diff options
Diffstat (limited to 'src/liballoc/slice.rs')
| -rw-r--r-- | src/liballoc/slice.rs | 1943 |
1 files changed, 1943 insertions, 0 deletions
diff --git a/src/liballoc/slice.rs b/src/liballoc/slice.rs new file mode 100644 index 00000000000..88876999d76 --- /dev/null +++ b/src/liballoc/slice.rs @@ -0,0 +1,1943 @@ +// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A dynamically-sized view into a contiguous sequence, `[T]`. +//! +//! Slices are a view into a block of memory represented as a pointer and a +//! length. +//! +//! ``` +//! // slicing a Vec +//! let vec = vec![1, 2, 3]; +//! let int_slice = &vec[..]; +//! // coercing an array to a slice +//! let str_slice: &[&str] = &["one", "two", "three"]; +//! ``` +//! +//! Slices are either mutable or shared. The shared slice type is `&[T]`, +//! while the mutable slice type is `&mut [T]`, where `T` represents the element +//! type. For example, you can mutate the block of memory that a mutable slice +//! points to: +//! +//! ``` +//! let x = &mut [1, 2, 3]; +//! x[1] = 7; +//! assert_eq!(x, &[1, 7, 3]); +//! ``` +//! +//! Here are some of the things this module contains: +//! +//! ## Structs +//! +//! There are several structs that are useful for slices, such as [`Iter`], which +//! represents iteration over a slice. +//! +//! ## Trait Implementations +//! +//! There are several implementations of common traits for slices. Some examples +//! include: +//! +//! * [`Clone`] +//! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`]. +//! * [`Hash`] - for slices whose element type is [`Hash`]. +//! +//! ## Iteration +//! +//! The slices implement `IntoIterator`. The iterator yields references to the +//! slice elements. +//! +//! ``` +//! let numbers = &[0, 1, 2]; +//! for n in numbers { +//! println!("{} is a number!", n); +//! } +//! ``` +//! +//! The mutable slice yields mutable references to the elements: +//! +//! ``` +//! let mut scores = [7, 8, 9]; +//! for score in &mut scores[..] { +//! *score += 1; +//! } +//! ``` +//! +//! This iterator yields mutable references to the slice's elements, so while +//! the element type of the slice is `i32`, the element type of the iterator is +//! `&mut i32`. +//! +//! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default +//! iterators. +//! * Further methods that return iterators are [`.split`], [`.splitn`], +//! [`.chunks`], [`.windows`] and more. +//! +//! *[See also the slice primitive type](../../std/primitive.slice.html).* +//! +//! [`Clone`]: ../../std/clone/trait.Clone.html +//! [`Eq`]: ../../std/cmp/trait.Eq.html +//! [`Ord`]: ../../std/cmp/trait.Ord.html +//! [`Iter`]: struct.Iter.html +//! [`Hash`]: ../../std/hash/trait.Hash.html +//! [`.iter`]: ../../std/primitive.slice.html#method.iter +//! [`.iter_mut`]: ../../std/primitive.slice.html#method.iter_mut +//! [`.split`]: ../../std/primitive.slice.html#method.split +//! [`.splitn`]: ../../std/primitive.slice.html#method.splitn +//! [`.chunks`]: ../../std/primitive.slice.html#method.chunks +//! [`.windows`]: ../../std/primitive.slice.html#method.windows +#![stable(feature = "rust1", since = "1.0.0")] + +// Many of the usings in this module are only used in the test configuration. +// It's cleaner to just turn off the unused_imports warning than to fix them. +#![cfg_attr(test, allow(unused_imports, dead_code))] + +use core::cmp::Ordering::{self, Less}; +use core::mem::size_of; +use core::mem; +use core::ptr; +use core::slice as core_slice; + +use borrow::{Borrow, BorrowMut, ToOwned}; +use boxed::Box; +use vec::Vec; + +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{Chunks, Windows}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{Iter, IterMut}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{SplitMut, ChunksMut, Split}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut}; +#[unstable(feature = "slice_rsplit", issue = "41020")] +pub use core::slice::{RSplit, RSplitMut}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{from_raw_parts, from_raw_parts_mut}; +#[unstable(feature = "slice_get_slice", issue = "35729")] +pub use core::slice::SliceIndex; + +//////////////////////////////////////////////////////////////////////////////// +// Basic slice extension methods +//////////////////////////////////////////////////////////////////////////////// + +// HACK(japaric) needed for the implementation of `vec!` macro during testing +// NB see the hack module in this file for more details +#[cfg(test)] +pub use self::hack::into_vec; + +// HACK(japaric) needed for the implementation of `Vec::clone` during testing +// NB see the hack module in this file for more details +#[cfg(test)] +pub use self::hack::to_vec; + +// HACK(japaric): With cfg(test) `impl [T]` is not available, these three +// functions are actually methods that are in `impl [T]` but not in +// `core::slice::SliceExt` - we need to supply these functions for the +// `test_permutations` test +mod hack { + use boxed::Box; + use core::mem; + + #[cfg(test)] + use string::ToString; + use vec::Vec; + + pub fn into_vec<T>(mut b: Box<[T]>) -> Vec<T> { + unsafe { + let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len()); + mem::forget(b); + xs + } + } + + #[inline] + pub fn to_vec<T>(s: &[T]) -> Vec<T> + where T: Clone + { + let mut vector = Vec::with_capacity(s.len()); + vector.extend_from_slice(s); + vector + } +} + +#[lang = "slice"] +#[cfg(not(test))] +impl<T> [T] { + /// Returns the number of elements in the slice. + /// + /// # Example + /// + /// ``` + /// let a = [1, 2, 3]; + /// assert_eq!(a.len(), 3); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn len(&self) -> usize { + core_slice::SliceExt::len(self) + } + + /// Returns `true` if the slice has a length of 0. + /// + /// # Example + /// + /// ``` + /// let a = [1, 2, 3]; + /// assert!(!a.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_empty(&self) -> bool { + core_slice::SliceExt::is_empty(self) + } + + /// Returns the first element of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert_eq!(Some(&10), v.first()); + /// + /// let w: &[i32] = &[]; + /// assert_eq!(None, w.first()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn first(&self) -> Option<&T> { + core_slice::SliceExt::first(self) + } + + /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some(first) = x.first_mut() { + /// *first = 5; + /// } + /// assert_eq!(x, &[5, 1, 2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn first_mut(&mut self) -> Option<&mut T> { + core_slice::SliceExt::first_mut(self) + } + + /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &[0, 1, 2]; + /// + /// if let Some((first, elements)) = x.split_first() { + /// assert_eq!(first, &0); + /// assert_eq!(elements, &[1, 2]); + /// } + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_first(&self) -> Option<(&T, &[T])> { + core_slice::SliceExt::split_first(self) + } + + /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some((first, elements)) = x.split_first_mut() { + /// *first = 3; + /// elements[0] = 4; + /// elements[1] = 5; + /// } + /// assert_eq!(x, &[3, 4, 5]); + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> { + core_slice::SliceExt::split_first_mut(self) + } + + /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &[0, 1, 2]; + /// + /// if let Some((last, elements)) = x.split_last() { + /// assert_eq!(last, &2); + /// assert_eq!(elements, &[0, 1]); + /// } + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_last(&self) -> Option<(&T, &[T])> { + core_slice::SliceExt::split_last(self) + + } + + /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some((last, elements)) = x.split_last_mut() { + /// *last = 3; + /// elements[0] = 4; + /// elements[1] = 5; + /// } + /// assert_eq!(x, &[4, 5, 3]); + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> { + core_slice::SliceExt::split_last_mut(self) + } + + /// Returns the last element of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert_eq!(Some(&30), v.last()); + /// + /// let w: &[i32] = &[]; + /// assert_eq!(None, w.last()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn last(&self) -> Option<&T> { + core_slice::SliceExt::last(self) + } + + /// Returns a mutable pointer to the last item in the slice. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some(last) = x.last_mut() { + /// *last = 10; + /// } + /// assert_eq!(x, &[0, 1, 10]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn last_mut(&mut self) -> Option<&mut T> { + core_slice::SliceExt::last_mut(self) + } + + /// Returns a reference to an element or subslice depending on the type of + /// index. + /// + /// - If given a position, returns a reference to the element at that + /// position or `None` if out of bounds. + /// - If given a range, returns the subslice corresponding to that range, + /// or `None` if out of bounds. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert_eq!(Some(&40), v.get(1)); + /// assert_eq!(Some(&[10, 40][..]), v.get(0..2)); + /// assert_eq!(None, v.get(3)); + /// assert_eq!(None, v.get(0..4)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn get<I>(&self, index: I) -> Option<&I::Output> + where I: SliceIndex<Self> + { + core_slice::SliceExt::get(self, index) + } + + /// Returns a mutable reference to an element or subslice depending on the + /// type of index (see [`get`]) or `None` if the index is out of bounds. + /// + /// [`get`]: #method.get + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some(elem) = x.get_mut(1) { + /// *elem = 42; + /// } + /// assert_eq!(x, &[0, 42, 2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output> + where I: SliceIndex<Self> + { + core_slice::SliceExt::get_mut(self, index) + } + + /// Returns a reference to an element or subslice, without doing bounds + /// checking. + /// + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`get`]. + /// + /// [`get`]: #method.get + /// + /// # Examples + /// + /// ``` + /// let x = &[1, 2, 4]; + /// + /// unsafe { + /// assert_eq!(x.get_unchecked(1), &2); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output + where I: SliceIndex<Self> + { + core_slice::SliceExt::get_unchecked(self, index) + } + + /// Returns a mutable reference to an element or subslice, without doing + /// bounds checking. + /// + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`get_mut`]. + /// + /// [`get_mut`]: #method.get_mut + /// + /// # Examples + /// + /// ``` + /// let x = &mut [1, 2, 4]; + /// + /// unsafe { + /// let elem = x.get_unchecked_mut(1); + /// *elem = 13; + /// } + /// assert_eq!(x, &[1, 13, 4]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output + where I: SliceIndex<Self> + { + core_slice::SliceExt::get_unchecked_mut(self, index) + } + + /// Returns a raw pointer to the slice's buffer. + /// + /// The caller must ensure that the slice outlives the pointer this + /// function returns, or else it will end up pointing to garbage. + /// + /// Modifying the container referenced by this slice may cause its buffer + /// to be reallocated, which would also make any pointers to it invalid. + /// + /// # Examples + /// + /// ``` + /// let x = &[1, 2, 4]; + /// let x_ptr = x.as_ptr(); + /// + /// unsafe { + /// for i in 0..x.len() { + /// assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); + /// } + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn as_ptr(&self) -> *const T { + core_slice::SliceExt::as_ptr(self) + } + + /// Returns an unsafe mutable pointer to the slice's buffer. + /// + /// The caller must ensure that the slice outlives the pointer this + /// function returns, or else it will end up pointing to garbage. + /// + /// Modifying the container referenced by this slice may cause its buffer + /// to be reallocated, which would also make any pointers to it invalid. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [1, 2, 4]; + /// let x_ptr = x.as_mut_ptr(); + /// + /// unsafe { + /// for i in 0..x.len() { + /// *x_ptr.offset(i as isize) += 2; + /// } + /// } + /// assert_eq!(x, &[3, 4, 6]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn as_mut_ptr(&mut self) -> *mut T { + core_slice::SliceExt::as_mut_ptr(self) + } + + /// Swaps two elements in the slice. + /// + /// # Arguments + /// + /// * a - The index of the first element + /// * b - The index of the second element + /// + /// # Panics + /// + /// Panics if `a` or `b` are out of bounds. + /// + /// # Examples + /// + /// ``` + /// let mut v = ["a", "b", "c", "d"]; + /// v.swap(1, 3); + /// assert!(v == ["a", "d", "c", "b"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn swap(&mut self, a: usize, b: usize) { + core_slice::SliceExt::swap(self, a, b) + } + + /// Reverses the order of elements in the slice, in place. + /// + /// # Example + /// + /// ``` + /// let mut v = [1, 2, 3]; + /// v.reverse(); + /// assert!(v == [3, 2, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn reverse(&mut self) { + core_slice::SliceExt::reverse(self) + } + + /// Returns an iterator over the slice. + /// + /// # Examples + /// + /// ``` + /// let x = &[1, 2, 4]; + /// let mut iterator = x.iter(); + /// + /// assert_eq!(iterator.next(), Some(&1)); + /// assert_eq!(iterator.next(), Some(&2)); + /// assert_eq!(iterator.next(), Some(&4)); + /// assert_eq!(iterator.next(), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn iter(&self) -> Iter<T> { + core_slice::SliceExt::iter(self) + } + + /// Returns an iterator that allows modifying each value. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [1, 2, 4]; + /// for elem in x.iter_mut() { + /// *elem += 2; + /// } + /// assert_eq!(x, &[3, 4, 6]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn iter_mut(&mut self) -> IterMut<T> { + core_slice::SliceExt::iter_mut(self) + } + + /// Returns an iterator over all contiguous windows of length + /// `size`. The windows overlap. If the slice is shorter than + /// `size`, the iterator returns no values. + /// + /// # Panics + /// + /// Panics if `size` is 0. + /// + /// # Example + /// + /// ``` + /// let slice = ['r', 'u', 's', 't']; + /// let mut iter = slice.windows(2); + /// assert_eq!(iter.next().unwrap(), &['r', 'u']); + /// assert_eq!(iter.next().unwrap(), &['u', 's']); + /// assert_eq!(iter.next().unwrap(), &['s', 't']); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// If the slice is shorter than `size`: + /// + /// ``` + /// let slice = ['f', 'o', 'o']; + /// let mut iter = slice.windows(4); + /// assert!(iter.next().is_none()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn windows(&self, size: usize) -> Windows<T> { + core_slice::SliceExt::windows(self, size) + } + + /// Returns an iterator over `size` elements of the slice at a + /// time. The chunks are slices and do not overlap. If `size` does + /// not divide the length of the slice, then the last chunk will + /// not have length `size`. + /// + /// # Panics + /// + /// Panics if `size` is 0. + /// + /// # Example + /// + /// ``` + /// let slice = ['l', 'o', 'r', 'e', 'm']; + /// let mut iter = slice.chunks(2); + /// assert_eq!(iter.next().unwrap(), &['l', 'o']); + /// assert_eq!(iter.next().unwrap(), &['r', 'e']); + /// assert_eq!(iter.next().unwrap(), &['m']); + /// assert!(iter.next().is_none()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn chunks(&self, size: usize) -> Chunks<T> { + core_slice::SliceExt::chunks(self, size) + } + + /// Returns an iterator over `chunk_size` elements of the slice at a time. + /// The chunks are mutable slices, and do not overlap. If `chunk_size` does + /// not divide the length of the slice, then the last chunk will not + /// have length `chunk_size`. + /// + /// # Panics + /// + /// Panics if `chunk_size` is 0. + /// + /// # Examples + /// + /// ``` + /// let v = &mut [0, 0, 0, 0, 0]; + /// let mut count = 1; + /// + /// for chunk in v.chunks_mut(2) { + /// for elem in chunk.iter_mut() { + /// *elem += count; + /// } + /// count += 1; + /// } + /// assert_eq!(v, &[1, 1, 2, 2, 3]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T> { + core_slice::SliceExt::chunks_mut(self, chunk_size) + } + + /// Divides one slice into two at an index. + /// + /// The first will contain all indices from `[0, mid)` (excluding + /// the index `mid` itself) and the second will contain all + /// indices from `[mid, len)` (excluding the index `len` itself). + /// + /// # Panics + /// + /// Panics if `mid > len`. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30, 20, 50]; + /// let (v1, v2) = v.split_at(2); + /// assert_eq!([10, 40], v1); + /// assert_eq!([30, 20, 50], v2); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_at(&self, mid: usize) -> (&[T], &[T]) { + core_slice::SliceExt::split_at(self, mid) + } + + /// Divides one `&mut` into two at an index. + /// + /// The first will contain all indices from `[0, mid)` (excluding + /// the index `mid` itself) and the second will contain all + /// indices from `[mid, len)` (excluding the index `len` itself). + /// + /// # Panics + /// + /// Panics if `mid > len`. + /// + /// # Examples + /// + /// ``` + /// let mut v = [1, 2, 3, 4, 5, 6]; + /// + /// // scoped to restrict the lifetime of the borrows + /// { + /// let (left, right) = v.split_at_mut(0); + /// assert!(left == []); + /// assert!(right == [1, 2, 3, 4, 5, 6]); + /// } + /// + /// { + /// let (left, right) = v.split_at_mut(2); + /// assert!(left == [1, 2]); + /// assert!(right == [3, 4, 5, 6]); + /// } + /// + /// { + /// let (left, right) = v.split_at_mut(6); + /// assert!(left == [1, 2, 3, 4, 5, 6]); + /// assert!(right == []); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) { + core_slice::SliceExt::split_at_mut(self, mid) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`. The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// let slice = [10, 40, 33, 20]; + /// let mut iter = slice.split(|num| num % 3 == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[10, 40]); + /// assert_eq!(iter.next().unwrap(), &[20]); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// If the first element is matched, an empty slice will be the first item + /// returned by the iterator. Similarly, if the last element in the slice + /// is matched, an empty slice will be the last item returned by the + /// iterator: + /// + /// ``` + /// let slice = [10, 40, 33]; + /// let mut iter = slice.split(|num| num % 3 == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[10, 40]); + /// assert_eq!(iter.next().unwrap(), &[]); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// If two matched elements are directly adjacent, an empty slice will be + /// present between them: + /// + /// ``` + /// let slice = [10, 6, 33, 20]; + /// let mut iter = slice.split(|num| num % 3 == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[10]); + /// assert_eq!(iter.next().unwrap(), &[]); + /// assert_eq!(iter.next().unwrap(), &[20]); + /// assert!(iter.next().is_none()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split<F>(&self, pred: F) -> Split<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::split(self, pred) + } + + /// Returns an iterator over mutable subslices separated by elements that + /// match `pred`. The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// let mut v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.split_mut(|num| *num % 3 == 0) { + /// group[0] = 1; + /// } + /// assert_eq!(v, [1, 40, 30, 1, 60, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::split_mut(self, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`, starting at the end of the slice and working backwards. + /// The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// #![feature(slice_rsplit)] + /// + /// let slice = [11, 22, 33, 0, 44, 55]; + /// let mut iter = slice.rsplit(|num| *num == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[44, 55]); + /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]); + /// assert_eq!(iter.next(), None); + /// ``` + /// + /// As with `split()`, if the first or last element is matched, an empty + /// slice will be the first (or last) item returned by the iterator. + /// + /// ``` + /// #![feature(slice_rsplit)] + /// + /// let v = &[0, 1, 1, 2, 3, 5, 8]; + /// let mut it = v.rsplit(|n| *n % 2 == 0); + /// assert_eq!(it.next().unwrap(), &[]); + /// assert_eq!(it.next().unwrap(), &[3, 5]); + /// assert_eq!(it.next().unwrap(), &[1, 1]); + /// assert_eq!(it.next().unwrap(), &[]); + /// assert_eq!(it.next(), None); + /// ``` + #[unstable(feature = "slice_rsplit", issue = "41020")] + #[inline] + pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::rsplit(self, pred) + } + + /// Returns an iterator over mutable subslices separated by elements that + /// match `pred`, starting at the end of the slice and working + /// backwards. The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// #![feature(slice_rsplit)] + /// + /// let mut v = [100, 400, 300, 200, 600, 500]; + /// + /// let mut count = 0; + /// for group in v.rsplit_mut(|num| *num % 3 == 0) { + /// count += 1; + /// group[0] = count; + /// } + /// assert_eq!(v, [3, 400, 300, 2, 600, 1]); + /// ``` + /// + #[unstable(feature = "slice_rsplit", issue = "41020")] + #[inline] + pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::rsplit_mut(self, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`, limited to returning at most `n` items. The matched element is + /// not contained in the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`, + /// `[20, 60, 50]`): + /// + /// ``` + /// let v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.splitn(2, |num| *num % 3 == 0) { + /// println!("{:?}", group); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::splitn(self, n, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`, limited to returning at most `n` items. The matched element is + /// not contained in the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// ``` + /// let mut v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.splitn_mut(2, |num| *num % 3 == 0) { + /// group[0] = 1; + /// } + /// assert_eq!(v, [1, 40, 30, 1, 60, 50]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::splitn_mut(self, n, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred` limited to returning at most `n` items. This starts at the end of + /// the slice and works backwards. The matched element is not contained in + /// the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// Print the slice split once, starting from the end, by numbers divisible + /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`): + /// + /// ``` + /// let v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.rsplitn(2, |num| *num % 3 == 0) { + /// println!("{:?}", group); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::rsplitn(self, n, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred` limited to returning at most `n` items. This starts at the end of + /// the slice and works backwards. The matched element is not contained in + /// the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// ``` + /// let mut s = [10, 40, 30, 20, 60, 50]; + /// + /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { + /// group[0] = 1; + /// } + /// assert_eq!(s, [1, 40, 30, 20, 60, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::rsplitn_mut(self, n, pred) + } + + /// Returns `true` if the slice contains an element with the given value. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert!(v.contains(&30)); + /// assert!(!v.contains(&50)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn contains(&self, x: &T) -> bool + where T: PartialEq + { + core_slice::SliceExt::contains(self, x) + } + + /// Returns `true` if `needle` is a prefix of the slice. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert!(v.starts_with(&[10])); + /// assert!(v.starts_with(&[10, 40])); + /// assert!(!v.starts_with(&[50])); + /// assert!(!v.starts_with(&[10, 50])); + /// ``` + /// + /// Always returns `true` if `needle` is an empty slice: + /// + /// ``` + /// let v = &[10, 40, 30]; + /// assert!(v.starts_with(&[])); + /// let v: &[u8] = &[]; + /// assert!(v.starts_with(&[])); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn starts_with(&self, needle: &[T]) -> bool + where T: PartialEq + { + core_slice::SliceExt::starts_with(self, needle) + } + + /// Returns `true` if `needle` is a suffix of the slice. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert!(v.ends_with(&[30])); + /// assert!(v.ends_with(&[40, 30])); + /// assert!(!v.ends_with(&[50])); + /// assert!(!v.ends_with(&[50, 30])); + /// ``` + /// + /// Always returns `true` if `needle` is an empty slice: + /// + /// ``` + /// let v = &[10, 40, 30]; + /// assert!(v.ends_with(&[])); + /// let v: &[u8] = &[]; + /// assert!(v.ends_with(&[])); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn ends_with(&self, needle: &[T]) -> bool + where T: PartialEq + { + core_slice::SliceExt::ends_with(self, needle) + } + + /// Binary searches this sorted slice for a given element. + /// + /// If the value is found then `Ok` is returned, containing the + /// index of the matching element; if the value is not found then + /// `Err` is returned, containing the index where a matching + /// element could be inserted while maintaining sorted order. + /// + /// # Example + /// + /// Looks up a series of four elements. The first is found, with a + /// uniquely determined position; the second and third are not + /// found; the fourth could match any position in `[1, 4]`. + /// + /// ``` + /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; + /// + /// assert_eq!(s.binary_search(&13), Ok(9)); + /// assert_eq!(s.binary_search(&4), Err(7)); + /// assert_eq!(s.binary_search(&100), Err(13)); + /// let r = s.binary_search(&1); + /// assert!(match r { Ok(1...4) => true, _ => false, }); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn binary_search(&self, x: &T) -> Result<usize, usize> + where T: Ord + { + core_slice::SliceExt::binary_search(self, x) + } + + /// Binary searches this sorted slice with a comparator function. + /// + /// The comparator function should implement an order consistent + /// with the sort order of the underlying slice, returning an + /// order code that indicates whether its argument is `Less`, + /// `Equal` or `Greater` the desired target. + /// + /// If a matching value is found then returns `Ok`, containing + /// the index for the matched element; if no match is found then + /// `Err` is returned, containing the index where a matching + /// element could be inserted while maintaining sorted order. + /// + /// # Example + /// + /// Looks up a series of four elements. The first is found, with a + /// uniquely determined position; the second and third are not + /// found; the fourth could match any position in `[1, 4]`. + /// + /// ``` + /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; + /// + /// let seek = 13; + /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); + /// let seek = 4; + /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); + /// let seek = 100; + /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); + /// let seek = 1; + /// let r = s.binary_search_by(|probe| probe.cmp(&seek)); + /// assert!(match r { Ok(1...4) => true, _ => false, }); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> + where F: FnMut(&'a T) -> Ordering + { + core_slice::SliceExt::binary_search_by(self, f) + } + + /// Binary searches this sorted slice with a key extraction function. + /// + /// Assumes that the slice is sorted by the key, for instance with + /// [`sort_by_key`] using the same key extraction function. + /// + /// If a matching value is found then returns `Ok`, containing the + /// index for the matched element; if no match is found then `Err` + /// is returned, containing the index where a matching element could + /// be inserted while maintaining sorted order. + /// + /// [`sort_by_key`]: #method.sort_by_key + /// + /// # Examples + /// + /// Looks up a series of four elements in a slice of pairs sorted by + /// their second elements. The first is found, with a uniquely + /// determined position; the second and third are not found; the + /// fourth could match any position in `[1, 4]`. + /// + /// ``` + /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), + /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), + /// (1, 21), (2, 34), (4, 55)]; + /// + /// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); + /// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); + /// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); + /// let r = s.binary_search_by_key(&1, |&(a,b)| b); + /// assert!(match r { Ok(1...4) => true, _ => false, }); + /// ``` + #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")] + #[inline] + pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> + where F: FnMut(&'a T) -> B, + B: Ord + { + core_slice::SliceExt::binary_search_by_key(self, b, f) + } + + /// Sorts the slice. + /// + /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is an adaptive, iterative merge sort inspired by + /// [timsort](https://en.wikipedia.org/wiki/Timsort). + /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of + /// two or more sorted sequences concatenated one after another. + /// + /// Also, it allocates temporary storage half the size of `self`, but for short slices a + /// non-allocating insertion sort is used instead. + /// + /// # Examples + /// + /// ``` + /// let mut v = [-5, 4, 1, -3, 2]; + /// + /// v.sort(); + /// assert!(v == [-5, -3, 1, 2, 4]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn sort(&mut self) + where T: Ord + { + merge_sort(self, |a, b| a.lt(b)); + } + + /// Sorts the slice with a comparator function. + /// + /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is an adaptive, iterative merge sort inspired by + /// [timsort](https://en.wikipedia.org/wiki/Timsort). + /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of + /// two or more sorted sequences concatenated one after another. + /// + /// Also, it allocates temporary storage half the size of `self`, but for short slices a + /// non-allocating insertion sort is used instead. + /// + /// # Examples + /// + /// ``` + /// let mut v = [5, 4, 1, 3, 2]; + /// v.sort_by(|a, b| a.cmp(b)); + /// assert!(v == [1, 2, 3, 4, 5]); + /// + /// // reverse sorting + /// v.sort_by(|a, b| b.cmp(a)); + /// assert!(v == [5, 4, 3, 2, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn sort_by<F>(&mut self, mut compare: F) + where F: FnMut(&T, &T) -> Ordering + { + merge_sort(self, |a, b| compare(a, b) == Less); + } + + /// Sorts the slice with a key extraction function. + /// + /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is an adaptive, iterative merge sort inspired by + /// [timsort](https://en.wikipedia.org/wiki/Timsort). + /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of + /// two or more sorted sequences concatenated one after another. + /// + /// Also, it allocates temporary storage half the size of `self`, but for short slices a + /// non-allocating insertion sort is used instead. + /// + /// # Examples + /// + /// ``` + /// let mut v = [-5i32, 4, 1, -3, 2]; + /// + /// v.sort_by_key(|k| k.abs()); + /// assert!(v == [1, 2, -3, 4, -5]); + /// ``` + #[stable(feature = "slice_sort_by_key", since = "1.7.0")] + #[inline] + pub fn sort_by_key<B, F>(&mut self, mut f: F) + where F: FnMut(&T) -> B, B: Ord + { + merge_sort(self, |a, b| f(a).lt(&f(b))); + } + + /// Sorts the slice, but may not preserve the order of equal elements. + /// + /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), + /// and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort], + /// which is a quicksort variant designed to be very fast on certain kinds of patterns, + /// sometimes achieving linear time. It is randomized but deterministic, and falls back to + /// heapsort on degenerate inputs. + /// + /// It is generally faster than stable sorting, except in a few special cases, e.g. when the + /// slice consists of several concatenated sorted sequences. + /// + /// # Examples + /// + /// ``` + /// #![feature(sort_unstable)] + /// + /// let mut v = [-5, 4, 1, -3, 2]; + /// + /// v.sort_unstable(); + /// assert!(v == [-5, -3, 1, 2, 4]); + /// ``` + /// + /// [pdqsort]: https://github.com/orlp/pdqsort + // FIXME #40585: Mention `sort_unstable` in the documentation for `sort`. + #[unstable(feature = "sort_unstable", issue = "40585")] + #[inline] + pub fn sort_unstable(&mut self) + where T: Ord + { + core_slice::SliceExt::sort_unstable(self); + } + + /// Sorts the slice with a comparator function, but may not preserve the order of equal + /// elements. + /// + /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), + /// and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort], + /// which is a quicksort variant designed to be very fast on certain kinds of patterns, + /// sometimes achieving linear time. It is randomized but deterministic, and falls back to + /// heapsort on degenerate inputs. + /// + /// It is generally faster than stable sorting, except in a few special cases, e.g. when the + /// slice consists of several concatenated sorted sequences. + /// + /// # Examples + /// + /// ``` + /// #![feature(sort_unstable)] + /// + /// let mut v = [5, 4, 1, 3, 2]; + /// v.sort_unstable_by(|a, b| a.cmp(b)); + /// assert!(v == [1, 2, 3, 4, 5]); + /// + /// // reverse sorting + /// v.sort_unstable_by(|a, b| b.cmp(a)); + /// assert!(v == [5, 4, 3, 2, 1]); + /// ``` + /// + /// [pdqsort]: https://github.com/orlp/pdqsort + // FIXME #40585: Mention `sort_unstable_by` in the documentation for `sort_by`. + #[unstable(feature = "sort_unstable", issue = "40585")] + #[inline] + pub fn sort_unstable_by<F>(&mut self, compare: F) + where F: FnMut(&T, &T) -> Ordering + { + core_slice::SliceExt::sort_unstable_by(self, compare); + } + + /// Sorts the slice with a key extraction function, but may not preserve the order of equal + /// elements. + /// + /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), + /// and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort], + /// which is a quicksort variant designed to be very fast on certain kinds of patterns, + /// sometimes achieving linear time. It is randomized but deterministic, and falls back to + /// heapsort on degenerate inputs. + /// + /// It is generally faster than stable sorting, except in a few special cases, e.g. when the + /// slice consists of several concatenated sorted sequences. + /// + /// # Examples + /// + /// ``` + /// #![feature(sort_unstable)] + /// + /// let mut v = [-5i32, 4, 1, -3, 2]; + /// + /// v.sort_unstable_by_key(|k| k.abs()); + /// assert!(v == [1, 2, -3, 4, -5]); + /// ``` + /// + /// [pdqsort]: https://github.com/orlp/pdqsort + // FIXME #40585: Mention `sort_unstable_by_key` in the documentation for `sort_by_key`. + #[unstable(feature = "sort_unstable", issue = "40585")] + #[inline] + pub fn sort_unstable_by_key<B, F>(&mut self, f: F) + where F: FnMut(&T) -> B, + B: Ord + { + core_slice::SliceExt::sort_unstable_by_key(self, f); + } + + /// Permutes the slice in-place such that `self[mid..]` moves to the + /// beginning of the slice while `self[..mid]` moves to the end of the + /// slice. Equivalently, rotates the slice `mid` places to the left + /// or `k = self.len() - mid` places to the right. + /// + /// This is a "k-rotation", a permutation in which item `i` moves to + /// position `i + k`, modulo the length of the slice. See _Elements + /// of Programming_ [ยง10.4][eop]. + /// + /// Rotation by `mid` and rotation by `k` are inverse operations. + /// + /// [eop]: https://books.google.com/books?id=CO9ULZGINlsC&pg=PA178&q=k-rotation + /// + /// # Panics + /// + /// This function will panic if `mid` is greater than the length of the + /// slice. (Note that `mid == self.len()` does _not_ panic; it's a nop + /// rotation with `k == 0`, the inverse of a rotation with `mid == 0`.) + /// + /// # Complexity + /// + /// Takes linear (in `self.len()`) time. + /// + /// # Examples + /// + /// ``` + /// #![feature(slice_rotate)] + /// + /// let mut a = [1, 2, 3, 4, 5, 6, 7]; + /// let mid = 2; + /// a.rotate(mid); + /// assert_eq!(&a, &[3, 4, 5, 6, 7, 1, 2]); + /// let k = a.len() - mid; + /// a.rotate(k); + /// assert_eq!(&a, &[1, 2, 3, 4, 5, 6, 7]); + /// + /// use std::ops::Range; + /// fn slide<T>(slice: &mut [T], range: Range<usize>, to: usize) { + /// if to < range.start { + /// slice[to..range.end].rotate(range.start-to); + /// } else if to > range.end { + /// slice[range.start..to].rotate(range.end-range.start); + /// } + /// } + /// let mut v: Vec<_> = (0..10).collect(); + /// slide(&mut v, 1..4, 7); + /// assert_eq!(&v, &[0, 4, 5, 6, 1, 2, 3, 7, 8, 9]); + /// slide(&mut v, 6..8, 1); + /// assert_eq!(&v, &[0, 3, 7, 4, 5, 6, 1, 2, 8, 9]); + /// ``` + #[unstable(feature = "slice_rotate", issue = "41891")] + pub fn rotate(&mut self, mid: usize) { + core_slice::SliceExt::rotate(self, mid); + } + + /// Copies the elements from `src` into `self`. + /// + /// The length of `src` must be the same as `self`. + /// + /// If `src` implements `Copy`, it can be more performant to use + /// [`copy_from_slice`]. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Example + /// + /// ``` + /// let mut dst = [0, 0, 0]; + /// let src = [1, 2, 3]; + /// + /// dst.clone_from_slice(&src); + /// assert!(dst == [1, 2, 3]); + /// ``` + /// + /// [`copy_from_slice`]: #method.copy_from_slice + #[stable(feature = "clone_from_slice", since = "1.7.0")] + pub fn clone_from_slice(&mut self, src: &[T]) where T: Clone { + core_slice::SliceExt::clone_from_slice(self, src) + } + + /// Copies all elements from `src` into `self`, using a memcpy. + /// + /// The length of `src` must be the same as `self`. + /// + /// If `src` does not implement `Copy`, use [`clone_from_slice`]. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Example + /// + /// ``` + /// let mut dst = [0, 0, 0]; + /// let src = [1, 2, 3]; + /// + /// dst.copy_from_slice(&src); + /// assert_eq!(src, dst); + /// ``` + /// + /// [`clone_from_slice`]: #method.clone_from_slice + #[stable(feature = "copy_from_slice", since = "1.9.0")] + pub fn copy_from_slice(&mut self, src: &[T]) where T: Copy { + core_slice::SliceExt::copy_from_slice(self, src) + } + + /// Copies `self` into a new `Vec`. + /// + /// # Examples + /// + /// ``` + /// let s = [10, 40, 30]; + /// let x = s.to_vec(); + /// // Here, `s` and `x` can be modified independently. + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn to_vec(&self) -> Vec<T> + where T: Clone + { + // NB see hack module in this file + hack::to_vec(self) + } + + /// Converts `self` into a vector without clones or allocation. + /// + /// The resulting vector can be converted back into a box via + /// `Vec<T>`'s `into_boxed_slice` method. + /// + /// # Examples + /// + /// ``` + /// let s: Box<[i32]> = Box::new([10, 40, 30]); + /// let x = s.into_vec(); + /// // `s` cannot be used anymore because it has been converted into `x`. + /// + /// assert_eq!(x, vec![10, 40, 30]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn into_vec(self: Box<Self>) -> Vec<T> { + // NB see hack module in this file + hack::into_vec(self) + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Extension traits for slices over specific kinds of data +//////////////////////////////////////////////////////////////////////////////// +#[unstable(feature = "slice_concat_ext", + reason = "trait should not have to exist", + issue = "27747")] +/// An extension trait for concatenating slices +pub trait SliceConcatExt<T: ?Sized> { + #[unstable(feature = "slice_concat_ext", + reason = "trait should not have to exist", + issue = "27747")] + /// The resulting type after concatenation + type Output; + + /// Flattens a slice of `T` into a single value `Self::Output`. + /// + /// # Examples + /// + /// ``` + /// assert_eq!(["hello", "world"].concat(), "helloworld"); + /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + fn concat(&self) -> Self::Output; + + /// Flattens a slice of `T` into a single value `Self::Output`, placing a + /// given separator between each. + /// + /// # Examples + /// + /// ``` + /// assert_eq!(["hello", "world"].join(" "), "hello world"); + /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); + /// ``` + #[stable(feature = "rename_connect_to_join", since = "1.3.0")] + fn join(&self, sep: &T) -> Self::Output; + + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")] + fn connect(&self, sep: &T) -> Self::Output; +} + +#[unstable(feature = "slice_concat_ext", + reason = "trait should not have to exist", + issue = "27747")] +impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T> for [V] { + type Output = Vec<T>; + + fn concat(&self) -> Vec<T> { + let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); + let mut result = Vec::with_capacity(size); + for v in self { + result.extend_from_slice(v.borrow()) + } + result + } + + fn join(&self, sep: &T) -> Vec<T> { + let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); + let mut result = Vec::with_capacity(size + self.len()); + let mut first = true; + for v in self { + if first { + first = false + } else { + result.push(sep.clone()) + } + result.extend_from_slice(v.borrow()) + } + result + } + + fn connect(&self, sep: &T) -> Vec<T> { + self.join(sep) + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Standard trait implementations for slices +//////////////////////////////////////////////////////////////////////////////// + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Borrow<[T]> for Vec<T> { + fn borrow(&self) -> &[T] { + &self[..] + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> BorrowMut<[T]> for Vec<T> { + fn borrow_mut(&mut self) -> &mut [T] { + &mut self[..] + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Clone> ToOwned for [T] { + type Owned = Vec<T>; + #[cfg(not(test))] + fn to_owned(&self) -> Vec<T> { + self.to_vec() + } + + #[cfg(test)] + fn to_owned(&self) -> Vec<T> { + hack::to_vec(self) + } + + fn clone_into(&self, target: &mut Vec<T>) { + // drop anything in target that will not be overwritten + target.truncate(self.len()); + let len = target.len(); + + // reuse the contained values' allocations/resources. + target.clone_from_slice(&self[..len]); + + // target.len <= self.len due to the truncate above, so the + // slice here is always in-bounds. + target.extend_from_slice(&self[len..]); + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Sorting +//////////////////////////////////////////////////////////////////////////////// + +/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted. +/// +/// This is the integral subroutine of insertion sort. +fn insert_head<T, F>(v: &mut [T], is_less: &mut F) + where F: FnMut(&T, &T) -> bool +{ + if v.len() >= 2 && is_less(&v[1], &v[0]) { + unsafe { + // There are three ways to implement insertion here: + // + // 1. Swap adjacent elements until the first one gets to its final destination. + // However, this way we copy data around more than is necessary. If elements are big + // structures (costly to copy), this method will be slow. + // + // 2. Iterate until the right place for the first element is found. Then shift the + // elements succeeding it to make room for it and finally place it into the + // remaining hole. This is a good method. + // + // 3. Copy the first element into a temporary variable. Iterate until the right place + // for it is found. As we go along, copy every traversed element into the slot + // preceding it. Finally, copy data from the temporary variable into the remaining + // hole. This method is very good. Benchmarks demonstrated slightly better + // performance than with the 2nd method. + // + // All methods were benchmarked, and the 3rd showed best results. So we chose that one. + let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0])); + + // Intermediate state of the insertion process is always tracked by `hole`, which + // serves two purposes: + // 1. Protects integrity of `v` from panics in `is_less`. + // 2. Fills the remaining hole in `v` in the end. + // + // Panic safety: + // + // If `is_less` panics at any point during the process, `hole` will get dropped and + // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it + // initially held exactly once. + let mut hole = InsertionHole { + src: &mut *tmp, + dest: &mut v[1], + }; + ptr::copy_nonoverlapping(&v[1], &mut v[0], 1); + + for i in 2..v.len() { + if !is_less(&v[i], &*tmp) { + break; + } + ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1); + hole.dest = &mut v[i]; + } + // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. + } + } + + // When dropped, copies from `src` into `dest`. + struct InsertionHole<T> { + src: *mut T, + dest: *mut T, + } + + impl<T> Drop for InsertionHole<T> { + fn drop(&mut self) { + unsafe { ptr::copy_nonoverlapping(self.src, self.dest, 1); } + } + } +} + +/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and +/// stores the result into `v[..]`. +/// +/// # Safety +/// +/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough +/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type. +unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F) + where F: FnMut(&T, &T) -> bool +{ + let len = v.len(); + let v = v.as_mut_ptr(); + let v_mid = v.offset(mid as isize); + let v_end = v.offset(len as isize); + + // The merge process first copies the shorter run into `buf`. Then it traces the newly copied + // run and the longer run forwards (or backwards), comparing their next unconsumed elements and + // copying the lesser (or greater) one into `v`. + // + // As soon as the shorter run is fully consumed, the process is done. If the longer run gets + // consumed first, then we must copy whatever is left of the shorter run into the remaining + // hole in `v`. + // + // Intermediate state of the process is always tracked by `hole`, which serves two purposes: + // 1. Protects integrity of `v` from panics in `is_less`. + // 2. Fills the remaining hole in `v` if the longer run gets consumed first. + // + // Panic safety: + // + // If `is_less` panics at any point during the process, `hole` will get dropped and fill the + // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every + // object it initially held exactly once. + let mut hole; + + if mid <= len - mid { + // The left run is shorter. + ptr::copy_nonoverlapping(v, buf, mid); + hole = MergeHole { + start: buf, + end: buf.offset(mid as isize), + dest: v, + }; + + // Initially, these pointers point to the beginnings of their arrays. + let left = &mut hole.start; + let mut right = v_mid; + let out = &mut hole.dest; + + while *left < hole.end && right < v_end { + // Consume the lesser side. + // If equal, prefer the left run to maintain stability. + let to_copy = if is_less(&*right, &**left) { + get_and_increment(&mut right) + } else { + get_and_increment(left) + }; + ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1); + } + } else { + // The right run is shorter. + ptr::copy_nonoverlapping(v_mid, buf, len - mid); + hole = MergeHole { + start: buf, + end: buf.offset((len - mid) as isize), + dest: v_mid, + }; + + // Initially, these pointers point past the ends of their arrays. + let left = &mut hole.dest; + let right = &mut hole.end; + let mut out = v_end; + + while v < *left && buf < *right { + // Consume the greater side. + // If equal, prefer the right run to maintain stability. + let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) { + decrement_and_get(left) + } else { + decrement_and_get(right) + }; + ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1); + } + } + // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of + // it will now be copied into the hole in `v`. + + unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T { + let old = *ptr; + *ptr = ptr.offset(1); + old + } + + unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T { + *ptr = ptr.offset(-1); + *ptr + } + + // When dropped, copies the range `start..end` into `dest..`. + struct MergeHole<T> { + start: *mut T, + end: *mut T, + dest: *mut T, + } + + impl<T> Drop for MergeHole<T> { + fn drop(&mut self) { + // `T` is not a zero-sized type, so it's okay to divide by it's size. + let len = (self.end as usize - self.start as usize) / mem::size_of::<T>(); + unsafe { ptr::copy_nonoverlapping(self.start, self.dest, len); } + } + } +} + +/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail +/// [here](http://svn.python.org/projects/python/trunk/Objects/listsort.txt). +/// +/// The algorithm identifies strictly descending and non-descending subsequences, which are called +/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed +/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are +/// satisfied: +/// +/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len` +/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len` +/// +/// The invariants ensure that the total running time is `O(n log n)` worst-case. +fn merge_sort<T, F>(v: &mut [T], mut is_less: F) + where F: FnMut(&T, &T) -> bool +{ + // Slices of up to this length get sorted using insertion sort. + const MAX_INSERTION: usize = 20; + // Very short runs are extended using insertion sort to span at least this many elements. + const MIN_RUN: usize = 10; + + // Sorting has no meaningful behavior on zero-sized types. + if size_of::<T>() == 0 { + return; + } + + let len = v.len(); + + // Short arrays get sorted in-place via insertion sort to avoid allocations. + if len <= MAX_INSERTION { + if len >= 2 { + for i in (0..len-1).rev() { + insert_head(&mut v[i..], &mut is_less); + } + } + return; + } + + // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it + // shallow copies of the contents of `v` without risking the dtors running on copies if + // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run, + // which will always have length at most `len / 2`. + let mut buf = Vec::with_capacity(len / 2); + + // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a + // strange decision, but consider the fact that merges more often go in the opposite direction + // (forwards). According to benchmarks, merging forwards is slightly faster than merging + // backwards. To conclude, identifying runs by traversing backwards improves performance. + let mut runs = vec![]; + let mut end = len; + while end > 0 { + // Find the next natural run, and reverse it if it's strictly descending. + let mut start = end - 1; + if start > 0 { + start -= 1; + unsafe { + if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) { + while start > 0 && is_less(v.get_unchecked(start), + v.get_unchecked(start - 1)) { + start -= 1; + } + v[start..end].reverse(); + } else { + while start > 0 && !is_less(v.get_unchecked(start), + v.get_unchecked(start - 1)) { + start -= 1; + } + } + } + } + + // Insert some more elements into the run if it's too short. Insertion sort is faster than + // merge sort on short sequences, so this significantly improves performance. + while start > 0 && end - start < MIN_RUN { + start -= 1; + insert_head(&mut v[start..end], &mut is_less); + } + + // Push this run onto the stack. + runs.push(Run { + start: start, + len: end - start, + }); + end = start; + + // Merge some pairs of adjacent runs to satisfy the invariants. + while let Some(r) = collapse(&runs) { + let left = runs[r + 1]; + let right = runs[r]; + unsafe { + merge(&mut v[left.start .. right.start + right.len], left.len, buf.as_mut_ptr(), + &mut is_less); + } + runs[r] = Run { + start: left.start, + len: left.len + right.len, + }; + runs.remove(r + 1); + } + } + + // Finally, exactly one run must remain in the stack. + debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len); + + // Examines the stack of runs and identifies the next pair of runs to merge. More specifically, + // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the + // algorithm should continue building a new run instead, `None` is returned. + // + // TimSort is infamous for it's buggy implementations, as described here: + // http://envisage-project.eu/timsort-specification-and-verification/ + // + // The gist of the story is: we must enforce the invariants on the top four runs on the stack. + // Enforcing them on just top three is not sufficient to ensure that the invariants will still + // hold for *all* runs in the stack. + // + // This function correctly checks invariants for the top four runs. Additionally, if the top + // run starts at index 0, it will always demand a merge operation until the stack is fully + // collapsed, in order to complete the sort. + #[inline] + fn collapse(runs: &[Run]) -> Option<usize> { + let n = runs.len(); + if n >= 2 && (runs[n - 1].start == 0 || + runs[n - 2].len <= runs[n - 1].len || + (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) || + (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) { + if n >= 3 && runs[n - 3].len < runs[n - 1].len { + Some(n - 3) + } else { + Some(n - 2) + } + } else { + None + } + } + + #[derive(Clone, Copy)] + struct Run { + start: usize, + len: usize, + } +} |
