about summary refs log tree commit diff
path: root/src/libextra/priority_queue.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/libextra/priority_queue.rs')
-rw-r--r--src/libextra/priority_queue.rs320
1 files changed, 320 insertions, 0 deletions
diff --git a/src/libextra/priority_queue.rs b/src/libextra/priority_queue.rs
new file mode 100644
index 00000000000..f1e0027146c
--- /dev/null
+++ b/src/libextra/priority_queue.rs
@@ -0,0 +1,320 @@
+// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! A priority queue implemented with a binary heap
+
+use core::old_iter::BaseIter;
+use core::unstable::intrinsics::{move_val_init, init};
+use core::unstable::intrinsics::uninit;
+use core::util::{replace, swap};
+
+pub struct PriorityQueue<T> {
+    priv data: ~[T],
+}
+
+impl<T:Ord> BaseIter<T> for PriorityQueue<T> {
+    /// Visit all values in the underlying vector.
+    ///
+    /// The values are **not** visited in order.
+    fn each(&self, f: &fn(&T) -> bool) -> bool { self.data.each(f) }
+
+    fn size_hint(&self) -> Option<uint> { self.data.size_hint() }
+}
+
+impl<T:Ord> Container for PriorityQueue<T> {
+    /// Returns the length of the queue
+    fn len(&const self) -> uint { vec::uniq_len(&const self.data) }
+
+    /// Returns true if a queue contains no elements
+    fn is_empty(&const self) -> bool { self.len() == 0 }
+}
+
+impl<T:Ord> Mutable for PriorityQueue<T> {
+    /// Drop all items from the queue
+    fn clear(&mut self) { self.data.truncate(0) }
+}
+
+pub impl <T:Ord> PriorityQueue<T> {
+    /// Returns the greatest item in the queue - fails if empty
+    fn top<'a>(&'a self) -> &'a T { &self.data[0] }
+
+    /// Returns the greatest item in the queue - None if empty
+    fn maybe_top<'a>(&'a self) -> Option<&'a T> {
+        if self.is_empty() { None } else { Some(self.top()) }
+    }
+
+    /// Returns the number of elements the queue can hold without reallocating
+    fn capacity(&self) -> uint { vec::capacity(&self.data) }
+
+    fn reserve(&mut self, n: uint) { vec::reserve(&mut self.data, n) }
+
+    fn reserve_at_least(&mut self, n: uint) {
+        vec::reserve_at_least(&mut self.data, n)
+    }
+
+    /// Pop the greatest item from the queue - fails if empty
+    fn pop(&mut self) -> T {
+        let mut item = self.data.pop();
+        if !self.is_empty() {
+            swap(&mut item, &mut self.data[0]);
+            self.siftdown(0);
+        }
+        item
+    }
+
+    /// Pop the greatest item from the queue - None if empty
+    fn maybe_pop(&mut self) -> Option<T> {
+        if self.is_empty() { None } else { Some(self.pop()) }
+    }
+
+    /// Push an item onto the queue
+    fn push(&mut self, item: T) {
+        self.data.push(item);
+        let new_len = self.len() - 1;
+        self.siftup(0, new_len);
+    }
+
+    /// Optimized version of a push followed by a pop
+    fn push_pop(&mut self, mut item: T) -> T {
+        if !self.is_empty() && self.data[0] > item {
+            swap(&mut item, &mut self.data[0]);
+            self.siftdown(0);
+        }
+        item
+    }
+
+    /// Optimized version of a pop followed by a push - fails if empty
+    fn replace(&mut self, mut item: T) -> T {
+        swap(&mut item, &mut self.data[0]);
+        self.siftdown(0);
+        item
+    }
+
+    /// Consume the PriorityQueue and return the underlying vector
+    fn to_vec(self) -> ~[T] { let PriorityQueue{data: v} = self; v }
+
+    /// Consume the PriorityQueue and return a vector in sorted
+    /// (ascending) order
+    fn to_sorted_vec(self) -> ~[T] {
+        let mut q = self;
+        let mut end = q.len();
+        while end > 1 {
+            end -= 1;
+            vec::swap(q.data, 0, end);
+            q.siftdown_range(0, end)
+        }
+        q.to_vec()
+    }
+
+    /// Create an empty PriorityQueue
+    fn new() -> PriorityQueue<T> { PriorityQueue{data: ~[],} }
+
+    /// Create a PriorityQueue from a vector (heapify)
+    fn from_vec(xs: ~[T]) -> PriorityQueue<T> {
+        let mut q = PriorityQueue{data: xs,};
+        let mut n = q.len() / 2;
+        while n > 0 {
+            n -= 1;
+            q.siftdown(n)
+        }
+        q
+    }
+
+    // The implementations of siftup and siftdown use unsafe blocks in
+    // order to move an element out of the vector (leaving behind a
+    // zeroed element), shift along the others and move it back into the
+    // vector over the junk element.  This reduces the constant factor
+    // compared to using swaps, which involves twice as many moves.
+
+    priv fn siftup(&mut self, start: uint, mut pos: uint) {
+        unsafe {
+            let new = replace(&mut self.data[pos], init());
+
+            while pos > start {
+                let parent = (pos - 1) >> 1;
+                if new > self.data[parent] {
+                    let x = replace(&mut self.data[parent], init());
+                    move_val_init(&mut self.data[pos], x);
+                    pos = parent;
+                    loop
+                }
+                break
+            }
+            move_val_init(&mut self.data[pos], new);
+        }
+    }
+
+    priv fn siftdown_range(&mut self, mut pos: uint, end: uint) {
+        unsafe {
+            let start = pos;
+            let new = replace(&mut self.data[pos], init());
+
+            let mut child = 2 * pos + 1;
+            while child < end {
+                let right = child + 1;
+                if right < end && !(self.data[child] > self.data[right]) {
+                    child = right;
+                }
+                let x = replace(&mut self.data[child], init());
+                move_val_init(&mut self.data[pos], x);
+                pos = child;
+                child = 2 * pos + 1;
+            }
+
+            move_val_init(&mut self.data[pos], new);
+            self.siftup(start, pos);
+        }
+    }
+
+    priv fn siftdown(&mut self, pos: uint) {
+        let len = self.len();
+        self.siftdown_range(pos, len);
+    }
+}
+
+#[cfg(test)]
+mod tests {
+    use sort::merge_sort;
+    use core::cmp::le;
+    use priority_queue::PriorityQueue::{from_vec, new};
+
+    #[test]
+    fn test_top_and_pop() {
+        let data = ~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
+        let mut sorted = merge_sort(data, le);
+        let mut heap = from_vec(data);
+        while !heap.is_empty() {
+            assert_eq!(heap.top(), sorted.last());
+            assert_eq!(heap.pop(), sorted.pop());
+        }
+    }
+
+    #[test]
+    fn test_push() {
+        let mut heap = from_vec(~[2, 4, 9]);
+        assert_eq!(heap.len(), 3);
+        assert!(*heap.top() == 9);
+        heap.push(11);
+        assert_eq!(heap.len(), 4);
+        assert!(*heap.top() == 11);
+        heap.push(5);
+        assert_eq!(heap.len(), 5);
+        assert!(*heap.top() == 11);
+        heap.push(27);
+        assert_eq!(heap.len(), 6);
+        assert!(*heap.top() == 27);
+        heap.push(3);
+        assert_eq!(heap.len(), 7);
+        assert!(*heap.top() == 27);
+        heap.push(103);
+        assert_eq!(heap.len(), 8);
+        assert!(*heap.top() == 103);
+    }
+
+    #[test]
+    fn test_push_unique() {
+        let mut heap = from_vec(~[~2, ~4, ~9]);
+        assert_eq!(heap.len(), 3);
+        assert!(*heap.top() == ~9);
+        heap.push(~11);
+        assert_eq!(heap.len(), 4);
+        assert!(*heap.top() == ~11);
+        heap.push(~5);
+        assert_eq!(heap.len(), 5);
+        assert!(*heap.top() == ~11);
+        heap.push(~27);
+        assert_eq!(heap.len(), 6);
+        assert!(*heap.top() == ~27);
+        heap.push(~3);
+        assert_eq!(heap.len(), 7);
+        assert!(*heap.top() == ~27);
+        heap.push(~103);
+        assert_eq!(heap.len(), 8);
+        assert!(*heap.top() == ~103);
+    }
+
+    #[test]
+    fn test_push_pop() {
+        let mut heap = from_vec(~[5, 5, 2, 1, 3]);
+        assert_eq!(heap.len(), 5);
+        assert_eq!(heap.push_pop(6), 6);
+        assert_eq!(heap.len(), 5);
+        assert_eq!(heap.push_pop(0), 5);
+        assert_eq!(heap.len(), 5);
+        assert_eq!(heap.push_pop(4), 5);
+        assert_eq!(heap.len(), 5);
+        assert_eq!(heap.push_pop(1), 4);
+        assert_eq!(heap.len(), 5);
+    }
+
+    #[test]
+    fn test_replace() {
+        let mut heap = from_vec(~[5, 5, 2, 1, 3]);
+        assert_eq!(heap.len(), 5);
+        assert_eq!(heap.replace(6), 5);
+        assert_eq!(heap.len(), 5);
+        assert_eq!(heap.replace(0), 6);
+        assert_eq!(heap.len(), 5);
+        assert_eq!(heap.replace(4), 5);
+        assert_eq!(heap.len(), 5);
+        assert_eq!(heap.replace(1), 4);
+        assert_eq!(heap.len(), 5);
+    }
+
+    fn check_to_vec(data: ~[int]) {
+        let heap = from_vec(copy data);
+        assert_eq!(merge_sort((copy heap).to_vec(), le), merge_sort(data, le));
+        assert_eq!(heap.to_sorted_vec(), merge_sort(data, le));
+    }
+
+    #[test]
+    fn test_to_vec() {
+        check_to_vec(~[]);
+        check_to_vec(~[5]);
+        check_to_vec(~[3, 2]);
+        check_to_vec(~[2, 3]);
+        check_to_vec(~[5, 1, 2]);
+        check_to_vec(~[1, 100, 2, 3]);
+        check_to_vec(~[1, 3, 5, 7, 9, 2, 4, 6, 8, 0]);
+        check_to_vec(~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
+        check_to_vec(~[9, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0]);
+        check_to_vec(~[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
+        check_to_vec(~[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);
+        check_to_vec(~[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2]);
+        check_to_vec(~[5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1]);
+    }
+
+    #[test]
+    #[should_fail]
+    #[ignore(cfg(windows))]
+    fn test_empty_pop() { let mut heap = new::<int>(); heap.pop(); }
+
+    #[test]
+    fn test_empty_maybe_pop() {
+        let mut heap = new::<int>();
+        assert!(heap.maybe_pop().is_none());
+    }
+
+    #[test]
+    #[should_fail]
+    #[ignore(cfg(windows))]
+    fn test_empty_top() { let empty = new::<int>(); empty.top(); }
+
+    #[test]
+    fn test_empty_maybe_top() {
+        let empty = new::<int>();
+        assert!(empty.maybe_top().is_none());
+    }
+
+    #[test]
+    #[should_fail]
+    #[ignore(cfg(windows))]
+    fn test_empty_replace() { let mut heap = new(); heap.replace(5); }
+}