about summary refs log tree commit diff
path: root/src/liballoc/vec.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/liballoc/vec.rs')
-rw-r--r--src/liballoc/vec.rs3122
1 files changed, 0 insertions, 3122 deletions
diff --git a/src/liballoc/vec.rs b/src/liballoc/vec.rs
deleted file mode 100644
index f5a3d0cd4af..00000000000
--- a/src/liballoc/vec.rs
+++ /dev/null
@@ -1,3122 +0,0 @@
-// ignore-tidy-filelength
-//! A contiguous growable array type with heap-allocated contents, written
-//! `Vec<T>`.
-//!
-//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
-//! `O(1)` pop (from the end).
-//!
-//! Vectors ensure they never allocate more than `isize::MAX` bytes.
-//!
-//! # Examples
-//!
-//! You can explicitly create a [`Vec<T>`] with [`new`]:
-//!
-//! ```
-//! let v: Vec<i32> = Vec::new();
-//! ```
-//!
-//! ...or by using the [`vec!`] macro:
-//!
-//! ```
-//! let v: Vec<i32> = vec![];
-//!
-//! let v = vec![1, 2, 3, 4, 5];
-//!
-//! let v = vec![0; 10]; // ten zeroes
-//! ```
-//!
-//! You can [`push`] values onto the end of a vector (which will grow the vector
-//! as needed):
-//!
-//! ```
-//! let mut v = vec![1, 2];
-//!
-//! v.push(3);
-//! ```
-//!
-//! Popping values works in much the same way:
-//!
-//! ```
-//! let mut v = vec![1, 2];
-//!
-//! let two = v.pop();
-//! ```
-//!
-//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
-//!
-//! ```
-//! let mut v = vec![1, 2, 3];
-//! let three = v[2];
-//! v[1] = v[1] + 5;
-//! ```
-//!
-//! [`Vec<T>`]: ../../std/vec/struct.Vec.html
-//! [`new`]: ../../std/vec/struct.Vec.html#method.new
-//! [`push`]: ../../std/vec/struct.Vec.html#method.push
-//! [`Index`]: ../../std/ops/trait.Index.html
-//! [`IndexMut`]: ../../std/ops/trait.IndexMut.html
-//! [`vec!`]: ../../std/macro.vec.html
-
-#![stable(feature = "rust1", since = "1.0.0")]
-
-use core::cmp::{self, Ordering};
-use core::fmt;
-use core::hash::{Hash, Hasher};
-use core::intrinsics::{arith_offset, assume};
-use core::iter::{FromIterator, FusedIterator, TrustedLen};
-use core::marker::PhantomData;
-use core::mem::{self, ManuallyDrop};
-use core::ops::Bound::{Excluded, Included, Unbounded};
-use core::ops::{self, Index, IndexMut, RangeBounds};
-use core::ptr::{self, NonNull};
-use core::slice::{self, SliceIndex};
-
-use crate::borrow::{Cow, ToOwned};
-use crate::boxed::Box;
-use crate::collections::TryReserveError;
-use crate::raw_vec::RawVec;
-
-/// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'.
-///
-/// # Examples
-///
-/// ```
-/// let mut vec = Vec::new();
-/// vec.push(1);
-/// vec.push(2);
-///
-/// assert_eq!(vec.len(), 2);
-/// assert_eq!(vec[0], 1);
-///
-/// assert_eq!(vec.pop(), Some(2));
-/// assert_eq!(vec.len(), 1);
-///
-/// vec[0] = 7;
-/// assert_eq!(vec[0], 7);
-///
-/// vec.extend([1, 2, 3].iter().copied());
-///
-/// for x in &vec {
-///     println!("{}", x);
-/// }
-/// assert_eq!(vec, [7, 1, 2, 3]);
-/// ```
-///
-/// The [`vec!`] macro is provided to make initialization more convenient:
-///
-/// ```
-/// let mut vec = vec![1, 2, 3];
-/// vec.push(4);
-/// assert_eq!(vec, [1, 2, 3, 4]);
-/// ```
-///
-/// It can also initialize each element of a `Vec<T>` with a given value.
-/// This may be more efficient than performing allocation and initialization
-/// in separate steps, especially when initializing a vector of zeros:
-///
-/// ```
-/// let vec = vec![0; 5];
-/// assert_eq!(vec, [0, 0, 0, 0, 0]);
-///
-/// // The following is equivalent, but potentially slower:
-/// let mut vec1 = Vec::with_capacity(5);
-/// vec1.resize(5, 0);
-/// ```
-///
-/// Use a `Vec<T>` as an efficient stack:
-///
-/// ```
-/// let mut stack = Vec::new();
-///
-/// stack.push(1);
-/// stack.push(2);
-/// stack.push(3);
-///
-/// while let Some(top) = stack.pop() {
-///     // Prints 3, 2, 1
-///     println!("{}", top);
-/// }
-/// ```
-///
-/// # Indexing
-///
-/// The `Vec` type allows to access values by index, because it implements the
-/// [`Index`] trait. An example will be more explicit:
-///
-/// ```
-/// let v = vec![0, 2, 4, 6];
-/// println!("{}", v[1]); // it will display '2'
-/// ```
-///
-/// However be careful: if you try to access an index which isn't in the `Vec`,
-/// your software will panic! You cannot do this:
-///
-/// ```should_panic
-/// let v = vec![0, 2, 4, 6];
-/// println!("{}", v[6]); // it will panic!
-/// ```
-///
-/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
-/// the `Vec`.
-///
-/// # Slicing
-///
-/// A `Vec` can be mutable. Slices, on the other hand, are read-only objects.
-/// To get a slice, use `&`. Example:
-///
-/// ```
-/// fn read_slice(slice: &[usize]) {
-///     // ...
-/// }
-///
-/// let v = vec![0, 1];
-/// read_slice(&v);
-///
-/// // ... and that's all!
-/// // you can also do it like this:
-/// let x : &[usize] = &v;
-/// ```
-///
-/// In Rust, it's more common to pass slices as arguments rather than vectors
-/// when you just want to provide read access. The same goes for [`String`] and
-/// [`&str`].
-///
-/// # Capacity and reallocation
-///
-/// The capacity of a vector is the amount of space allocated for any future
-/// elements that will be added onto the vector. This is not to be confused with
-/// the *length* of a vector, which specifies the number of actual elements
-/// within the vector. If a vector's length exceeds its capacity, its capacity
-/// will automatically be increased, but its elements will have to be
-/// reallocated.
-///
-/// For example, a vector with capacity 10 and length 0 would be an empty vector
-/// with space for 10 more elements. Pushing 10 or fewer elements onto the
-/// vector will not change its capacity or cause reallocation to occur. However,
-/// if the vector's length is increased to 11, it will have to reallocate, which
-/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
-/// whenever possible to specify how big the vector is expected to get.
-///
-/// # Guarantees
-///
-/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
-/// about its design. This ensures that it's as low-overhead as possible in
-/// the general case, and can be correctly manipulated in primitive ways
-/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
-/// If additional type parameters are added (e.g., to support custom allocators),
-/// overriding their defaults may change the behavior.
-///
-/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
-/// triplet. No more, no less. The order of these fields is completely
-/// unspecified, and you should use the appropriate methods to modify these.
-/// The pointer will never be null, so this type is null-pointer-optimized.
-///
-/// However, the pointer may not actually point to allocated memory. In particular,
-/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
-/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
-/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
-/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
-/// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only
-/// if [`mem::size_of::<T>`]`() * capacity() > 0`. In general, `Vec`'s allocation
-/// details are very subtle &mdash; if you intend to allocate memory using a `Vec`
-/// and use it for something else (either to pass to unsafe code, or to build your
-/// own memory-backed collection), be sure to deallocate this memory by using
-/// `from_raw_parts` to recover the `Vec` and then dropping it.
-///
-/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
-/// (as defined by the allocator Rust is configured to use by default), and its
-/// pointer points to [`len`] initialized, contiguous elements in order (what
-/// you would see if you coerced it to a slice), followed by [`capacity`]` -
-/// `[`len`] logically uninitialized, contiguous elements.
-///
-/// `Vec` will never perform a "small optimization" where elements are actually
-/// stored on the stack for two reasons:
-///
-/// * It would make it more difficult for unsafe code to correctly manipulate
-///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
-///   only moved, and it would be more difficult to determine if a `Vec` had
-///   actually allocated memory.
-///
-/// * It would penalize the general case, incurring an additional branch
-///   on every access.
-///
-/// `Vec` will never automatically shrink itself, even if completely empty. This
-/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
-/// and then filling it back up to the same [`len`] should incur no calls to
-/// the allocator. If you wish to free up unused memory, use
-/// [`shrink_to_fit`].
-///
-/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
-/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
-/// [`len`]` == `[`capacity`]. That is, the reported capacity is completely
-/// accurate, and can be relied on. It can even be used to manually free the memory
-/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
-/// when not necessary.
-///
-/// `Vec` does not guarantee any particular growth strategy when reallocating
-/// when full, nor when [`reserve`] is called. The current strategy is basic
-/// and it may prove desirable to use a non-constant growth factor. Whatever
-/// strategy is used will of course guarantee `O(1)` amortized [`push`].
-///
-/// `vec![x; n]`, `vec![a, b, c, d]`, and
-/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
-/// with exactly the requested capacity. If [`len`]` == `[`capacity`],
-/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
-/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
-///
-/// `Vec` will not specifically overwrite any data that is removed from it,
-/// but also won't specifically preserve it. Its uninitialized memory is
-/// scratch space that it may use however it wants. It will generally just do
-/// whatever is most efficient or otherwise easy to implement. Do not rely on
-/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
-/// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
-/// first, that may not actually happen because the optimizer does not consider
-/// this a side-effect that must be preserved. There is one case which we will
-/// not break, however: using `unsafe` code to write to the excess capacity,
-/// and then increasing the length to match, is always valid.
-///
-/// `Vec` does not currently guarantee the order in which elements are dropped.
-/// The order has changed in the past and may change again.
-///
-/// [`vec!`]: ../../std/macro.vec.html
-/// [`get`]: ../../std/vec/struct.Vec.html#method.get
-/// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
-/// [`Index`]: ../../std/ops/trait.Index.html
-/// [`String`]: ../../std/string/struct.String.html
-/// [`&str`]: ../../std/primitive.str.html
-/// [`Vec::with_capacity`]: ../../std/vec/struct.Vec.html#method.with_capacity
-/// [`Vec::new`]: ../../std/vec/struct.Vec.html#method.new
-/// [`shrink_to_fit`]: ../../std/vec/struct.Vec.html#method.shrink_to_fit
-/// [`capacity`]: ../../std/vec/struct.Vec.html#method.capacity
-/// [`mem::size_of::<T>`]: ../../std/mem/fn.size_of.html
-/// [`len`]: ../../std/vec/struct.Vec.html#method.len
-/// [`push`]: ../../std/vec/struct.Vec.html#method.push
-/// [`insert`]: ../../std/vec/struct.Vec.html#method.insert
-/// [`reserve`]: ../../std/vec/struct.Vec.html#method.reserve
-/// [owned slice]: ../../std/boxed/struct.Box.html
-#[stable(feature = "rust1", since = "1.0.0")]
-#[cfg_attr(not(test), rustc_diagnostic_item = "vec_type")]
-pub struct Vec<T> {
-    buf: RawVec<T>,
-    len: usize,
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// Inherent methods
-////////////////////////////////////////////////////////////////////////////////
-
-impl<T> Vec<T> {
-    /// Constructs a new, empty `Vec<T>`.
-    ///
-    /// The vector will not allocate until elements are pushed onto it.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// # #![allow(unused_mut)]
-    /// let mut vec: Vec<i32> = Vec::new();
-    /// ```
-    #[inline]
-    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub const fn new() -> Vec<T> {
-        Vec { buf: RawVec::NEW, len: 0 }
-    }
-
-    /// Constructs a new, empty `Vec<T>` with the specified capacity.
-    ///
-    /// The vector will be able to hold exactly `capacity` elements without
-    /// reallocating. If `capacity` is 0, the vector will not allocate.
-    ///
-    /// It is important to note that although the returned vector has the
-    /// *capacity* specified, the vector will have a zero *length*. For an
-    /// explanation of the difference between length and capacity, see
-    /// *[Capacity and reallocation]*.
-    ///
-    /// [Capacity and reallocation]: #capacity-and-reallocation
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = Vec::with_capacity(10);
-    ///
-    /// // The vector contains no items, even though it has capacity for more
-    /// assert_eq!(vec.len(), 0);
-    /// assert_eq!(vec.capacity(), 10);
-    ///
-    /// // These are all done without reallocating...
-    /// for i in 0..10 {
-    ///     vec.push(i);
-    /// }
-    /// assert_eq!(vec.len(), 10);
-    /// assert_eq!(vec.capacity(), 10);
-    ///
-    /// // ...but this may make the vector reallocate
-    /// vec.push(11);
-    /// assert_eq!(vec.len(), 11);
-    /// assert!(vec.capacity() >= 11);
-    /// ```
-    #[inline]
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn with_capacity(capacity: usize) -> Vec<T> {
-        Vec { buf: RawVec::with_capacity(capacity), len: 0 }
-    }
-
-    /// Decomposes a `Vec<T>` into its raw components.
-    ///
-    /// Returns the raw pointer to the underlying data, the length of
-    /// the vector (in elements), and the allocated capacity of the
-    /// data (in elements). These are the same arguments in the same
-    /// order as the arguments to [`from_raw_parts`].
-    ///
-    /// After calling this function, the caller is responsible for the
-    /// memory previously managed by the `Vec`. The only way to do
-    /// this is to convert the raw pointer, length, and capacity back
-    /// into a `Vec` with the [`from_raw_parts`] function, allowing
-    /// the destructor to perform the cleanup.
-    ///
-    /// [`from_raw_parts`]: #method.from_raw_parts
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(vec_into_raw_parts)]
-    /// let v: Vec<i32> = vec![-1, 0, 1];
-    ///
-    /// let (ptr, len, cap) = v.into_raw_parts();
-    ///
-    /// let rebuilt = unsafe {
-    ///     // We can now make changes to the components, such as
-    ///     // transmuting the raw pointer to a compatible type.
-    ///     let ptr = ptr as *mut u32;
-    ///
-    ///     Vec::from_raw_parts(ptr, len, cap)
-    /// };
-    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
-    /// ```
-    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
-    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
-        let mut me = ManuallyDrop::new(self);
-        (me.as_mut_ptr(), me.len(), me.capacity())
-    }
-
-    /// Creates a `Vec<T>` directly from the raw components of another vector.
-    ///
-    /// # Safety
-    ///
-    /// This is highly unsafe, due to the number of invariants that aren't
-    /// checked:
-    ///
-    /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
-    ///   (at least, it's highly likely to be incorrect if it wasn't).
-    /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
-    ///   (`T` having a less strict alignment is not sufficient, the alignment really
-    ///   needs to be equal to satsify the [`dealloc`] requirement that memory must be
-    ///   allocated and deallocated with the same layout.)
-    /// * `length` needs to be less than or equal to `capacity`.
-    /// * `capacity` needs to be the capacity that the pointer was allocated with.
-    ///
-    /// Violating these may cause problems like corrupting the allocator's
-    /// internal data structures. For example it is **not** safe
-    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
-    /// It's also not safe to build one from a `Vec<u16>` and its length, because
-    /// the allocator cares about the alignment, and these two types have different
-    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
-    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
-    ///
-    /// The ownership of `ptr` is effectively transferred to the
-    /// `Vec<T>` which may then deallocate, reallocate or change the
-    /// contents of memory pointed to by the pointer at will. Ensure
-    /// that nothing else uses the pointer after calling this
-    /// function.
-    ///
-    /// [`String`]: ../../std/string/struct.String.html
-    /// [`dealloc`]: ../../alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::ptr;
-    /// use std::mem;
-    ///
-    /// let v = vec![1, 2, 3];
-    ///
-    // FIXME Update this when vec_into_raw_parts is stabilized
-    /// // Prevent running `v`'s destructor so we are in complete control
-    /// // of the allocation.
-    /// let mut v = mem::ManuallyDrop::new(v);
-    ///
-    /// // Pull out the various important pieces of information about `v`
-    /// let p = v.as_mut_ptr();
-    /// let len = v.len();
-    /// let cap = v.capacity();
-    ///
-    /// unsafe {
-    ///     // Overwrite memory with 4, 5, 6
-    ///     for i in 0..len as isize {
-    ///         ptr::write(p.offset(i), 4 + i);
-    ///     }
-    ///
-    ///     // Put everything back together into a Vec
-    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
-    ///     assert_eq!(rebuilt, [4, 5, 6]);
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> {
-        unsafe { Vec { buf: RawVec::from_raw_parts(ptr, capacity), len: length } }
-    }
-
-    /// Returns the number of elements the vector can hold without
-    /// reallocating.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let vec: Vec<i32> = Vec::with_capacity(10);
-    /// assert_eq!(vec.capacity(), 10);
-    /// ```
-    #[inline]
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn capacity(&self) -> usize {
-        self.buf.capacity()
-    }
-
-    /// Reserves capacity for at least `additional` more elements to be inserted
-    /// in the given `Vec<T>`. The collection may reserve more space to avoid
-    /// frequent reallocations. After calling `reserve`, capacity will be
-    /// greater than or equal to `self.len() + additional`. Does nothing if
-    /// capacity is already sufficient.
-    ///
-    /// # Panics
-    ///
-    /// Panics if the new capacity exceeds `isize::MAX` bytes.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1];
-    /// vec.reserve(10);
-    /// assert!(vec.capacity() >= 11);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn reserve(&mut self, additional: usize) {
-        self.buf.reserve(self.len, additional);
-    }
-
-    /// Reserves the minimum capacity for exactly `additional` more elements to
-    /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
-    /// capacity will be greater than or equal to `self.len() + additional`.
-    /// Does nothing if the capacity is already sufficient.
-    ///
-    /// Note that the allocator may give the collection more space than it
-    /// requests. Therefore, capacity can not be relied upon to be precisely
-    /// minimal. Prefer `reserve` if future insertions are expected.
-    ///
-    /// # Panics
-    ///
-    /// Panics if the new capacity overflows `usize`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1];
-    /// vec.reserve_exact(10);
-    /// assert!(vec.capacity() >= 11);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn reserve_exact(&mut self, additional: usize) {
-        self.buf.reserve_exact(self.len, additional);
-    }
-
-    /// Tries to reserve capacity for at least `additional` more elements to be inserted
-    /// in the given `Vec<T>`. The collection may reserve more space to avoid
-    /// frequent reallocations. After calling `reserve`, capacity will be
-    /// greater than or equal to `self.len() + additional`. Does nothing if
-    /// capacity is already sufficient.
-    ///
-    /// # Errors
-    ///
-    /// If the capacity overflows, or the allocator reports a failure, then an error
-    /// is returned.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(try_reserve)]
-    /// use std::collections::TryReserveError;
-    ///
-    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
-    ///     let mut output = Vec::new();
-    ///
-    ///     // Pre-reserve the memory, exiting if we can't
-    ///     output.try_reserve(data.len())?;
-    ///
-    ///     // Now we know this can't OOM in the middle of our complex work
-    ///     output.extend(data.iter().map(|&val| {
-    ///         val * 2 + 5 // very complicated
-    ///     }));
-    ///
-    ///     Ok(output)
-    /// }
-    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
-    /// ```
-    #[unstable(feature = "try_reserve", reason = "new API", issue = "48043")]
-    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
-        self.buf.try_reserve(self.len, additional)
-    }
-
-    /// Tries to reserves the minimum capacity for exactly `additional` more elements to
-    /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
-    /// capacity will be greater than or equal to `self.len() + additional`.
-    /// Does nothing if the capacity is already sufficient.
-    ///
-    /// Note that the allocator may give the collection more space than it
-    /// requests. Therefore, capacity can not be relied upon to be precisely
-    /// minimal. Prefer `reserve` if future insertions are expected.
-    ///
-    /// # Errors
-    ///
-    /// If the capacity overflows, or the allocator reports a failure, then an error
-    /// is returned.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(try_reserve)]
-    /// use std::collections::TryReserveError;
-    ///
-    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
-    ///     let mut output = Vec::new();
-    ///
-    ///     // Pre-reserve the memory, exiting if we can't
-    ///     output.try_reserve(data.len())?;
-    ///
-    ///     // Now we know this can't OOM in the middle of our complex work
-    ///     output.extend(data.iter().map(|&val| {
-    ///         val * 2 + 5 // very complicated
-    ///     }));
-    ///
-    ///     Ok(output)
-    /// }
-    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
-    /// ```
-    #[unstable(feature = "try_reserve", reason = "new API", issue = "48043")]
-    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
-        self.buf.try_reserve_exact(self.len, additional)
-    }
-
-    /// Shrinks the capacity of the vector as much as possible.
-    ///
-    /// It will drop down as close as possible to the length but the allocator
-    /// may still inform the vector that there is space for a few more elements.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = Vec::with_capacity(10);
-    /// vec.extend([1, 2, 3].iter().cloned());
-    /// assert_eq!(vec.capacity(), 10);
-    /// vec.shrink_to_fit();
-    /// assert!(vec.capacity() >= 3);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn shrink_to_fit(&mut self) {
-        if self.capacity() != self.len {
-            self.buf.shrink_to_fit(self.len);
-        }
-    }
-
-    /// Shrinks the capacity of the vector with a lower bound.
-    ///
-    /// The capacity will remain at least as large as both the length
-    /// and the supplied value.
-    ///
-    /// # Panics
-    ///
-    /// Panics if the current capacity is smaller than the supplied
-    /// minimum capacity.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(shrink_to)]
-    /// let mut vec = Vec::with_capacity(10);
-    /// vec.extend([1, 2, 3].iter().cloned());
-    /// assert_eq!(vec.capacity(), 10);
-    /// vec.shrink_to(4);
-    /// assert!(vec.capacity() >= 4);
-    /// vec.shrink_to(0);
-    /// assert!(vec.capacity() >= 3);
-    /// ```
-    #[unstable(feature = "shrink_to", reason = "new API", issue = "56431")]
-    pub fn shrink_to(&mut self, min_capacity: usize) {
-        self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
-    }
-
-    /// Converts the vector into [`Box<[T]>`][owned slice].
-    ///
-    /// Note that this will drop any excess capacity.
-    ///
-    /// [owned slice]: ../../std/boxed/struct.Box.html
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let v = vec![1, 2, 3];
-    ///
-    /// let slice = v.into_boxed_slice();
-    /// ```
-    ///
-    /// Any excess capacity is removed:
-    ///
-    /// ```
-    /// let mut vec = Vec::with_capacity(10);
-    /// vec.extend([1, 2, 3].iter().cloned());
-    ///
-    /// assert_eq!(vec.capacity(), 10);
-    /// let slice = vec.into_boxed_slice();
-    /// assert_eq!(slice.into_vec().capacity(), 3);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn into_boxed_slice(mut self) -> Box<[T]> {
-        unsafe {
-            self.shrink_to_fit();
-            let me = ManuallyDrop::new(self);
-            let buf = ptr::read(&me.buf);
-            let len = me.len();
-            buf.into_box(len).assume_init()
-        }
-    }
-
-    /// Shortens the vector, keeping the first `len` elements and dropping
-    /// the rest.
-    ///
-    /// If `len` is greater than the vector's current length, this has no
-    /// effect.
-    ///
-    /// The [`drain`] method can emulate `truncate`, but causes the excess
-    /// elements to be returned instead of dropped.
-    ///
-    /// Note that this method has no effect on the allocated capacity
-    /// of the vector.
-    ///
-    /// # Examples
-    ///
-    /// Truncating a five element vector to two elements:
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 3, 4, 5];
-    /// vec.truncate(2);
-    /// assert_eq!(vec, [1, 2]);
-    /// ```
-    ///
-    /// No truncation occurs when `len` is greater than the vector's current
-    /// length:
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 3];
-    /// vec.truncate(8);
-    /// assert_eq!(vec, [1, 2, 3]);
-    /// ```
-    ///
-    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
-    /// method.
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 3];
-    /// vec.truncate(0);
-    /// assert_eq!(vec, []);
-    /// ```
-    ///
-    /// [`clear`]: #method.clear
-    /// [`drain`]: #method.drain
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn truncate(&mut self, len: usize) {
-        // This is safe because:
-        //
-        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
-        //   case avoids creating an invalid slice, and
-        // * the `len` of the vector is shrunk before calling `drop_in_place`,
-        //   such that no value will be dropped twice in case `drop_in_place`
-        //   were to panic once (if it panics twice, the program aborts).
-        unsafe {
-            if len > self.len {
-                return;
-            }
-            let remaining_len = self.len - len;
-            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
-            self.len = len;
-            ptr::drop_in_place(s);
-        }
-    }
-
-    /// Extracts a slice containing the entire vector.
-    ///
-    /// Equivalent to `&s[..]`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::io::{self, Write};
-    /// let buffer = vec![1, 2, 3, 5, 8];
-    /// io::sink().write(buffer.as_slice()).unwrap();
-    /// ```
-    #[inline]
-    #[stable(feature = "vec_as_slice", since = "1.7.0")]
-    pub fn as_slice(&self) -> &[T] {
-        self
-    }
-
-    /// Extracts a mutable slice of the entire vector.
-    ///
-    /// Equivalent to `&mut s[..]`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// use std::io::{self, Read};
-    /// let mut buffer = vec![0; 3];
-    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
-    /// ```
-    #[inline]
-    #[stable(feature = "vec_as_slice", since = "1.7.0")]
-    pub fn as_mut_slice(&mut self) -> &mut [T] {
-        self
-    }
-
-    /// Returns a raw pointer to the vector's buffer.
-    ///
-    /// The caller must ensure that the vector outlives the pointer this
-    /// function returns, or else it will end up pointing to garbage.
-    /// Modifying the vector may cause its buffer to be reallocated,
-    /// which would also make any pointers to it invalid.
-    ///
-    /// The caller must also ensure that the memory the pointer (non-transitively) points to
-    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
-    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let x = vec![1, 2, 4];
-    /// let x_ptr = x.as_ptr();
-    ///
-    /// unsafe {
-    ///     for i in 0..x.len() {
-    ///         assert_eq!(*x_ptr.add(i), 1 << i);
-    ///     }
-    /// }
-    /// ```
-    ///
-    /// [`as_mut_ptr`]: #method.as_mut_ptr
-    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
-    #[inline]
-    pub fn as_ptr(&self) -> *const T {
-        // We shadow the slice method of the same name to avoid going through
-        // `deref`, which creates an intermediate reference.
-        let ptr = self.buf.ptr();
-        unsafe {
-            assume(!ptr.is_null());
-        }
-        ptr
-    }
-
-    /// Returns an unsafe mutable pointer to the vector's buffer.
-    ///
-    /// The caller must ensure that the vector outlives the pointer this
-    /// function returns, or else it will end up pointing to garbage.
-    /// Modifying the vector may cause its buffer to be reallocated,
-    /// which would also make any pointers to it invalid.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// // Allocate vector big enough for 4 elements.
-    /// let size = 4;
-    /// let mut x: Vec<i32> = Vec::with_capacity(size);
-    /// let x_ptr = x.as_mut_ptr();
-    ///
-    /// // Initialize elements via raw pointer writes, then set length.
-    /// unsafe {
-    ///     for i in 0..size {
-    ///         *x_ptr.add(i) = i as i32;
-    ///     }
-    ///     x.set_len(size);
-    /// }
-    /// assert_eq!(&*x, &[0,1,2,3]);
-    /// ```
-    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
-    #[inline]
-    pub fn as_mut_ptr(&mut self) -> *mut T {
-        // We shadow the slice method of the same name to avoid going through
-        // `deref_mut`, which creates an intermediate reference.
-        let ptr = self.buf.ptr();
-        unsafe {
-            assume(!ptr.is_null());
-        }
-        ptr
-    }
-
-    /// Forces the length of the vector to `new_len`.
-    ///
-    /// This is a low-level operation that maintains none of the normal
-    /// invariants of the type. Normally changing the length of a vector
-    /// is done using one of the safe operations instead, such as
-    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
-    ///
-    /// [`truncate`]: #method.truncate
-    /// [`resize`]: #method.resize
-    /// [`extend`]: ../../std/iter/trait.Extend.html#tymethod.extend
-    /// [`clear`]: #method.clear
-    ///
-    /// # Safety
-    ///
-    /// - `new_len` must be less than or equal to [`capacity()`].
-    /// - The elements at `old_len..new_len` must be initialized.
-    ///
-    /// [`capacity()`]: #method.capacity
-    ///
-    /// # Examples
-    ///
-    /// This method can be useful for situations in which the vector
-    /// is serving as a buffer for other code, particularly over FFI:
-    ///
-    /// ```no_run
-    /// # #![allow(dead_code)]
-    /// # // This is just a minimal skeleton for the doc example;
-    /// # // don't use this as a starting point for a real library.
-    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
-    /// # const Z_OK: i32 = 0;
-    /// # extern "C" {
-    /// #     fn deflateGetDictionary(
-    /// #         strm: *mut std::ffi::c_void,
-    /// #         dictionary: *mut u8,
-    /// #         dictLength: *mut usize,
-    /// #     ) -> i32;
-    /// # }
-    /// # impl StreamWrapper {
-    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
-    ///     // Per the FFI method's docs, "32768 bytes is always enough".
-    ///     let mut dict = Vec::with_capacity(32_768);
-    ///     let mut dict_length = 0;
-    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
-    ///     // 1. `dict_length` elements were initialized.
-    ///     // 2. `dict_length` <= the capacity (32_768)
-    ///     // which makes `set_len` safe to call.
-    ///     unsafe {
-    ///         // Make the FFI call...
-    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
-    ///         if r == Z_OK {
-    ///             // ...and update the length to what was initialized.
-    ///             dict.set_len(dict_length);
-    ///             Some(dict)
-    ///         } else {
-    ///             None
-    ///         }
-    ///     }
-    /// }
-    /// # }
-    /// ```
-    ///
-    /// While the following example is sound, there is a memory leak since
-    /// the inner vectors were not freed prior to the `set_len` call:
-    ///
-    /// ```
-    /// let mut vec = vec![vec![1, 0, 0],
-    ///                    vec![0, 1, 0],
-    ///                    vec![0, 0, 1]];
-    /// // SAFETY:
-    /// // 1. `old_len..0` is empty so no elements need to be initialized.
-    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
-    /// unsafe {
-    ///     vec.set_len(0);
-    /// }
-    /// ```
-    ///
-    /// Normally, here, one would use [`clear`] instead to correctly drop
-    /// the contents and thus not leak memory.
-    #[inline]
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub unsafe fn set_len(&mut self, new_len: usize) {
-        debug_assert!(new_len <= self.capacity());
-
-        self.len = new_len;
-    }
-
-    /// Removes an element from the vector and returns it.
-    ///
-    /// The removed element is replaced by the last element of the vector.
-    ///
-    /// This does not preserve ordering, but is O(1).
-    ///
-    /// # Panics
-    ///
-    /// Panics if `index` is out of bounds.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut v = vec!["foo", "bar", "baz", "qux"];
-    ///
-    /// assert_eq!(v.swap_remove(1), "bar");
-    /// assert_eq!(v, ["foo", "qux", "baz"]);
-    ///
-    /// assert_eq!(v.swap_remove(0), "foo");
-    /// assert_eq!(v, ["baz", "qux"]);
-    /// ```
-    #[inline]
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn swap_remove(&mut self, index: usize) -> T {
-        #[cold]
-        #[inline(never)]
-        fn assert_failed(index: usize, len: usize) -> ! {
-            panic!("swap_remove index (is {}) should be < len (is {})", index, len);
-        }
-
-        let len = self.len();
-        if index >= len {
-            assert_failed(index, len);
-        }
-        unsafe {
-            // We replace self[index] with the last element. Note that if the
-            // bounds check above succeeds there must be a last element (which
-            // can be self[index] itself).
-            let last = ptr::read(self.as_ptr().add(len - 1));
-            let hole = self.as_mut_ptr().add(index);
-            self.set_len(len - 1);
-            ptr::replace(hole, last)
-        }
-    }
-
-    /// Inserts an element at position `index` within the vector, shifting all
-    /// elements after it to the right.
-    ///
-    /// # Panics
-    ///
-    /// Panics if `index > len`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 3];
-    /// vec.insert(1, 4);
-    /// assert_eq!(vec, [1, 4, 2, 3]);
-    /// vec.insert(4, 5);
-    /// assert_eq!(vec, [1, 4, 2, 3, 5]);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn insert(&mut self, index: usize, element: T) {
-        #[cold]
-        #[inline(never)]
-        fn assert_failed(index: usize, len: usize) -> ! {
-            panic!("insertion index (is {}) should be <= len (is {})", index, len);
-        }
-
-        let len = self.len();
-        if index > len {
-            assert_failed(index, len);
-        }
-
-        // space for the new element
-        if len == self.buf.capacity() {
-            self.reserve(1);
-        }
-
-        unsafe {
-            // infallible
-            // The spot to put the new value
-            {
-                let p = self.as_mut_ptr().add(index);
-                // Shift everything over to make space. (Duplicating the
-                // `index`th element into two consecutive places.)
-                ptr::copy(p, p.offset(1), len - index);
-                // Write it in, overwriting the first copy of the `index`th
-                // element.
-                ptr::write(p, element);
-            }
-            self.set_len(len + 1);
-        }
-    }
-
-    /// Removes and returns the element at position `index` within the vector,
-    /// shifting all elements after it to the left.
-    ///
-    /// # Panics
-    ///
-    /// Panics if `index` is out of bounds.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut v = vec![1, 2, 3];
-    /// assert_eq!(v.remove(1), 2);
-    /// assert_eq!(v, [1, 3]);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn remove(&mut self, index: usize) -> T {
-        #[cold]
-        #[inline(never)]
-        fn assert_failed(index: usize, len: usize) -> ! {
-            panic!("removal index (is {}) should be < len (is {})", index, len);
-        }
-
-        let len = self.len();
-        if index >= len {
-            assert_failed(index, len);
-        }
-        unsafe {
-            // infallible
-            let ret;
-            {
-                // the place we are taking from.
-                let ptr = self.as_mut_ptr().add(index);
-                // copy it out, unsafely having a copy of the value on
-                // the stack and in the vector at the same time.
-                ret = ptr::read(ptr);
-
-                // Shift everything down to fill in that spot.
-                ptr::copy(ptr.offset(1), ptr, len - index - 1);
-            }
-            self.set_len(len - 1);
-            ret
-        }
-    }
-
-    /// Retains only the elements specified by the predicate.
-    ///
-    /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
-    /// This method operates in place, visiting each element exactly once in the
-    /// original order, and preserves the order of the retained elements.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 3, 4];
-    /// vec.retain(|&x| x % 2 == 0);
-    /// assert_eq!(vec, [2, 4]);
-    /// ```
-    ///
-    /// The exact order may be useful for tracking external state, like an index.
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 3, 4, 5];
-    /// let keep = [false, true, true, false, true];
-    /// let mut i = 0;
-    /// vec.retain(|_| (keep[i], i += 1).0);
-    /// assert_eq!(vec, [2, 3, 5]);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn retain<F>(&mut self, mut f: F)
-    where
-        F: FnMut(&T) -> bool,
-    {
-        let len = self.len();
-        let mut del = 0;
-        {
-            let v = &mut **self;
-
-            for i in 0..len {
-                if !f(&v[i]) {
-                    del += 1;
-                } else if del > 0 {
-                    v.swap(i - del, i);
-                }
-            }
-        }
-        if del > 0 {
-            self.truncate(len - del);
-        }
-    }
-
-    /// Removes all but the first of consecutive elements in the vector that resolve to the same
-    /// key.
-    ///
-    /// If the vector is sorted, this removes all duplicates.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![10, 20, 21, 30, 20];
-    ///
-    /// vec.dedup_by_key(|i| *i / 10);
-    ///
-    /// assert_eq!(vec, [10, 20, 30, 20]);
-    /// ```
-    #[stable(feature = "dedup_by", since = "1.16.0")]
-    #[inline]
-    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
-    where
-        F: FnMut(&mut T) -> K,
-        K: PartialEq,
-    {
-        self.dedup_by(|a, b| key(a) == key(b))
-    }
-
-    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
-    /// relation.
-    ///
-    /// The `same_bucket` function is passed references to two elements from the vector and
-    /// must determine if the elements compare equal. The elements are passed in opposite order
-    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
-    ///
-    /// If the vector is sorted, this removes all duplicates.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
-    ///
-    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
-    ///
-    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
-    /// ```
-    #[stable(feature = "dedup_by", since = "1.16.0")]
-    pub fn dedup_by<F>(&mut self, same_bucket: F)
-    where
-        F: FnMut(&mut T, &mut T) -> bool,
-    {
-        let len = {
-            let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket);
-            dedup.len()
-        };
-        self.truncate(len);
-    }
-
-    /// Appends an element to the back of a collection.
-    ///
-    /// # Panics
-    ///
-    /// Panics if the new capacity exceeds `isize::MAX` bytes.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2];
-    /// vec.push(3);
-    /// assert_eq!(vec, [1, 2, 3]);
-    /// ```
-    #[inline]
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn push(&mut self, value: T) {
-        // This will panic or abort if we would allocate > isize::MAX bytes
-        // or if the length increment would overflow for zero-sized types.
-        if self.len == self.buf.capacity() {
-            self.reserve(1);
-        }
-        unsafe {
-            let end = self.as_mut_ptr().add(self.len);
-            ptr::write(end, value);
-            self.len += 1;
-        }
-    }
-
-    /// Removes the last element from a vector and returns it, or [`None`] if it
-    /// is empty.
-    ///
-    /// [`None`]: ../../std/option/enum.Option.html#variant.None
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 3];
-    /// assert_eq!(vec.pop(), Some(3));
-    /// assert_eq!(vec, [1, 2]);
-    /// ```
-    #[inline]
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn pop(&mut self) -> Option<T> {
-        if self.len == 0 {
-            None
-        } else {
-            unsafe {
-                self.len -= 1;
-                Some(ptr::read(self.as_ptr().add(self.len())))
-            }
-        }
-    }
-
-    /// Moves all the elements of `other` into `Self`, leaving `other` empty.
-    ///
-    /// # Panics
-    ///
-    /// Panics if the number of elements in the vector overflows a `usize`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 3];
-    /// let mut vec2 = vec![4, 5, 6];
-    /// vec.append(&mut vec2);
-    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
-    /// assert_eq!(vec2, []);
-    /// ```
-    #[inline]
-    #[stable(feature = "append", since = "1.4.0")]
-    pub fn append(&mut self, other: &mut Self) {
-        unsafe {
-            self.append_elements(other.as_slice() as _);
-            other.set_len(0);
-        }
-    }
-
-    /// Appends elements to `Self` from other buffer.
-    #[inline]
-    unsafe fn append_elements(&mut self, other: *const [T]) {
-        let count = unsafe { (*other).len() };
-        self.reserve(count);
-        let len = self.len();
-        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
-        self.len += count;
-    }
-
-    /// Creates a draining iterator that removes the specified range in the vector
-    /// and yields the removed items.
-    ///
-    /// When the iterator **is** dropped, all elements in the range are removed
-    /// from the vector, even if the iterator was not fully consumed. If the
-    /// iterator **is not** dropped (with [`mem::forget`] for example), it is
-    /// unspecified how many elements are removed.
-    ///
-    /// # Panics
-    ///
-    /// Panics if the starting point is greater than the end point or if
-    /// the end point is greater than the length of the vector.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut v = vec![1, 2, 3];
-    /// let u: Vec<_> = v.drain(1..).collect();
-    /// assert_eq!(v, &[1]);
-    /// assert_eq!(u, &[2, 3]);
-    ///
-    /// // A full range clears the vector
-    /// v.drain(..);
-    /// assert_eq!(v, &[]);
-    /// ```
-    #[stable(feature = "drain", since = "1.6.0")]
-    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
-    where
-        R: RangeBounds<usize>,
-    {
-        // Memory safety
-        //
-        // When the Drain is first created, it shortens the length of
-        // the source vector to make sure no uninitialized or moved-from elements
-        // are accessible at all if the Drain's destructor never gets to run.
-        //
-        // Drain will ptr::read out the values to remove.
-        // When finished, remaining tail of the vec is copied back to cover
-        // the hole, and the vector length is restored to the new length.
-        //
-        let len = self.len();
-        let start = match range.start_bound() {
-            Included(&n) => n,
-            Excluded(&n) => n + 1,
-            Unbounded => 0,
-        };
-        let end = match range.end_bound() {
-            Included(&n) => n + 1,
-            Excluded(&n) => n,
-            Unbounded => len,
-        };
-
-        #[cold]
-        #[inline(never)]
-        fn start_assert_failed(start: usize, end: usize) -> ! {
-            panic!("start drain index (is {}) should be <= end drain index (is {})", start, end);
-        }
-
-        #[cold]
-        #[inline(never)]
-        fn end_assert_failed(end: usize, len: usize) -> ! {
-            panic!("end drain index (is {}) should be <= len (is {})", end, len);
-        }
-
-        if start > end {
-            start_assert_failed(start, end);
-        }
-        if end > len {
-            end_assert_failed(end, len);
-        }
-
-        unsafe {
-            // set self.vec length's to start, to be safe in case Drain is leaked
-            self.set_len(start);
-            // Use the borrow in the IterMut to indicate borrowing behavior of the
-            // whole Drain iterator (like &mut T).
-            let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
-            Drain {
-                tail_start: end,
-                tail_len: len - end,
-                iter: range_slice.iter(),
-                vec: NonNull::from(self),
-            }
-        }
-    }
-
-    /// Clears the vector, removing all values.
-    ///
-    /// Note that this method has no effect on the allocated capacity
-    /// of the vector.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut v = vec![1, 2, 3];
-    ///
-    /// v.clear();
-    ///
-    /// assert!(v.is_empty());
-    /// ```
-    #[inline]
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn clear(&mut self) {
-        self.truncate(0)
-    }
-
-    /// Returns the number of elements in the vector, also referred to
-    /// as its 'length'.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let a = vec![1, 2, 3];
-    /// assert_eq!(a.len(), 3);
-    /// ```
-    #[inline]
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn len(&self) -> usize {
-        self.len
-    }
-
-    /// Returns `true` if the vector contains no elements.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut v = Vec::new();
-    /// assert!(v.is_empty());
-    ///
-    /// v.push(1);
-    /// assert!(!v.is_empty());
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn is_empty(&self) -> bool {
-        self.len() == 0
-    }
-
-    /// Splits the collection into two at the given index.
-    ///
-    /// Returns a newly allocated vector containing the elements in the range
-    /// `[at, len)`. After the call, the original vector will be left containing
-    /// the elements `[0, at)` with its previous capacity unchanged.
-    ///
-    /// # Panics
-    ///
-    /// Panics if `at > len`.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1,2,3];
-    /// let vec2 = vec.split_off(1);
-    /// assert_eq!(vec, [1]);
-    /// assert_eq!(vec2, [2, 3]);
-    /// ```
-    #[inline]
-    #[must_use = "use `.truncate()` if you don't need the other half"]
-    #[stable(feature = "split_off", since = "1.4.0")]
-    pub fn split_off(&mut self, at: usize) -> Self {
-        #[cold]
-        #[inline(never)]
-        fn assert_failed(at: usize, len: usize) -> ! {
-            panic!("`at` split index (is {}) should be <= len (is {})", at, len);
-        }
-
-        if at > self.len() {
-            assert_failed(at, self.len());
-        }
-
-        let other_len = self.len - at;
-        let mut other = Vec::with_capacity(other_len);
-
-        // Unsafely `set_len` and copy items to `other`.
-        unsafe {
-            self.set_len(at);
-            other.set_len(other_len);
-
-            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
-        }
-        other
-    }
-
-    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
-    ///
-    /// If `new_len` is greater than `len`, the `Vec` is extended by the
-    /// difference, with each additional slot filled with the result of
-    /// calling the closure `f`. The return values from `f` will end up
-    /// in the `Vec` in the order they have been generated.
-    ///
-    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
-    ///
-    /// This method uses a closure to create new values on every push. If
-    /// you'd rather [`Clone`] a given value, use [`resize`]. If you want
-    /// to use the [`Default`] trait to generate values, you can pass
-    /// [`Default::default()`] as the second argument.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 3];
-    /// vec.resize_with(5, Default::default);
-    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
-    ///
-    /// let mut vec = vec![];
-    /// let mut p = 1;
-    /// vec.resize_with(4, || { p *= 2; p });
-    /// assert_eq!(vec, [2, 4, 8, 16]);
-    /// ```
-    ///
-    /// [`resize`]: #method.resize
-    /// [`Clone`]: ../../std/clone/trait.Clone.html
-    #[stable(feature = "vec_resize_with", since = "1.33.0")]
-    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
-    where
-        F: FnMut() -> T,
-    {
-        let len = self.len();
-        if new_len > len {
-            self.extend_with(new_len - len, ExtendFunc(f));
-        } else {
-            self.truncate(new_len);
-        }
-    }
-
-    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
-    /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
-    /// `'a`. If the type has only static references, or none at all, then this
-    /// may be chosen to be `'static`.
-    ///
-    /// This function is similar to the `leak` function on `Box`.
-    ///
-    /// This function is mainly useful for data that lives for the remainder of
-    /// the program's life. Dropping the returned reference will cause a memory
-    /// leak.
-    ///
-    /// # Examples
-    ///
-    /// Simple usage:
-    ///
-    /// ```
-    /// #![feature(vec_leak)]
-    ///
-    /// let x = vec![1, 2, 3];
-    /// let static_ref: &'static mut [usize] = Vec::leak(x);
-    /// static_ref[0] += 1;
-    /// assert_eq!(static_ref, &[2, 2, 3]);
-    /// ```
-    #[unstable(feature = "vec_leak", issue = "62195")]
-    #[inline]
-    pub fn leak<'a>(vec: Vec<T>) -> &'a mut [T]
-    where
-        T: 'a, // Technically not needed, but kept to be explicit.
-    {
-        Box::leak(vec.into_boxed_slice())
-    }
-}
-
-impl<T: Clone> Vec<T> {
-    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
-    ///
-    /// If `new_len` is greater than `len`, the `Vec` is extended by the
-    /// difference, with each additional slot filled with `value`.
-    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
-    ///
-    /// This method requires `T` to implement [`Clone`],
-    /// in order to be able to clone the passed value.
-    /// If you need more flexibility (or want to rely on [`Default`] instead of
-    /// [`Clone`]), use [`resize_with`].
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec!["hello"];
-    /// vec.resize(3, "world");
-    /// assert_eq!(vec, ["hello", "world", "world"]);
-    ///
-    /// let mut vec = vec![1, 2, 3, 4];
-    /// vec.resize(2, 0);
-    /// assert_eq!(vec, [1, 2]);
-    /// ```
-    ///
-    /// [`Clone`]: ../../std/clone/trait.Clone.html
-    /// [`Default`]: ../../std/default/trait.Default.html
-    /// [`resize_with`]: #method.resize_with
-    #[stable(feature = "vec_resize", since = "1.5.0")]
-    pub fn resize(&mut self, new_len: usize, value: T) {
-        let len = self.len();
-
-        if new_len > len {
-            self.extend_with(new_len - len, ExtendElement(value))
-        } else {
-            self.truncate(new_len);
-        }
-    }
-
-    /// Clones and appends all elements in a slice to the `Vec`.
-    ///
-    /// Iterates over the slice `other`, clones each element, and then appends
-    /// it to this `Vec`. The `other` vector is traversed in-order.
-    ///
-    /// Note that this function is same as [`extend`] except that it is
-    /// specialized to work with slices instead. If and when Rust gets
-    /// specialization this function will likely be deprecated (but still
-    /// available).
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1];
-    /// vec.extend_from_slice(&[2, 3, 4]);
-    /// assert_eq!(vec, [1, 2, 3, 4]);
-    /// ```
-    ///
-    /// [`extend`]: #method.extend
-    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
-    pub fn extend_from_slice(&mut self, other: &[T]) {
-        self.spec_extend(other.iter())
-    }
-}
-
-impl<T: Default> Vec<T> {
-    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
-    ///
-    /// If `new_len` is greater than `len`, the `Vec` is extended by the
-    /// difference, with each additional slot filled with [`Default::default()`].
-    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
-    ///
-    /// This method uses [`Default`] to create new values on every push. If
-    /// you'd rather [`Clone`] a given value, use [`resize`].
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// # #![allow(deprecated)]
-    /// #![feature(vec_resize_default)]
-    ///
-    /// let mut vec = vec![1, 2, 3];
-    /// vec.resize_default(5);
-    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
-    ///
-    /// let mut vec = vec![1, 2, 3, 4];
-    /// vec.resize_default(2);
-    /// assert_eq!(vec, [1, 2]);
-    /// ```
-    ///
-    /// [`resize`]: #method.resize
-    /// [`Default::default()`]: ../../std/default/trait.Default.html#tymethod.default
-    /// [`Default`]: ../../std/default/trait.Default.html
-    /// [`Clone`]: ../../std/clone/trait.Clone.html
-    #[unstable(feature = "vec_resize_default", issue = "41758")]
-    #[rustc_deprecated(
-        reason = "This is moving towards being removed in favor \
-                  of `.resize_with(Default::default)`.  If you disagree, please comment \
-                  in the tracking issue.",
-        since = "1.33.0"
-    )]
-    pub fn resize_default(&mut self, new_len: usize) {
-        let len = self.len();
-
-        if new_len > len {
-            self.extend_with(new_len - len, ExtendDefault);
-        } else {
-            self.truncate(new_len);
-        }
-    }
-}
-
-// This code generalizes `extend_with_{element,default}`.
-trait ExtendWith<T> {
-    fn next(&mut self) -> T;
-    fn last(self) -> T;
-}
-
-struct ExtendElement<T>(T);
-impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
-    fn next(&mut self) -> T {
-        self.0.clone()
-    }
-    fn last(self) -> T {
-        self.0
-    }
-}
-
-struct ExtendDefault;
-impl<T: Default> ExtendWith<T> for ExtendDefault {
-    fn next(&mut self) -> T {
-        Default::default()
-    }
-    fn last(self) -> T {
-        Default::default()
-    }
-}
-
-struct ExtendFunc<F>(F);
-impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
-    fn next(&mut self) -> T {
-        (self.0)()
-    }
-    fn last(mut self) -> T {
-        (self.0)()
-    }
-}
-
-impl<T> Vec<T> {
-    /// Extend the vector by `n` values, using the given generator.
-    fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
-        self.reserve(n);
-
-        unsafe {
-            let mut ptr = self.as_mut_ptr().add(self.len());
-            // Use SetLenOnDrop to work around bug where compiler
-            // may not realize the store through `ptr` through self.set_len()
-            // don't alias.
-            let mut local_len = SetLenOnDrop::new(&mut self.len);
-
-            // Write all elements except the last one
-            for _ in 1..n {
-                ptr::write(ptr, value.next());
-                ptr = ptr.offset(1);
-                // Increment the length in every step in case next() panics
-                local_len.increment_len(1);
-            }
-
-            if n > 0 {
-                // We can write the last element directly without cloning needlessly
-                ptr::write(ptr, value.last());
-                local_len.increment_len(1);
-            }
-
-            // len set by scope guard
-        }
-    }
-}
-
-// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
-//
-// The idea is: The length field in SetLenOnDrop is a local variable
-// that the optimizer will see does not alias with any stores through the Vec's data
-// pointer. This is a workaround for alias analysis issue #32155
-struct SetLenOnDrop<'a> {
-    len: &'a mut usize,
-    local_len: usize,
-}
-
-impl<'a> SetLenOnDrop<'a> {
-    #[inline]
-    fn new(len: &'a mut usize) -> Self {
-        SetLenOnDrop { local_len: *len, len }
-    }
-
-    #[inline]
-    fn increment_len(&mut self, increment: usize) {
-        self.local_len += increment;
-    }
-}
-
-impl Drop for SetLenOnDrop<'_> {
-    #[inline]
-    fn drop(&mut self) {
-        *self.len = self.local_len;
-    }
-}
-
-impl<T: PartialEq> Vec<T> {
-    /// Removes consecutive repeated elements in the vector according to the
-    /// [`PartialEq`] trait implementation.
-    ///
-    /// If the vector is sorted, this removes all duplicates.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec![1, 2, 2, 3, 2];
-    ///
-    /// vec.dedup();
-    ///
-    /// assert_eq!(vec, [1, 2, 3, 2]);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    #[inline]
-    pub fn dedup(&mut self) {
-        self.dedup_by(|a, b| a == b)
-    }
-}
-
-impl<T> Vec<T> {
-    /// Removes the first instance of `item` from the vector if the item exists.
-    ///
-    /// This method will be removed soon.
-    #[unstable(feature = "vec_remove_item", reason = "recently added", issue = "40062")]
-    #[rustc_deprecated(
-        reason = "Removing the first item equal to a needle is already easily possible \
-            with iterators and the current Vec methods. Furthermore, having a method for \
-            one particular case of removal (linear search, only the first item, no swap remove) \
-            but not for others is inconsistent. This method will be removed soon.",
-        since = "1.46.0"
-    )]
-    pub fn remove_item<V>(&mut self, item: &V) -> Option<T>
-    where
-        T: PartialEq<V>,
-    {
-        let pos = self.iter().position(|x| *x == *item)?;
-        Some(self.remove(pos))
-    }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// Internal methods and functions
-////////////////////////////////////////////////////////////////////////////////
-
-#[doc(hidden)]
-#[stable(feature = "rust1", since = "1.0.0")]
-pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
-    <T as SpecFromElem>::from_elem(elem, n)
-}
-
-// Specialization trait used for Vec::from_elem
-trait SpecFromElem: Sized {
-    fn from_elem(elem: Self, n: usize) -> Vec<Self>;
-}
-
-impl<T: Clone> SpecFromElem for T {
-    default fn from_elem(elem: Self, n: usize) -> Vec<Self> {
-        let mut v = Vec::with_capacity(n);
-        v.extend_with(n, ExtendElement(elem));
-        v
-    }
-}
-
-impl SpecFromElem for i8 {
-    #[inline]
-    fn from_elem(elem: i8, n: usize) -> Vec<i8> {
-        if elem == 0 {
-            return Vec { buf: RawVec::with_capacity_zeroed(n), len: n };
-        }
-        unsafe {
-            let mut v = Vec::with_capacity(n);
-            ptr::write_bytes(v.as_mut_ptr(), elem as u8, n);
-            v.set_len(n);
-            v
-        }
-    }
-}
-
-impl SpecFromElem for u8 {
-    #[inline]
-    fn from_elem(elem: u8, n: usize) -> Vec<u8> {
-        if elem == 0 {
-            return Vec { buf: RawVec::with_capacity_zeroed(n), len: n };
-        }
-        unsafe {
-            let mut v = Vec::with_capacity(n);
-            ptr::write_bytes(v.as_mut_ptr(), elem, n);
-            v.set_len(n);
-            v
-        }
-    }
-}
-
-impl<T: Clone + IsZero> SpecFromElem for T {
-    #[inline]
-    fn from_elem(elem: T, n: usize) -> Vec<T> {
-        if elem.is_zero() {
-            return Vec { buf: RawVec::with_capacity_zeroed(n), len: n };
-        }
-        let mut v = Vec::with_capacity(n);
-        v.extend_with(n, ExtendElement(elem));
-        v
-    }
-}
-
-#[rustc_specialization_trait]
-unsafe trait IsZero {
-    /// Whether this value is zero
-    fn is_zero(&self) -> bool;
-}
-
-macro_rules! impl_is_zero {
-    ($t:ty, $is_zero:expr) => {
-        unsafe impl IsZero for $t {
-            #[inline]
-            fn is_zero(&self) -> bool {
-                $is_zero(*self)
-            }
-        }
-    };
-}
-
-impl_is_zero!(i16, |x| x == 0);
-impl_is_zero!(i32, |x| x == 0);
-impl_is_zero!(i64, |x| x == 0);
-impl_is_zero!(i128, |x| x == 0);
-impl_is_zero!(isize, |x| x == 0);
-
-impl_is_zero!(u16, |x| x == 0);
-impl_is_zero!(u32, |x| x == 0);
-impl_is_zero!(u64, |x| x == 0);
-impl_is_zero!(u128, |x| x == 0);
-impl_is_zero!(usize, |x| x == 0);
-
-impl_is_zero!(bool, |x| x == false);
-impl_is_zero!(char, |x| x == '\0');
-
-impl_is_zero!(f32, |x: f32| x.to_bits() == 0);
-impl_is_zero!(f64, |x: f64| x.to_bits() == 0);
-
-unsafe impl<T> IsZero for *const T {
-    #[inline]
-    fn is_zero(&self) -> bool {
-        (*self).is_null()
-    }
-}
-
-unsafe impl<T> IsZero for *mut T {
-    #[inline]
-    fn is_zero(&self) -> bool {
-        (*self).is_null()
-    }
-}
-
-// `Option<&T>` and `Option<Box<T>>` are guaranteed to represent `None` as null.
-// For fat pointers, the bytes that would be the pointer metadata in the `Some`
-// variant are padding in the `None` variant, so ignoring them and
-// zero-initializing instead is ok.
-// `Option<&mut T>` never implements `Clone`, so there's no need for an impl of
-// `SpecFromElem`.
-
-unsafe impl<T: ?Sized> IsZero for Option<&T> {
-    #[inline]
-    fn is_zero(&self) -> bool {
-        self.is_none()
-    }
-}
-
-unsafe impl<T: ?Sized> IsZero for Option<Box<T>> {
-    #[inline]
-    fn is_zero(&self) -> bool {
-        self.is_none()
-    }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// Common trait implementations for Vec
-////////////////////////////////////////////////////////////////////////////////
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> ops::Deref for Vec<T> {
-    type Target = [T];
-
-    fn deref(&self) -> &[T] {
-        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> ops::DerefMut for Vec<T> {
-    fn deref_mut(&mut self) -> &mut [T] {
-        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Clone> Clone for Vec<T> {
-    #[cfg(not(test))]
-    fn clone(&self) -> Vec<T> {
-        <[T]>::to_vec(&**self)
-    }
-
-    // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
-    // required for this method definition, is not available. Instead use the
-    // `slice::to_vec`  function which is only available with cfg(test)
-    // NB see the slice::hack module in slice.rs for more information
-    #[cfg(test)]
-    fn clone(&self) -> Vec<T> {
-        crate::slice::to_vec(&**self)
-    }
-
-    fn clone_from(&mut self, other: &Vec<T>) {
-        other.as_slice().clone_into(self);
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Hash> Hash for Vec<T> {
-    #[inline]
-    fn hash<H: Hasher>(&self, state: &mut H) {
-        Hash::hash(&**self, state)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-#[rustc_on_unimplemented(
-    message = "vector indices are of type `usize` or ranges of `usize`",
-    label = "vector indices are of type `usize` or ranges of `usize`"
-)]
-impl<T, I: SliceIndex<[T]>> Index<I> for Vec<T> {
-    type Output = I::Output;
-
-    #[inline]
-    fn index(&self, index: I) -> &Self::Output {
-        Index::index(&**self, index)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-#[rustc_on_unimplemented(
-    message = "vector indices are of type `usize` or ranges of `usize`",
-    label = "vector indices are of type `usize` or ranges of `usize`"
-)]
-impl<T, I: SliceIndex<[T]>> IndexMut<I> for Vec<T> {
-    #[inline]
-    fn index_mut(&mut self, index: I) -> &mut Self::Output {
-        IndexMut::index_mut(&mut **self, index)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> FromIterator<T> for Vec<T> {
-    #[inline]
-    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
-        <Self as SpecExtend<T, I::IntoIter>>::from_iter(iter.into_iter())
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> IntoIterator for Vec<T> {
-    type Item = T;
-    type IntoIter = IntoIter<T>;
-
-    /// Creates a consuming iterator, that is, one that moves each value out of
-    /// the vector (from start to end). The vector cannot be used after calling
-    /// this.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let v = vec!["a".to_string(), "b".to_string()];
-    /// for s in v.into_iter() {
-    ///     // s has type String, not &String
-    ///     println!("{}", s);
-    /// }
-    /// ```
-    #[inline]
-    fn into_iter(self) -> IntoIter<T> {
-        unsafe {
-            let mut me = ManuallyDrop::new(self);
-            let begin = me.as_mut_ptr();
-            let end = if mem::size_of::<T>() == 0 {
-                arith_offset(begin as *const i8, me.len() as isize) as *const T
-            } else {
-                begin.add(me.len()) as *const T
-            };
-            let cap = me.buf.capacity();
-            IntoIter {
-                buf: NonNull::new_unchecked(begin),
-                phantom: PhantomData,
-                cap,
-                ptr: begin,
-                end,
-            }
-        }
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<'a, T> IntoIterator for &'a Vec<T> {
-    type Item = &'a T;
-    type IntoIter = slice::Iter<'a, T>;
-
-    fn into_iter(self) -> slice::Iter<'a, T> {
-        self.iter()
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<'a, T> IntoIterator for &'a mut Vec<T> {
-    type Item = &'a mut T;
-    type IntoIter = slice::IterMut<'a, T>;
-
-    fn into_iter(self) -> slice::IterMut<'a, T> {
-        self.iter_mut()
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> Extend<T> for Vec<T> {
-    #[inline]
-    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
-        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
-    }
-
-    #[inline]
-    fn extend_one(&mut self, item: T) {
-        self.push(item);
-    }
-
-    #[inline]
-    fn extend_reserve(&mut self, additional: usize) {
-        self.reserve(additional);
-    }
-}
-
-// Specialization trait used for Vec::from_iter and Vec::extend
-trait SpecExtend<T, I> {
-    fn from_iter(iter: I) -> Self;
-    fn spec_extend(&mut self, iter: I);
-}
-
-impl<T, I> SpecExtend<T, I> for Vec<T>
-where
-    I: Iterator<Item = T>,
-{
-    default fn from_iter(mut iterator: I) -> Self {
-        // Unroll the first iteration, as the vector is going to be
-        // expanded on this iteration in every case when the iterable is not
-        // empty, but the loop in extend_desugared() is not going to see the
-        // vector being full in the few subsequent loop iterations.
-        // So we get better branch prediction.
-        let mut vector = match iterator.next() {
-            None => return Vec::new(),
-            Some(element) => {
-                let (lower, _) = iterator.size_hint();
-                let mut vector = Vec::with_capacity(lower.saturating_add(1));
-                unsafe {
-                    ptr::write(vector.as_mut_ptr(), element);
-                    vector.set_len(1);
-                }
-                vector
-            }
-        };
-        <Vec<T> as SpecExtend<T, I>>::spec_extend(&mut vector, iterator);
-        vector
-    }
-
-    default fn spec_extend(&mut self, iter: I) {
-        self.extend_desugared(iter)
-    }
-}
-
-impl<T, I> SpecExtend<T, I> for Vec<T>
-where
-    I: TrustedLen<Item = T>,
-{
-    default fn from_iter(iterator: I) -> Self {
-        let mut vector = Vec::new();
-        vector.spec_extend(iterator);
-        vector
-    }
-
-    default fn spec_extend(&mut self, iterator: I) {
-        // This is the case for a TrustedLen iterator.
-        let (low, high) = iterator.size_hint();
-        if let Some(high_value) = high {
-            debug_assert_eq!(
-                low,
-                high_value,
-                "TrustedLen iterator's size hint is not exact: {:?}",
-                (low, high)
-            );
-        }
-        if let Some(additional) = high {
-            self.reserve(additional);
-            unsafe {
-                let mut ptr = self.as_mut_ptr().add(self.len());
-                let mut local_len = SetLenOnDrop::new(&mut self.len);
-                iterator.for_each(move |element| {
-                    ptr::write(ptr, element);
-                    ptr = ptr.offset(1);
-                    // NB can't overflow since we would have had to alloc the address space
-                    local_len.increment_len(1);
-                });
-            }
-        } else {
-            self.extend_desugared(iterator)
-        }
-    }
-}
-
-impl<T> SpecExtend<T, IntoIter<T>> for Vec<T> {
-    fn from_iter(iterator: IntoIter<T>) -> Self {
-        // A common case is passing a vector into a function which immediately
-        // re-collects into a vector. We can short circuit this if the IntoIter
-        // has not been advanced at all.
-        if iterator.buf.as_ptr() as *const _ == iterator.ptr {
-            unsafe {
-                let it = ManuallyDrop::new(iterator);
-                Vec::from_raw_parts(it.buf.as_ptr(), it.len(), it.cap)
-            }
-        } else {
-            let mut vector = Vec::new();
-            vector.spec_extend(iterator);
-            vector
-        }
-    }
-
-    fn spec_extend(&mut self, mut iterator: IntoIter<T>) {
-        unsafe {
-            self.append_elements(iterator.as_slice() as _);
-        }
-        iterator.ptr = iterator.end;
-    }
-}
-
-impl<'a, T: 'a, I> SpecExtend<&'a T, I> for Vec<T>
-where
-    I: Iterator<Item = &'a T>,
-    T: Clone,
-{
-    default fn from_iter(iterator: I) -> Self {
-        SpecExtend::from_iter(iterator.cloned())
-    }
-
-    default fn spec_extend(&mut self, iterator: I) {
-        self.spec_extend(iterator.cloned())
-    }
-}
-
-impl<'a, T: 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T>
-where
-    T: Copy,
-{
-    fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) {
-        let slice = iterator.as_slice();
-        self.reserve(slice.len());
-        unsafe {
-            let len = self.len();
-            let dst_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(len), slice.len());
-            dst_slice.copy_from_slice(slice);
-            self.set_len(len + slice.len());
-        }
-    }
-}
-
-impl<T> Vec<T> {
-    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
-        // This is the case for a general iterator.
-        //
-        // This function should be the moral equivalent of:
-        //
-        //      for item in iterator {
-        //          self.push(item);
-        //      }
-        while let Some(element) = iterator.next() {
-            let len = self.len();
-            if len == self.capacity() {
-                let (lower, _) = iterator.size_hint();
-                self.reserve(lower.saturating_add(1));
-            }
-            unsafe {
-                ptr::write(self.as_mut_ptr().add(len), element);
-                // NB can't overflow since we would have had to alloc the address space
-                self.set_len(len + 1);
-            }
-        }
-    }
-
-    /// Creates a splicing iterator that replaces the specified range in the vector
-    /// with the given `replace_with` iterator and yields the removed items.
-    /// `replace_with` does not need to be the same length as `range`.
-    ///
-    /// The element range is removed even if the iterator is not consumed until the end.
-    ///
-    /// It is unspecified how many elements are removed from the vector
-    /// if the `Splice` value is leaked.
-    ///
-    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
-    ///
-    /// This is optimal if:
-    ///
-    /// * The tail (elements in the vector after `range`) is empty,
-    /// * or `replace_with` yields fewer elements than `range`’s length
-    /// * or the lower bound of its `size_hint()` is exact.
-    ///
-    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
-    ///
-    /// # Panics
-    ///
-    /// Panics if the starting point is greater than the end point or if
-    /// the end point is greater than the length of the vector.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut v = vec![1, 2, 3];
-    /// let new = [7, 8];
-    /// let u: Vec<_> = v.splice(..2, new.iter().cloned()).collect();
-    /// assert_eq!(v, &[7, 8, 3]);
-    /// assert_eq!(u, &[1, 2]);
-    /// ```
-    #[inline]
-    #[stable(feature = "vec_splice", since = "1.21.0")]
-    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter>
-    where
-        R: RangeBounds<usize>,
-        I: IntoIterator<Item = T>,
-    {
-        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
-    }
-
-    /// Creates an iterator which uses a closure to determine if an element should be removed.
-    ///
-    /// If the closure returns true, then the element is removed and yielded.
-    /// If the closure returns false, the element will remain in the vector and will not be yielded
-    /// by the iterator.
-    ///
-    /// Using this method is equivalent to the following code:
-    ///
-    /// ```
-    /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
-    /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
-    /// let mut i = 0;
-    /// while i != vec.len() {
-    ///     if some_predicate(&mut vec[i]) {
-    ///         let val = vec.remove(i);
-    ///         // your code here
-    ///     } else {
-    ///         i += 1;
-    ///     }
-    /// }
-    ///
-    /// # assert_eq!(vec, vec![1, 4, 5]);
-    /// ```
-    ///
-    /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
-    /// because it can backshift the elements of the array in bulk.
-    ///
-    /// Note that `drain_filter` also lets you mutate every element in the filter closure,
-    /// regardless of whether you choose to keep or remove it.
-    ///
-    ///
-    /// # Examples
-    ///
-    /// Splitting an array into evens and odds, reusing the original allocation:
-    ///
-    /// ```
-    /// #![feature(drain_filter)]
-    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
-    ///
-    /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
-    /// let odds = numbers;
-    ///
-    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
-    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
-    /// ```
-    #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
-    pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F>
-    where
-        F: FnMut(&mut T) -> bool,
-    {
-        let old_len = self.len();
-
-        // Guard against us getting leaked (leak amplification)
-        unsafe {
-            self.set_len(0);
-        }
-
-        DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
-    }
-}
-
-/// Extend implementation that copies elements out of references before pushing them onto the Vec.
-///
-/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
-/// append the entire slice at once.
-///
-/// [`copy_from_slice`]: ../../std/primitive.slice.html#method.copy_from_slice
-#[stable(feature = "extend_ref", since = "1.2.0")]
-impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> {
-    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
-        self.spec_extend(iter.into_iter())
-    }
-
-    #[inline]
-    fn extend_one(&mut self, &item: &'a T) {
-        self.push(item);
-    }
-
-    #[inline]
-    fn extend_reserve(&mut self, additional: usize) {
-        self.reserve(additional);
-    }
-}
-
-macro_rules! __impl_slice_eq1 {
-    ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?, #[$stability:meta]) => {
-        #[$stability]
-        impl<A, B, $($vars)*> PartialEq<$rhs> for $lhs
-        where
-            A: PartialEq<B>,
-            $($ty: $bound)?
-        {
-            #[inline]
-            fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
-            #[inline]
-            fn ne(&self, other: &$rhs) -> bool { self[..] != other[..] }
-        }
-    }
-}
-
-__impl_slice_eq1! { [] Vec<A>, Vec<B>, #[stable(feature = "rust1", since = "1.0.0")] }
-__impl_slice_eq1! { [] Vec<A>, &[B], #[stable(feature = "rust1", since = "1.0.0")] }
-__impl_slice_eq1! { [] Vec<A>, &mut [B], #[stable(feature = "rust1", since = "1.0.0")] }
-__impl_slice_eq1! { [] &[A], Vec<B>, #[stable(feature = "partialeq_vec_for_ref_slice", since = "1.46.0")] }
-__impl_slice_eq1! { [] &mut [A], Vec<B>, #[stable(feature = "partialeq_vec_for_ref_slice", since = "1.46.0")] }
-__impl_slice_eq1! { [] Cow<'_, [A]>, Vec<B> where A: Clone, #[stable(feature = "rust1", since = "1.0.0")] }
-__impl_slice_eq1! { [] Cow<'_, [A]>, &[B] where A: Clone, #[stable(feature = "rust1", since = "1.0.0")] }
-__impl_slice_eq1! { [] Cow<'_, [A]>, &mut [B] where A: Clone, #[stable(feature = "rust1", since = "1.0.0")] }
-__impl_slice_eq1! { [const N: usize] Vec<A>, [B; N], #[stable(feature = "rust1", since = "1.0.0")] }
-__impl_slice_eq1! { [const N: usize] Vec<A>, &[B; N], #[stable(feature = "rust1", since = "1.0.0")] }
-
-// NOTE: some less important impls are omitted to reduce code bloat
-// FIXME(Centril): Reconsider this?
-//__impl_slice_eq1! { [const N: usize] Vec<A>, &mut [B; N], }
-//__impl_slice_eq1! { [const N: usize] [A; N], Vec<B>, }
-//__impl_slice_eq1! { [const N: usize] &[A; N], Vec<B>, }
-//__impl_slice_eq1! { [const N: usize] &mut [A; N], Vec<B>, }
-//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, [B; N], }
-//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, &[B; N], }
-//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, &mut [B; N], }
-
-/// Implements comparison of vectors, lexicographically.
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: PartialOrd> PartialOrd for Vec<T> {
-    #[inline]
-    fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> {
-        PartialOrd::partial_cmp(&**self, &**other)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Eq> Eq for Vec<T> {}
-
-/// Implements ordering of vectors, lexicographically.
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Ord> Ord for Vec<T> {
-    #[inline]
-    fn cmp(&self, other: &Vec<T>) -> Ordering {
-        Ord::cmp(&**self, &**other)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-unsafe impl<#[may_dangle] T> Drop for Vec<T> {
-    fn drop(&mut self) {
-        unsafe {
-            // use drop for [T]
-            // use a raw slice to refer to the elements of the vector as weakest necessary type;
-            // could avoid questions of validity in certain cases
-            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
-        }
-        // RawVec handles deallocation
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> Default for Vec<T> {
-    /// Creates an empty `Vec<T>`.
-    fn default() -> Vec<T> {
-        Vec::new()
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: fmt::Debug> fmt::Debug for Vec<T> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        fmt::Debug::fmt(&**self, f)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> AsRef<Vec<T>> for Vec<T> {
-    fn as_ref(&self) -> &Vec<T> {
-        self
-    }
-}
-
-#[stable(feature = "vec_as_mut", since = "1.5.0")]
-impl<T> AsMut<Vec<T>> for Vec<T> {
-    fn as_mut(&mut self) -> &mut Vec<T> {
-        self
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> AsRef<[T]> for Vec<T> {
-    fn as_ref(&self) -> &[T] {
-        self
-    }
-}
-
-#[stable(feature = "vec_as_mut", since = "1.5.0")]
-impl<T> AsMut<[T]> for Vec<T> {
-    fn as_mut(&mut self) -> &mut [T] {
-        self
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Clone> From<&[T]> for Vec<T> {
-    #[cfg(not(test))]
-    fn from(s: &[T]) -> Vec<T> {
-        s.to_vec()
-    }
-    #[cfg(test)]
-    fn from(s: &[T]) -> Vec<T> {
-        crate::slice::to_vec(s)
-    }
-}
-
-#[stable(feature = "vec_from_mut", since = "1.19.0")]
-impl<T: Clone> From<&mut [T]> for Vec<T> {
-    #[cfg(not(test))]
-    fn from(s: &mut [T]) -> Vec<T> {
-        s.to_vec()
-    }
-    #[cfg(test)]
-    fn from(s: &mut [T]) -> Vec<T> {
-        crate::slice::to_vec(s)
-    }
-}
-
-#[stable(feature = "vec_from_array", since = "1.44.0")]
-impl<T, const N: usize> From<[T; N]> for Vec<T> {
-    #[cfg(not(test))]
-    fn from(s: [T; N]) -> Vec<T> {
-        <[T]>::into_vec(box s)
-    }
-    #[cfg(test)]
-    fn from(s: [T; N]) -> Vec<T> {
-        crate::slice::into_vec(box s)
-    }
-}
-
-#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
-impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
-where
-    [T]: ToOwned<Owned = Vec<T>>,
-{
-    fn from(s: Cow<'a, [T]>) -> Vec<T> {
-        s.into_owned()
-    }
-}
-
-// note: test pulls in libstd, which causes errors here
-#[cfg(not(test))]
-#[stable(feature = "vec_from_box", since = "1.18.0")]
-impl<T> From<Box<[T]>> for Vec<T> {
-    fn from(s: Box<[T]>) -> Vec<T> {
-        s.into_vec()
-    }
-}
-
-// note: test pulls in libstd, which causes errors here
-#[cfg(not(test))]
-#[stable(feature = "box_from_vec", since = "1.20.0")]
-impl<T> From<Vec<T>> for Box<[T]> {
-    fn from(v: Vec<T>) -> Box<[T]> {
-        v.into_boxed_slice()
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl From<&str> for Vec<u8> {
-    fn from(s: &str) -> Vec<u8> {
-        From::from(s.as_bytes())
-    }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// Clone-on-write
-////////////////////////////////////////////////////////////////////////////////
-
-#[stable(feature = "cow_from_vec", since = "1.8.0")]
-impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> {
-    fn from(s: &'a [T]) -> Cow<'a, [T]> {
-        Cow::Borrowed(s)
-    }
-}
-
-#[stable(feature = "cow_from_vec", since = "1.8.0")]
-impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> {
-    fn from(v: Vec<T>) -> Cow<'a, [T]> {
-        Cow::Owned(v)
-    }
-}
-
-#[stable(feature = "cow_from_vec_ref", since = "1.28.0")]
-impl<'a, T: Clone> From<&'a Vec<T>> for Cow<'a, [T]> {
-    fn from(v: &'a Vec<T>) -> Cow<'a, [T]> {
-        Cow::Borrowed(v.as_slice())
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<'a, T> FromIterator<T> for Cow<'a, [T]>
-where
-    T: Clone,
-{
-    fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> {
-        Cow::Owned(FromIterator::from_iter(it))
-    }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// Iterators
-////////////////////////////////////////////////////////////////////////////////
-
-/// An iterator that moves out of a vector.
-///
-/// This `struct` is created by the `into_iter` method on [`Vec`] (provided
-/// by the [`IntoIterator`] trait).
-///
-/// [`Vec`]: struct.Vec.html
-/// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html
-#[stable(feature = "rust1", since = "1.0.0")]
-pub struct IntoIter<T> {
-    buf: NonNull<T>,
-    phantom: PhantomData<T>,
-    cap: usize,
-    ptr: *const T,
-    end: *const T,
-}
-
-#[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
-impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
-    }
-}
-
-impl<T> IntoIter<T> {
-    /// Returns the remaining items of this iterator as a slice.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let vec = vec!['a', 'b', 'c'];
-    /// let mut into_iter = vec.into_iter();
-    /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
-    /// let _ = into_iter.next().unwrap();
-    /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
-    /// ```
-    #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
-    pub fn as_slice(&self) -> &[T] {
-        unsafe { slice::from_raw_parts(self.ptr, self.len()) }
-    }
-
-    /// Returns the remaining items of this iterator as a mutable slice.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let vec = vec!['a', 'b', 'c'];
-    /// let mut into_iter = vec.into_iter();
-    /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
-    /// into_iter.as_mut_slice()[2] = 'z';
-    /// assert_eq!(into_iter.next().unwrap(), 'a');
-    /// assert_eq!(into_iter.next().unwrap(), 'b');
-    /// assert_eq!(into_iter.next().unwrap(), 'z');
-    /// ```
-    #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
-    pub fn as_mut_slice(&mut self) -> &mut [T] {
-        unsafe { &mut *self.as_raw_mut_slice() }
-    }
-
-    fn as_raw_mut_slice(&mut self) -> *mut [T] {
-        ptr::slice_from_raw_parts_mut(self.ptr as *mut T, self.len())
-    }
-}
-
-#[stable(feature = "vec_intoiter_as_ref", since = "1.46.0")]
-impl<T> AsRef<[T]> for IntoIter<T> {
-    fn as_ref(&self) -> &[T] {
-        self.as_slice()
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-unsafe impl<T: Send> Send for IntoIter<T> {}
-#[stable(feature = "rust1", since = "1.0.0")]
-unsafe impl<T: Sync> Sync for IntoIter<T> {}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> Iterator for IntoIter<T> {
-    type Item = T;
-
-    #[inline]
-    fn next(&mut self) -> Option<T> {
-        unsafe {
-            if self.ptr as *const _ == self.end {
-                None
-            } else {
-                if mem::size_of::<T>() == 0 {
-                    // purposefully don't use 'ptr.offset' because for
-                    // vectors with 0-size elements this would return the
-                    // same pointer.
-                    self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T;
-
-                    // Make up a value of this ZST.
-                    Some(mem::zeroed())
-                } else {
-                    let old = self.ptr;
-                    self.ptr = self.ptr.offset(1);
-
-                    Some(ptr::read(old))
-                }
-            }
-        }
-    }
-
-    #[inline]
-    fn size_hint(&self) -> (usize, Option<usize>) {
-        let exact = if mem::size_of::<T>() == 0 {
-            (self.end as usize).wrapping_sub(self.ptr as usize)
-        } else {
-            unsafe { self.end.offset_from(self.ptr) as usize }
-        };
-        (exact, Some(exact))
-    }
-
-    #[inline]
-    fn count(self) -> usize {
-        self.len()
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> DoubleEndedIterator for IntoIter<T> {
-    #[inline]
-    fn next_back(&mut self) -> Option<T> {
-        unsafe {
-            if self.end == self.ptr {
-                None
-            } else {
-                if mem::size_of::<T>() == 0 {
-                    // See above for why 'ptr.offset' isn't used
-                    self.end = arith_offset(self.end as *const i8, -1) as *mut T;
-
-                    // Make up a value of this ZST.
-                    Some(mem::zeroed())
-                } else {
-                    self.end = self.end.offset(-1);
-
-                    Some(ptr::read(self.end))
-                }
-            }
-        }
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> ExactSizeIterator for IntoIter<T> {
-    fn is_empty(&self) -> bool {
-        self.ptr == self.end
-    }
-}
-
-#[stable(feature = "fused", since = "1.26.0")]
-impl<T> FusedIterator for IntoIter<T> {}
-
-#[unstable(feature = "trusted_len", issue = "37572")]
-unsafe impl<T> TrustedLen for IntoIter<T> {}
-
-#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
-impl<T: Clone> Clone for IntoIter<T> {
-    fn clone(&self) -> IntoIter<T> {
-        self.as_slice().to_owned().into_iter()
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-unsafe impl<#[may_dangle] T> Drop for IntoIter<T> {
-    fn drop(&mut self) {
-        struct DropGuard<'a, T>(&'a mut IntoIter<T>);
-
-        impl<T> Drop for DropGuard<'_, T> {
-            fn drop(&mut self) {
-                // RawVec handles deallocation
-                let _ = unsafe { RawVec::from_raw_parts(self.0.buf.as_ptr(), self.0.cap) };
-            }
-        }
-
-        let guard = DropGuard(self);
-        // destroy the remaining elements
-        unsafe {
-            ptr::drop_in_place(guard.0.as_raw_mut_slice());
-        }
-        // now `guard` will be dropped and do the rest
-    }
-}
-
-/// A draining iterator for `Vec<T>`.
-///
-/// This `struct` is created by the [`drain`] method on [`Vec`].
-///
-/// [`drain`]: struct.Vec.html#method.drain
-/// [`Vec`]: struct.Vec.html
-#[stable(feature = "drain", since = "1.6.0")]
-pub struct Drain<'a, T: 'a> {
-    /// Index of tail to preserve
-    tail_start: usize,
-    /// Length of tail
-    tail_len: usize,
-    /// Current remaining range to remove
-    iter: slice::Iter<'a, T>,
-    vec: NonNull<Vec<T>>,
-}
-
-#[stable(feature = "collection_debug", since = "1.17.0")]
-impl<T: fmt::Debug> fmt::Debug for Drain<'_, T> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
-    }
-}
-
-impl<'a, T> Drain<'a, T> {
-    /// Returns the remaining items of this iterator as a slice.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// let mut vec = vec!['a', 'b', 'c'];
-    /// let mut drain = vec.drain(..);
-    /// assert_eq!(drain.as_slice(), &['a', 'b', 'c']);
-    /// let _ = drain.next().unwrap();
-    /// assert_eq!(drain.as_slice(), &['b', 'c']);
-    /// ```
-    #[stable(feature = "vec_drain_as_slice", since = "1.46.0")]
-    pub fn as_slice(&self) -> &[T] {
-        self.iter.as_slice()
-    }
-}
-
-#[stable(feature = "vec_drain_as_slice", since = "1.46.0")]
-impl<'a, T> AsRef<[T]> for Drain<'a, T> {
-    fn as_ref(&self) -> &[T] {
-        self.as_slice()
-    }
-}
-
-#[stable(feature = "drain", since = "1.6.0")]
-unsafe impl<T: Sync> Sync for Drain<'_, T> {}
-#[stable(feature = "drain", since = "1.6.0")]
-unsafe impl<T: Send> Send for Drain<'_, T> {}
-
-#[stable(feature = "drain", since = "1.6.0")]
-impl<T> Iterator for Drain<'_, T> {
-    type Item = T;
-
-    #[inline]
-    fn next(&mut self) -> Option<T> {
-        self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
-    }
-
-    fn size_hint(&self) -> (usize, Option<usize>) {
-        self.iter.size_hint()
-    }
-}
-
-#[stable(feature = "drain", since = "1.6.0")]
-impl<T> DoubleEndedIterator for Drain<'_, T> {
-    #[inline]
-    fn next_back(&mut self) -> Option<T> {
-        self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
-    }
-}
-
-#[stable(feature = "drain", since = "1.6.0")]
-impl<T> Drop for Drain<'_, T> {
-    fn drop(&mut self) {
-        /// Continues dropping the remaining elements in the `Drain`, then moves back the
-        /// un-`Drain`ed elements to restore the original `Vec`.
-        struct DropGuard<'r, 'a, T>(&'r mut Drain<'a, T>);
-
-        impl<'r, 'a, T> Drop for DropGuard<'r, 'a, T> {
-            fn drop(&mut self) {
-                // Continue the same loop we have below. If the loop already finished, this does
-                // nothing.
-                self.0.for_each(drop);
-
-                if self.0.tail_len > 0 {
-                    unsafe {
-                        let source_vec = self.0.vec.as_mut();
-                        // memmove back untouched tail, update to new length
-                        let start = source_vec.len();
-                        let tail = self.0.tail_start;
-                        if tail != start {
-                            let src = source_vec.as_ptr().add(tail);
-                            let dst = source_vec.as_mut_ptr().add(start);
-                            ptr::copy(src, dst, self.0.tail_len);
-                        }
-                        source_vec.set_len(start + self.0.tail_len);
-                    }
-                }
-            }
-        }
-
-        // exhaust self first
-        while let Some(item) = self.next() {
-            let guard = DropGuard(self);
-            drop(item);
-            mem::forget(guard);
-        }
-
-        // Drop a `DropGuard` to move back the non-drained tail of `self`.
-        DropGuard(self);
-    }
-}
-
-#[stable(feature = "drain", since = "1.6.0")]
-impl<T> ExactSizeIterator for Drain<'_, T> {
-    fn is_empty(&self) -> bool {
-        self.iter.is_empty()
-    }
-}
-
-#[unstable(feature = "trusted_len", issue = "37572")]
-unsafe impl<T> TrustedLen for Drain<'_, T> {}
-
-#[stable(feature = "fused", since = "1.26.0")]
-impl<T> FusedIterator for Drain<'_, T> {}
-
-/// A splicing iterator for `Vec`.
-///
-/// This struct is created by the [`splice()`] method on [`Vec`]. See its
-/// documentation for more.
-///
-/// [`splice()`]: struct.Vec.html#method.splice
-/// [`Vec`]: struct.Vec.html
-#[derive(Debug)]
-#[stable(feature = "vec_splice", since = "1.21.0")]
-pub struct Splice<'a, I: Iterator + 'a> {
-    drain: Drain<'a, I::Item>,
-    replace_with: I,
-}
-
-#[stable(feature = "vec_splice", since = "1.21.0")]
-impl<I: Iterator> Iterator for Splice<'_, I> {
-    type Item = I::Item;
-
-    fn next(&mut self) -> Option<Self::Item> {
-        self.drain.next()
-    }
-
-    fn size_hint(&self) -> (usize, Option<usize>) {
-        self.drain.size_hint()
-    }
-}
-
-#[stable(feature = "vec_splice", since = "1.21.0")]
-impl<I: Iterator> DoubleEndedIterator for Splice<'_, I> {
-    fn next_back(&mut self) -> Option<Self::Item> {
-        self.drain.next_back()
-    }
-}
-
-#[stable(feature = "vec_splice", since = "1.21.0")]
-impl<I: Iterator> ExactSizeIterator for Splice<'_, I> {}
-
-#[stable(feature = "vec_splice", since = "1.21.0")]
-impl<I: Iterator> Drop for Splice<'_, I> {
-    fn drop(&mut self) {
-        self.drain.by_ref().for_each(drop);
-
-        unsafe {
-            if self.drain.tail_len == 0 {
-                self.drain.vec.as_mut().extend(self.replace_with.by_ref());
-                return;
-            }
-
-            // First fill the range left by drain().
-            if !self.drain.fill(&mut self.replace_with) {
-                return;
-            }
-
-            // There may be more elements. Use the lower bound as an estimate.
-            // FIXME: Is the upper bound a better guess? Or something else?
-            let (lower_bound, _upper_bound) = self.replace_with.size_hint();
-            if lower_bound > 0 {
-                self.drain.move_tail(lower_bound);
-                if !self.drain.fill(&mut self.replace_with) {
-                    return;
-                }
-            }
-
-            // Collect any remaining elements.
-            // This is a zero-length vector which does not allocate if `lower_bound` was exact.
-            let mut collected = self.replace_with.by_ref().collect::<Vec<I::Item>>().into_iter();
-            // Now we have an exact count.
-            if collected.len() > 0 {
-                self.drain.move_tail(collected.len());
-                let filled = self.drain.fill(&mut collected);
-                debug_assert!(filled);
-                debug_assert_eq!(collected.len(), 0);
-            }
-        }
-        // Let `Drain::drop` move the tail back if necessary and restore `vec.len`.
-    }
-}
-
-/// Private helper methods for `Splice::drop`
-impl<T> Drain<'_, T> {
-    /// The range from `self.vec.len` to `self.tail_start` contains elements
-    /// that have been moved out.
-    /// Fill that range as much as possible with new elements from the `replace_with` iterator.
-    /// Returns `true` if we filled the entire range. (`replace_with.next()` didn’t return `None`.)
-    unsafe fn fill<I: Iterator<Item = T>>(&mut self, replace_with: &mut I) -> bool {
-        let vec = unsafe { self.vec.as_mut() };
-        let range_start = vec.len;
-        let range_end = self.tail_start;
-        let range_slice = unsafe {
-            slice::from_raw_parts_mut(vec.as_mut_ptr().add(range_start), range_end - range_start)
-        };
-
-        for place in range_slice {
-            if let Some(new_item) = replace_with.next() {
-                unsafe { ptr::write(place, new_item) };
-                vec.len += 1;
-            } else {
-                return false;
-            }
-        }
-        true
-    }
-
-    /// Makes room for inserting more elements before the tail.
-    unsafe fn move_tail(&mut self, additional: usize) {
-        let vec = unsafe { self.vec.as_mut() };
-        let len = self.tail_start + self.tail_len;
-        vec.buf.reserve(len, additional);
-
-        let new_tail_start = self.tail_start + additional;
-        unsafe {
-            let src = vec.as_ptr().add(self.tail_start);
-            let dst = vec.as_mut_ptr().add(new_tail_start);
-            ptr::copy(src, dst, self.tail_len);
-        }
-        self.tail_start = new_tail_start;
-    }
-}
-
-/// An iterator produced by calling `drain_filter` on Vec.
-#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
-#[derive(Debug)]
-pub struct DrainFilter<'a, T, F>
-where
-    F: FnMut(&mut T) -> bool,
-{
-    vec: &'a mut Vec<T>,
-    /// The index of the item that will be inspected by the next call to `next`.
-    idx: usize,
-    /// The number of items that have been drained (removed) thus far.
-    del: usize,
-    /// The original length of `vec` prior to draining.
-    old_len: usize,
-    /// The filter test predicate.
-    pred: F,
-    /// A flag that indicates a panic has occurred in the filter test prodicate.
-    /// This is used as a hint in the drop implementation to prevent consumption
-    /// of the remainder of the `DrainFilter`. Any unprocessed items will be
-    /// backshifted in the `vec`, but no further items will be dropped or
-    /// tested by the filter predicate.
-    panic_flag: bool,
-}
-
-#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
-impl<T, F> Iterator for DrainFilter<'_, T, F>
-where
-    F: FnMut(&mut T) -> bool,
-{
-    type Item = T;
-
-    fn next(&mut self) -> Option<T> {
-        unsafe {
-            while self.idx < self.old_len {
-                let i = self.idx;
-                let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
-                self.panic_flag = true;
-                let drained = (self.pred)(&mut v[i]);
-                self.panic_flag = false;
-                // Update the index *after* the predicate is called. If the index
-                // is updated prior and the predicate panics, the element at this
-                // index would be leaked.
-                self.idx += 1;
-                if drained {
-                    self.del += 1;
-                    return Some(ptr::read(&v[i]));
-                } else if self.del > 0 {
-                    let del = self.del;
-                    let src: *const T = &v[i];
-                    let dst: *mut T = &mut v[i - del];
-                    ptr::copy_nonoverlapping(src, dst, 1);
-                }
-            }
-            None
-        }
-    }
-
-    fn size_hint(&self) -> (usize, Option<usize>) {
-        (0, Some(self.old_len - self.idx))
-    }
-}
-
-#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
-impl<T, F> Drop for DrainFilter<'_, T, F>
-where
-    F: FnMut(&mut T) -> bool,
-{
-    fn drop(&mut self) {
-        struct BackshiftOnDrop<'a, 'b, T, F>
-        where
-            F: FnMut(&mut T) -> bool,
-        {
-            drain: &'b mut DrainFilter<'a, T, F>,
-        }
-
-        impl<'a, 'b, T, F> Drop for BackshiftOnDrop<'a, 'b, T, F>
-        where
-            F: FnMut(&mut T) -> bool,
-        {
-            fn drop(&mut self) {
-                unsafe {
-                    if self.drain.idx < self.drain.old_len && self.drain.del > 0 {
-                        // This is a pretty messed up state, and there isn't really an
-                        // obviously right thing to do. We don't want to keep trying
-                        // to execute `pred`, so we just backshift all the unprocessed
-                        // elements and tell the vec that they still exist. The backshift
-                        // is required to prevent a double-drop of the last successfully
-                        // drained item prior to a panic in the predicate.
-                        let ptr = self.drain.vec.as_mut_ptr();
-                        let src = ptr.add(self.drain.idx);
-                        let dst = src.sub(self.drain.del);
-                        let tail_len = self.drain.old_len - self.drain.idx;
-                        src.copy_to(dst, tail_len);
-                    }
-                    self.drain.vec.set_len(self.drain.old_len - self.drain.del);
-                }
-            }
-        }
-
-        let backshift = BackshiftOnDrop { drain: self };
-
-        // Attempt to consume any remaining elements if the filter predicate
-        // has not yet panicked. We'll backshift any remaining elements
-        // whether we've already panicked or if the consumption here panics.
-        if !backshift.drain.panic_flag {
-            backshift.drain.for_each(drop);
-        }
-    }
-}