    }
+
+    /// Returns an iterator over `size` elements of the slice at a
+    /// time. The chunks are slices and do not overlap. If `size` does
+    /// not divide the length of the slice, then the last chunk will
+    /// not have length `size`.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `size` is 0.
+    ///
+    /// # Example
+    ///
+    /// ```
+    /// let slice = ['l', 'o', 'r', 'e', 'm'];
+    /// let mut iter = slice.chunks(2);
+    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
+    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
+    /// assert_eq!(iter.next().unwrap(), &['m']);
+    /// assert!(iter.next().is_none());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn chunks(&self, size: usize) -> Chunks<T> {
+        core_slice::SliceExt::chunks(self, size)
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time.
+    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does
+    /// not divide the length of the slice, then the last chunk will not
+    /// have length `chunk_size`.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = &mut [0, 0, 0, 0, 0];
+    /// let mut count = 1;
+    ///
+    /// for chunk in v.chunks_mut(2) {
+    ///     for elem in chunk.iter_mut() {
+    ///         *elem += count;
+    ///     }
+    ///     count += 1;
+    /// }
+    /// assert_eq!(v, &[1, 1, 2, 2, 3]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T> {
+        core_slice::SliceExt::chunks_mut(self, chunk_size)
+    }
+
+    /// Divides one slice into two at an index.
+    ///
+    /// The first will contain all indices from `[0, mid)` (excluding
+    /// the index `mid` itself) and the second will contain all
+    /// indices from `[mid, len)` (excluding the index `len` itself).
+    ///
+    /// # Panics
+    ///
+    /// Panics if `mid > len`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30, 20, 50];
+    /// let (v1, v2) = v.split_at(2);
+    /// assert_eq!([10, 40], v1);
+    /// assert_eq!([30, 20, 50], v2);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split_at(&self, mid: usize) -> (&[T], &[T]) {
+        core_slice::SliceExt::split_at(self, mid)
+    }
+
+    /// Divides one `&mut` into two at an index.
+    ///
+    /// The first will contain all indices from `[0, mid)` (excluding
+    /// the index `mid` itself) and the second will contain all
+    /// indices from `[mid, len)` (excluding the index `len` itself).
+    ///
+    /// # Panics
+    ///
+    /// Panics if `mid > len`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [1, 2, 3, 4, 5, 6];
+    ///
+    /// // scoped to restrict the lifetime of the borrows
+    /// {
+    ///    let (left, right) = v.split_at_mut(0);
+    ///    assert!(left == []);
+    ///    assert!(right == [1, 2, 3, 4, 5, 6]);
+    /// }
+    ///
+    /// {
+    ///     let (left, right) = v.split_at_mut(2);
+    ///     assert!(left == [1, 2]);
+    ///     assert!(right == [3, 4, 5, 6]);
+    /// }
+    ///
+    /// {
+    ///     let (left, right) = v.split_at_mut(6);
+    ///     assert!(left == [1, 2, 3, 4, 5, 6]);
+    ///     assert!(right == []);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
+        core_slice::SliceExt::split_at_mut(self, mid)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`. The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = [10, 40, 33, 20];
+    /// let mut iter = slice.split(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
+    /// assert_eq!(iter.next().unwrap(), &[20]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If the first element is matched, an empty slice will be the first item
+    /// returned by the iterator. Similarly, if the last element in the slice
+    /// is matched, an empty slice will be the last item returned by the
+    /// iterator:
+    ///
+    /// ```
+    /// let slice = [10, 40, 33];
+    /// let mut iter = slice.split(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
+    /// assert_eq!(iter.next().unwrap(), &[]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If two matched elements are directly adjacent, an empty slice will be
+    /// present between them:
+    ///
+    /// ```
+    /// let slice = [10, 6, 33, 20];
+    /// let mut iter = slice.split(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10]);
+    /// assert_eq!(iter.next().unwrap(), &[]);
+    /// assert_eq!(iter.next().unwrap(), &[20]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split<F>(&self, pred: F) -> Split<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        core_slice::SliceExt::split(self, pred)
+    }
+
+    /// Returns an iterator over mutable subslices separated by elements that
+    /// match `pred`. The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.split_mut(|num| *num % 3 == 0) {
+    ///     group[0] = 1;
+    /// }
+    /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        core_slice::SliceExt::split_mut(self, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`, starting at the end of the slice and working backwards.
+    /// The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_rsplit)]
+    ///
+    /// let slice = [11, 22, 33, 0, 44, 55];
+    /// let mut iter = slice.rsplit(|num| *num == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[44, 55]);
+    /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
+    /// assert_eq!(iter.next(), None);
+    /// ```
+    ///
+    /// As with `split()`, if the first or last element is matched, an empty
+    /// slice will be the first (or last) item returned by the iterator.
+    ///
+    /// ```
+    /// #![feature(slice_rsplit)]
+    ///
+    /// let v = &[0, 1, 1, 2, 3, 5, 8];
+    /// let mut it = v.rsplit(|n| *n % 2 == 0);
+    /// assert_eq!(it.next().unwrap(), &[]);
+    /// assert_eq!(it.next().unwrap(), &[3, 5]);
+    /// assert_eq!(it.next().unwrap(), &[1, 1]);
+    /// assert_eq!(it.next().unwrap(), &[]);
+    /// assert_eq!(it.next(), None);
+    /// ```
+    #[unstable(feature = "slice_rsplit", issue = "41020")]
+    #[inline]
+    pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        core_slice::SliceExt::rsplit(self, pred)
+    }
+
+    /// Returns an iterator over mutable subslices separated by elements that
+    /// match `pred`, starting at the end of the slice and working
+    /// backwards. The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_rsplit)]
+    ///
+    /// let mut v = [100, 400, 300, 200, 600, 500];
+    ///
+    /// let mut count = 0;
+    /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
+    ///     count += 1;
+    ///     group[0] = count;
+    /// }
+    /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
+    /// ```
+    ///
+    #[unstable(feature = "slice_rsplit", issue = "41020")]
+    #[inline]
+    pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        core_slice::SliceExt::rsplit_mut(self, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`, limited to returning at most `n` items. The matched element is
+    /// not contained in the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`,
+    /// `[20, 60, 50]`):
+    ///
+    /// ```
+    /// let v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.splitn(2, |num| *num % 3 == 0) {
+    ///     println!("{:?}", group);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        core_slice::SliceExt::splitn(self, n, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`, limited to returning at most `n` items. The matched element is
+    /// not contained in the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
+    ///     group[0] = 1;
+    /// }
+    /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        core_slice::SliceExt::splitn_mut(self, n, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred` limited to returning at most `n` items. This starts at the end of
+    /// the slice and works backwards.  The matched element is not contained in
+    /// the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// Print the slice split once, starting from the end, by numbers divisible
+    /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`):
+    ///
+    /// ```
+    /// let v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
+    ///     println!("{:?}", group);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        core_slice::SliceExt::rsplitn(self, n, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred` limited to returning at most `n` items. This starts at the end of
+    /// the slice and works backwards. The matched element is not contained in
+    /// the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut s = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
+    ///     group[0] = 1;
+    /// }
+    /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        core_slice::SliceExt::rsplitn_mut(self, n, pred)
+    }
+
+    /// Returns `true` if the slice contains an element with the given value.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert!(v.contains(&30));
+    /// assert!(!v.contains(&50));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn contains(&self, x: &T) -> bool
+        where T: PartialEq
+    {
+        core_slice::SliceExt::contains(self, x)
+    }
+
+    /// Returns `true` if `needle` is a prefix of the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert!(v.starts_with(&[10]));
+    /// assert!(v.starts_with(&[10, 40]));
+    /// assert!(!v.starts_with(&[50]));
+    /// assert!(!v.starts_with(&[10, 50]));
+    /// ```
+    ///
+    /// Always returns `true` if `needle` is an empty slice:
+    ///
+    /// ```
+    /// let v = &[10, 40, 30];
+    /// assert!(v.starts_with(&[]));
+    /// let v: &[u8] = &[];
+    /// assert!(v.starts_with(&[]));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn starts_with(&self, needle: &[T]) -> bool
+        where T: PartialEq
+    {
+        core_slice::SliceExt::starts_with(self, needle)
+    }
+
+    /// Returns `true` if `needle` is a suffix of the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert!(v.ends_with(&[30]));
+    /// assert!(v.ends_with(&[40, 30]));
+    /// assert!(!v.ends_with(&[50]));
+    /// assert!(!v.ends_with(&[50, 30]));
+    /// ```
+    ///
+    /// Always returns `true` if `needle` is an empty slice:
+    ///
+    /// ```
+    /// let v = &[10, 40, 30];
+    /// assert!(v.ends_with(&[]));
+    /// let v: &[u8] = &[];
+    /// assert!(v.ends_with(&[]));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn ends_with(&self, needle: &[T]) -> bool
+        where T: PartialEq
+    {
+        core_slice::SliceExt::ends_with(self, needle)
+    }
+
+    /// Binary searches this sorted slice for a given element.
+    ///
+    /// If the value is found then `Ok` is returned, containing the
+    /// index of the matching element; if the value is not found then
+    /// `Err` is returned, containing the index where a matching
+    /// element could be inserted while maintaining sorted order.
+    ///
+    /// # Example
+    ///
+    /// Looks up a series of four elements. The first is found, with a
+    /// uniquely determined position; the second and third are not
+    /// found; the fourth could match any position in `[1, 4]`.
+    ///
+    /// ```
+    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+    ///
+    /// assert_eq!(s.binary_search(&13),  Ok(9));
+    /// assert_eq!(s.binary_search(&4),   Err(7));
+    /// assert_eq!(s.binary_search(&100), Err(13));
+    /// let r = s.binary_search(&1);
+    /// assert!(match r { Ok(1...4) => true, _ => false, });
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
+        where T: Ord
+    {
+        core_slice::SliceExt::binary_search(self, x)
+    }
+
+    /// Binary searches this sorted slice with a comparator function.
+    ///
+    /// The comparator function should implement an order consistent
+    /// with the sort order of the underlying slice, returning an
+    /// order code that indicates whether its argument is `Less`,
+    /// `Equal` or `Greater` the desired target.
+    ///
+    /// If a matching value is found then returns `Ok`, containing
+    /// the index for the matched element; if no match is found then
+    /// `Err` is returned, containing the index where a matching
+    /// element could be inserted while maintaining sorted order.
+    ///
+    /// # Example
+    ///
+    /// Looks up a series of four elements. The first is found, with a
+    /// uniquely determined position; the second and third are not
+    /// found; the fourth could match any position in `[1, 4]`.
+    ///
+    /// ```
+    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+    ///
+    /// let seek = 13;
+    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
+    /// let seek = 4;
+    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
+    /// let seek = 100;
+    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
+    /// let seek = 1;
+    /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
+    /// assert!(match r { Ok(1...4) => true, _ => false, });
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
+        where F: FnMut(&'a T) -> Ordering
+    {
+        core_slice::SliceExt::binary_search_by(self, f)
+    }
+
+    /// Binary searches this sorted slice with a key extraction function.
+    ///
+    /// Assumes that the slice is sorted by the key, for instance with
+    /// [`sort_by_key`] using the same key extraction function.
+    ///
+    /// If a matching value is found then returns `Ok`, containing the
+    /// index for the matched element; if no match is found then `Err`
+    /// is returned, containing the index where a matching element could
+    /// be inserted while maintaining sorted order.
+    ///
+    /// [`sort_by_key`]: #method.sort_by_key
+    ///
+    /// # Examples
+    ///
+    /// Looks up a series of four elements in a slice of pairs sorted by
+    /// their second elements. The first is found, with a uniquely
+    /// determined position; the second and third are not found; the
+    /// fourth could match any position in `[1, 4]`.
+    ///
+    /// ```
+    /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
+    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
+    ///          (1, 21), (2, 34), (4, 55)];
+    ///
+    /// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
+    /// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
+    /// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
+    /// let r = s.binary_search_by_key(&1, |&(a,b)| b);
+    /// assert!(match r { Ok(1...4) => true, _ => false, });
+    /// ```
+    #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
+    #[inline]
+    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
+        where F: FnMut(&'a T) -> B,
+              B: Ord
+    {
+        core_slice::SliceExt::binary_search_by_key(self, b, f)
+    }
+
+    /// Sorts the slice.
+    ///
+    /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is an adaptive, iterative merge sort inspired by
+    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+    /// two or more sorted sequences concatenated one after another.
+    ///
+    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
+    /// non-allocating insertion sort is used instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [-5, 4, 1, -3, 2];
+    ///
+    /// v.sort();
+    /// assert!(v == [-5, -3, 1, 2, 4]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn sort(&mut self)
+        where T: Ord
+    {
+        merge_sort(self, |a, b| a.lt(b));
+    }
+
+    /// Sorts the slice with a comparator function.
+    ///
+    /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is an adaptive, iterative merge sort inspired by
+    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+    /// two or more sorted sequences concatenated one after another.
+    ///
+    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
+    /// non-allocating insertion sort is used instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [5, 4, 1, 3, 2];
+    /// v.sort_by(|a, b| a.cmp(b));
+    /// assert!(v == [1, 2, 3, 4, 5]);
+    ///
+    /// // reverse sorting
+    /// v.sort_by(|a, b| b.cmp(a));
+    /// assert!(v == [5, 4, 3, 2, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn sort_by<F>(&mut self, mut compare: F)
+        where F: FnMut(&T, &T) -> Ordering
+    {
+        merge_sort(self, |a, b| compare(a, b) == Less);
+    }
+
+    /// Sorts the slice with a key extraction function.
+    ///
+    /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is an adaptive, iterative merge sort inspired by
+    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+    /// two or more sorted sequences concatenated one after another.
+    ///
+    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
+    /// non-allocating insertion sort is used instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [-5i32, 4, 1, -3, 2];
+    ///
+    /// v.sort_by_key(|k| k.abs());
+    /// assert!(v == [1, 2, -3, 4, -5]);
+    /// ```
+    #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
+    #[inline]
+    pub fn sort_by_key<B, F>(&mut self, mut f: F)
+        where F: FnMut(&T) -> B, B: Ord
+    {
+        merge_sort(self, |a, b| f(a).lt(&f(b)));
+    }
+
+    /// Sorts the slice, but may not preserve the order of equal elements.
+    ///
+    /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
+    /// and `O(n log n)` worst-case.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort],
+    /// which is a quicksort variant designed to be very fast on certain kinds of patterns,
+    /// sometimes achieving linear time. It is randomized but deterministic, and falls back to
+    /// heapsort on degenerate inputs.
+    ///
+    /// It is generally faster than stable sorting, except in a few special cases, e.g. when the
+    /// slice consists of several concatenated sorted sequences.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(sort_unstable)]
+    ///
+    /// let mut v = [-5, 4, 1, -3, 2];
+    ///
+    /// v.sort_unstable();
+    /// assert!(v == [-5, -3, 1, 2, 4]);
+    /// ```
+    ///
+    /// [pdqsort]: https://github.com/orlp/pdqsort
+    // FIXME #40585: Mention `sort_unstable` in the documentation for `sort`.
+    #[unstable(feature = "sort_unstable", issue = "40585")]
+    #[inline]
+    pub fn sort_unstable(&mut self)
+        where T: Ord
+    {
+        core_slice::SliceExt::sort_unstable(self);
+    }
+
+    /// Sorts the slice with a comparator function, but may not preserve the order of equal
+    /// elements.
+    ///
+    /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
+    /// and `O(n log n)` worst-case.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort],
+    /// which is a quicksort variant designed to be very fast on certain kinds of patterns,
+    /// sometimes achieving linear time. It is randomized but deterministic, and falls back to
+    /// heapsort on degenerate inputs.
+    ///
+    /// It is generally faster than stable sorting, except in a few special cases, e.g. when the
+    /// slice consists of several concatenated sorted sequences.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(sort_unstable)]
+    ///
+    /// let mut v = [5, 4, 1, 3, 2];
+    /// v.sort_unstable_by(|a, b| a.cmp(b));
+    /// assert!(v == [1, 2, 3, 4, 5]);
+    ///
+    /// // reverse sorting
+    /// v.sort_unstable_by(|a, b| b.cmp(a));
+    /// assert!(v == [5, 4, 3, 2, 1]);
+    /// ```
+    ///
+    /// [pdqsort]: https://github.com/orlp/pdqsort
+    // FIXME #40585: Mention `sort_unstable_by` in the documentation for `sort_by`.
+    #[unstable(feature = "sort_unstable", issue = "40585")]
+    #[inline]
+    pub fn sort_unstable_by<F>(&mut self, compare: F)
+        where F: FnMut(&T, &T) -> Ordering
+    {
+        core_slice::SliceExt::sort_unstable_by(self, compare);
+    }
+
+    /// Sorts the slice with a key extraction function, but may not preserve the order of equal
+    /// elements.
+    ///
+    /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
+    /// and `O(n log n)` worst-case.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort],
+    /// which is a quicksort variant designed to be very fast on certain kinds of patterns,
+    /// sometimes achieving linear time. It is randomized but deterministic, and falls back to
+    /// heapsort on degenerate inputs.
+    ///
+    /// It is generally faster than stable sorting, except in a few special cases, e.g. when the
+    /// slice consists of several concatenated sorted sequences.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(sort_unstable)]
+    ///
+    /// let mut v = [-5i32, 4, 1, -3, 2];
+    ///
+    /// v.sort_unstable_by_key(|k| k.abs());
+    /// assert!(v == [1, 2, -3, 4, -5]);
+    /// ```
+    ///
+    /// [pdqsort]: https://github.com/orlp/pdqsort
+    // FIXME #40585: Mention `sort_unstable_by_key` in the documentation for `sort_by_key`.
+    #[unstable(feature = "sort_unstable", issue = "40585")]
+    #[inline]
+    pub fn sort_unstable_by_key<B, F>(&mut self, f: F)
+        where F: FnMut(&T) -> B,
+              B: Ord
+    {
+        core_slice::SliceExt::sort_unstable_by_key(self, f);
+    }
+
+    /// Permutes the slice in-place such that `self[mid..]` moves to the
+    /// beginning of the slice while `self[..mid]` moves to the end of the
+    /// slice.  Equivalently, rotates the slice `mid` places to the left
+    /// or `k = self.len() - mid` places to the right.
+    ///
+    /// This is a "k-rotation", a permutation in which item `i` moves to
+    /// position `i + k`, modulo the length of the slice.  See _Elements
+    /// of Programming_ [ยง10.4][eop].
+    ///
+    /// Rotation by `mid` and rotation by `k` are inverse operations.
+    ///
+    /// [eop]: https://books.google.com/books?id=CO9ULZGINlsC&pg=PA178&q=k-rotation
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if `mid` is greater than the length of the
+    /// slice.  (Note that `mid == self.len()` does _not_ panic; it's a nop
+    /// rotation with `k == 0`, the inverse of a rotation with `mid == 0`.)
+    ///
+    /// # Complexity
+    ///
+    /// Takes linear (in `self.len()`) time.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(slice_rotate)]
+    ///
+    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
+    /// let mid = 2;
+    /// a.rotate(mid);
+    /// assert_eq!(&a, &[3, 4, 5, 6, 7, 1, 2]);
+    /// let k = a.len() - mid;
+    /// a.rotate(k);
+    /// assert_eq!(&a, &[1, 2, 3, 4, 5, 6, 7]);
+    ///
+    /// use std::ops::Range;
+    /// fn slide<T>(slice: &mut [T], range: Range<usize>, to: usize) {
+    ///     if to < range.start {
+    ///         slice[to..range.end].rotate(range.start-to);
+    ///     } else if to > range.end {
+    ///         slice[range.start..to].rotate(range.end-range.start);
+    ///     }
+    /// }
+    /// let mut v: Vec<_> = (0..10).collect();
+    /// slide(&mut v, 1..4, 7);
+    /// assert_eq!(&v, &[0, 4, 5, 6, 1, 2, 3, 7, 8, 9]);
+    /// slide(&mut v, 6..8, 1);
+    /// assert_eq!(&v, &[0, 3, 7, 4, 5, 6, 1, 2, 8, 9]);
+    /// ```
+    #[unstable(feature = "slice_rotate", issue = "41891")]
+    pub fn rotate(&mut self, mid: usize) {
+        core_slice::SliceExt::rotate(self, mid);
+    }
+
+    /// Copies the elements from `src` into `self`.
+    ///
+    /// The length of `src` must be the same as `self`.
+    ///
+    /// If `src` implements `Copy`, it can be more performant to use
+    /// [`copy_from_slice`].
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if the two slices have different lengths.
+    ///
+    /// # Example
+    ///
+    /// ```
+    /// let mut dst = [0, 0, 0];
+    /// let src = [1, 2, 3];
+    ///
+    /// dst.clone_from_slice(&src);
+    /// assert!(dst == [1, 2, 3]);
+    /// ```
+    ///
+    /// [`copy_from_slice`]: #method.copy_from_slice
+    #[stable(feature = "clone_from_slice", since = "1.7.0")]
+    pub fn clone_from_slice(&mut self, src: &[T]) where T: Clone {
+        core_slice::SliceExt::clone_from_slice(self, src)
+    }
+
+    /// Copies all elements from `src` into `self`, using a memcpy.
+    ///
+    /// The length of `src` must be the same as `self`.
+    ///
+    /// If `src` does not implement `Copy`, use [`clone_from_slice`].
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if the two slices have different lengths.
+    ///
+    /// # Example
+    ///
+    /// ```
+    /// let mut dst = [0, 0, 0];
+    /// let src = [1, 2, 3];
+    ///
+    /// dst.copy_from_slice(&src);
+    /// assert_eq!(src, dst);
+    /// ```
+    ///
+    /// [`clone_from_slice`]: #method.clone_from_slice
+    #[stable(feature = "copy_from_slice", since = "1.9.0")]
+    pub fn copy_from_slice(&mut self, src: &[T]) where T: Copy {
+        core_slice::SliceExt::copy_from_slice(self, src)
+    }
+
+    /// Copies `self` into a new `Vec`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let s = [10, 40, 30];
+    /// let x = s.to_vec();
+    /// // Here, `s` and `x` can be modified independently.
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn to_vec(&self) -> Vec<T>
+        where T: Clone
+    {
+        // NB see hack module in this file
+        hack::to_vec(self)
+    }
+
+    /// Converts `self` into a vector without clones or allocation.
+    ///
+    /// The resulting vector can be converted back into a box via
+    /// `Vec<T>`'s `into_boxed_slice` method.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
+    /// let x = s.into_vec();
+    /// // `s` cannot be used anymore because it has been converted into `x`.
+    ///
+    /// assert_eq!(x, vec![10, 40, 30]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn into_vec(self: Box<Self>) -> Vec<T> {
+        // NB see hack module in this file
+        hack::into_vec(self)
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Extension traits for slices over specific kinds of data
+////////////////////////////////////////////////////////////////////////////////
+#[unstable(feature = "slice_concat_ext",
+           reason = "trait should not have to exist",
+           issue = "27747")]
+/// An extension trait for concatenating slices
+pub trait SliceConcatExt<T: ?Sized> {
+    #[unstable(feature = "slice_concat_ext",
+               reason = "trait should not have to exist",
+               issue = "27747")]
+    /// The resulting type after concatenation
+    type Output;
+
+    /// Flattens a slice of `T` into a single value `Self::Output`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// assert_eq!(["hello", "world"].concat(), "helloworld");
+    /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    fn concat(&self) -> Self::Output;
+
+    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
+    /// given separator between each.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// assert_eq!(["hello", "world"].join(" "), "hello world");
+    /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
+    /// ```
+    #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
+    fn join(&self, sep: &T) -> Self::Output;
+
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")]
+    fn connect(&self, sep: &T) -> Self::Output;
+}
+
+#[unstable(feature = "slice_concat_ext",
+           reason = "trait should not have to exist",
+           issue = "27747")]
+impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T> for [V] {
+    type Output = Vec<T>;
+
+    fn concat(&self) -> Vec<T> {
+        let size = self.iter().fold(0, |acc, v| acc + v.borrow().len());
+        let mut result = Vec::with_capacity(size);
+        for v in self {
+            result.extend_from_slice(v.borrow())
+        }
+        result
+    }
+
+    fn join(&self, sep: &T) -> Vec<T> {
+        let size = self.iter().fold(0, |acc, v| acc + v.borrow().len());
+        let mut result = Vec::with_capacity(size + self.len());
+        let mut first = true;
+        for v in self {
+            if first {
+                first = false
+            } else {
+                result.push(sep.clone())
+            }
+            result.extend_from_slice(v.borrow())
+        }
+        result
+    }
+
+    fn connect(&self, sep: &T) -> Vec<T> {
+        self.join(sep)
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Standard trait implementations for slices
+////////////////////////////////////////////////////////////////////////////////
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Borrow<[T]> for Vec<T> {
+    fn borrow(&self) -> &[T] {
+        &self[..]
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> BorrowMut<[T]> for Vec<T> {
+    fn borrow_mut(&mut self) -> &mut [T] {
+        &mut self[..]
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Clone> ToOwned for [T] {
+    type Owned = Vec<T>;
+    #[cfg(not(test))]
+    fn to_owned(&self) -> Vec<T> {
+        self.to_vec()
+    }
+
+    #[cfg(test)]
+    fn to_owned(&self) -> Vec<T> {
+        hack::to_vec(self)
+    }
+
+    fn clone_into(&self, target: &mut Vec<T>) {
+        // drop anything in target that will not be overwritten
+        target.truncate(self.len());
+        let len = target.len();
+
+        // reuse the contained values' allocations/resources.
+        target.clone_from_slice(&self[..len]);
+
+        // target.len <= self.len due to the truncate above, so the
+        // slice here is always in-bounds.
+        target.extend_from_slice(&self[len..]);
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Sorting
+////////////////////////////////////////////////////////////////////////////////
+
+/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
+///
+/// This is the integral subroutine of insertion sort.
+fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
+    where F: FnMut(&T, &T) -> bool
+{
+    if v.len() >= 2 && is_less(&v[1], &v[0]) {
+        unsafe {
+            // There are three ways to implement insertion here:
+            //
+            // 1. Swap adjacent elements until the first one gets to its final destination.
+            //    However, this way we copy data around more than is necessary. If elements are big
+            //    structures (costly to copy), this method will be slow.
+            //
+            // 2. Iterate until the right place for the first element is found. Then shift the
+            //    elements succeeding it to make room for it and finally place it into the
+            //    remaining hole. This is a good method.
+            //
+            // 3. Copy the first element into a temporary variable. Iterate until the right place
+            //    for it is found. As we go along, copy every traversed element into the slot
+            //    preceding it. Finally, copy data from the temporary variable into the remaining
+            //    hole. This method is very good. Benchmarks demonstrated slightly better
+            //    performance than with the 2nd method.
+            //
+            // All methods were benchmarked, and the 3rd showed best results. So we chose that one.
+            let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
+
+            // Intermediate state of the insertion process is always tracked by `hole`, which
+            // serves two purposes:
+            // 1. Protects integrity of `v` from panics in `is_less`.
+            // 2. Fills the remaining hole in `v` in the end.
+            //
+            // Panic safety:
+            //
+            // If `is_less` panics at any point during the process, `hole` will get dropped and
+            // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
+            // initially held exactly once.
+            let mut hole = InsertionHole {
+                src: &mut *tmp,
+                dest: &mut v[1],
+            };
+            ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
+
+            for i in 2..v.len() {
+                if !is_less(&v[i], &*tmp) {
+                    break;
+                }
+                ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
+                hole.dest = &mut v[i];
+            }
+            // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
+        }
+    }
+
+    // When dropped, copies from `src` into `dest`.
+    struct InsertionHole<T> {
+        src: *mut T,
+        dest: *mut T,
+    }
+
+    impl<T> Drop for InsertionHole<T> {
+        fn drop(&mut self) {
+            unsafe { ptr::copy_nonoverlapping(self.src, self.dest, 1); }
+        }
+    }
+}
+
+/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
+/// stores the result into `v[..]`.
+///
+/// # Safety
+///
+/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
+/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
+unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
+    where F: FnMut(&T, &T) -> bool
+{
+    let len = v.len();
+    let v = v.as_mut_ptr();
+    let v_mid = v.offset(mid as isize);
+    let v_end = v.offset(len as isize);
+
+    // The merge process first copies the shorter run into `buf`. Then it traces the newly copied
+    // run and the longer run forwards (or backwards), comparing their next unconsumed elements and
+    // copying the lesser (or greater) one into `v`.
+    //
+    // As soon as the shorter run is fully consumed, the process is done. If the longer run gets
+    // consumed first, then we must copy whatever is left of the shorter run into the remaining
+    // hole in `v`.
+    //
+    // Intermediate state of the process is always tracked by `hole`, which serves two purposes:
+    // 1. Protects integrity of `v` from panics in `is_less`.
+    // 2. Fills the remaining hole in `v` if the longer run gets consumed first.
+    //
+    // Panic safety:
+    //
+    // If `is_less` panics at any point during the process, `hole` will get dropped and fill the
+    // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
+    // object it initially held exactly once.
+    let mut hole;
+
+    if mid <= len - mid {
+        // The left run is shorter.
+        ptr::copy_nonoverlapping(v, buf, mid);
+        hole = MergeHole {
+            start: buf,
+            end: buf.offset(mid as isize),
+            dest: v,
+        };
+
+        // Initially, these pointers point to the beginnings of their arrays.
+        let left = &mut hole.start;
+        let mut right = v_mid;
+        let out = &mut hole.dest;
+
+        while *left < hole.end && right < v_end {
+            // Consume the lesser side.
+            // If equal, prefer the left run to maintain stability.
+            let to_copy = if is_less(&*right, &**left) {
+                get_and_increment(&mut right)
+            } else {
+                get_and_increment(left)
+            };
+            ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
+        }
+    } else {
+        // The right run is shorter.
+        ptr::copy_nonoverlapping(v_mid, buf, len - mid);
+        hole = MergeHole {
+            start: buf,
+            end: buf.offset((len - mid) as isize),
+            dest: v_mid,
+        };
+
+        // Initially, these pointers point past the ends of their arrays.
+        let left = &mut hole.dest;
+        let right = &mut hole.end;
+        let mut out = v_end;
+
+        while v < *left && buf < *right {
+            // Consume the greater side.
+            // If equal, prefer the right run to maintain stability.
+            let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
+                decrement_and_get(left)
+            } else {
+                decrement_and_get(right)
+            };
+            ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
+        }
+    }
+    // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
+    // it will now be copied into the hole in `v`.
+
+    unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
+        let old = *ptr;
+        *ptr = ptr.offset(1);
+        old
+    }
+
+    unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
+        *ptr = ptr.offset(-1);
+        *ptr
+    }
+
+    // When dropped, copies the range `start..end` into `dest..`.
+    struct MergeHole<T> {
+        start: *mut T,
+        end: *mut T,
+        dest: *mut T,
+    }
+
+    impl<T> Drop for MergeHole<T> {
+        fn drop(&mut self) {
+            // `T` is not a zero-sized type, so it's okay to divide by it's size.
+            let len = (self.end as usize - self.start as usize) / mem::size_of::<T>();
+            unsafe { ptr::copy_nonoverlapping(self.start, self.dest, len); }
+        }
+    }
+}
+
+/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
+/// [here](http://svn.python.org/projects/python/trunk/Objects/listsort.txt).
+///
+/// The algorithm identifies strictly descending and non-descending subsequences, which are called
+/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
+/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
+/// satisfied:
+///
+/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
+/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
+///
+/// The invariants ensure that the total running time is `O(n log n)` worst-case.
+fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
+    where F: FnMut(&T, &T) -> bool
+{
+    // Slices of up to this length get sorted using insertion sort.
+    const MAX_INSERTION: usize = 20;
+    // Very short runs are extended using insertion sort to span at least this many elements.
+    const MIN_RUN: usize = 10;
+
+    // Sorting has no meaningful behavior on zero-sized types.
+    if size_of::<T>() == 0 {
+        return;
+    }
+
+    let len = v.len();
+
+    // Short arrays get sorted in-place via insertion sort to avoid allocations.
+    if len <= MAX_INSERTION {
+        if len >= 2 {
+            for i in (0..len-1).rev() {
+                insert_head(&mut v[i..], &mut is_less);
+            }
+        }
+        return;
+    }
+
+    // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
+    // shallow copies of the contents of `v` without risking the dtors running on copies if
+    // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
+    // which will always have length at most `len / 2`.
+    let mut buf = Vec::with_capacity(len / 2);
+
+    // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
+    // strange decision, but consider the fact that merges more often go in the opposite direction
+    // (forwards). According to benchmarks, merging forwards is slightly faster than merging
+    // backwards. To conclude, identifying runs by traversing backwards improves performance.
+    let mut runs = vec![];
+    let mut end = len;
+    while end > 0 {
+        // Find the next natural run, and reverse it if it's strictly descending.
+        let mut start = end - 1;
+        if start > 0 {
+            start -= 1;
+            unsafe {
+                if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
+                    while start > 0 && is_less(v.get_unchecked(start),
+                                               v.get_unchecked(start - 1)) {
+                        start -= 1;
+                    }
+                    v[start..end].reverse();
+                } else {
+                    while start > 0 && !is_less(v.get_unchecked(start),
+                                                v.get_unchecked(start - 1)) {
+                        start -= 1;
+                    }
+                }
+            }
+        }
+
+        // Insert some more elements into the run if it's too short. Insertion sort is faster than
+        // merge sort on short sequences, so this significantly improves performance.
+        while start > 0 && end - start < MIN_RUN {
+            start -= 1;
+            insert_head(&mut v[start..end], &mut is_less);
+        }
+
+        // Push this run onto the stack.
+        runs.push(Run {
+            start: start,
+            len: end - start,
+        });
+        end = start;
+
+        // Merge some pairs of adjacent runs to satisfy the invariants.
+        while let Some(r) = collapse(&runs) {
+            let left = runs[r + 1];
+            let right = runs[r];
+            unsafe {
+                merge(&mut v[left.start .. right.start + right.len], left.len, buf.as_mut_ptr(),
+                      &mut is_less);
+            }
+            runs[r] = Run {
+                start: left.start,
+                len: left.len + right.len,
+            };
+            runs.remove(r + 1);
+        }
+    }
+
+    // Finally, exactly one run must remain in the stack.
+    debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
+
+    // Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
+    // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
+    // algorithm should continue building a new run instead, `None` is returned.
+    //
+    // TimSort is infamous for it's buggy implementations, as described here:
+    // http://envisage-project.eu/timsort-specification-and-verification/
+    //
+    // The gist of the story is: we must enforce the invariants on the top four runs on the stack.
+    // Enforcing them on just top three is not sufficient to ensure that the invariants will still
+    // hold for *all* runs in the stack.
+    //
+    // This function correctly checks invariants for the top four runs. Additionally, if the top
+    // run starts at index 0, it will always demand a merge operation until the stack is fully
+    // collapsed, in order to complete the sort.
+    #[inline]
+    fn collapse(runs: &[Run]) -> Option<usize> {
+        let n = runs.len();
+        if n >= 2 && (runs[n - 1].start == 0 ||
+                      runs[n - 2].len <= runs[n - 1].len ||
+                      (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) ||
+                      (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) {
+            if n >= 3 && runs[n - 3].len < runs[n - 1].len {
+                Some(n - 3)
+            } else {
+                Some(n - 2)
+            }
+        } else {
+            None
+        }
+    }
+
+    #[derive(Clone, Copy)]
+    struct Run {
+        start: usize,
+        len: usize,
+    }
+}