diff options
Diffstat (limited to 'src/libnum/rational.rs')
| -rw-r--r-- | src/libnum/rational.rs | 803 |
1 files changed, 0 insertions, 803 deletions
diff --git a/src/libnum/rational.rs b/src/libnum/rational.rs deleted file mode 100644 index ceaf685c19a..00000000000 --- a/src/libnum/rational.rs +++ /dev/null @@ -1,803 +0,0 @@ -// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// http://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Rational numbers - -use Integer; - -use std::cmp; -use std::fmt; -use std::from_str::FromStr; -use std::num; -use std::num::{Zero, One, ToStrRadix, FromStrRadix}; - -use bigint::{BigInt, BigUint, Sign, Plus, Minus}; - -/// Represents the ratio between 2 numbers. -#[deriving(Clone, Hash)] -#[allow(missing_doc)] -pub struct Ratio<T> { - numer: T, - denom: T -} - -/// Alias for a `Ratio` of machine-sized integers. -pub type Rational = Ratio<int>; -pub type Rational32 = Ratio<i32>; -pub type Rational64 = Ratio<i64>; - -/// Alias for arbitrary precision rationals. -pub type BigRational = Ratio<BigInt>; - -impl<T: Clone + Integer + PartialOrd> - Ratio<T> { - /// Creates a ratio representing the integer `t`. - #[inline] - pub fn from_integer(t: T) -> Ratio<T> { - Ratio::new_raw(t, One::one()) - } - - /// Creates a ratio without checking for `denom == 0` or reducing. - #[inline] - pub fn new_raw(numer: T, denom: T) -> Ratio<T> { - Ratio { numer: numer, denom: denom } - } - - /// Create a new Ratio. Fails if `denom == 0`. - #[inline] - pub fn new(numer: T, denom: T) -> Ratio<T> { - if denom == Zero::zero() { - fail!("denominator == 0"); - } - let mut ret = Ratio::new_raw(numer, denom); - ret.reduce(); - ret - } - - /// Converts to an integer. - #[inline] - pub fn to_integer(&self) -> T { - self.trunc().numer - } - - /// Gets an immutable reference to the numerator. - #[inline] - pub fn numer<'a>(&'a self) -> &'a T { - &self.numer - } - - /// Gets an immutable reference to the denominator. - #[inline] - pub fn denom<'a>(&'a self) -> &'a T { - &self.denom - } - - /// Returns true if the rational number is an integer (denominator is 1). - #[inline] - pub fn is_integer(&self) -> bool { - self.denom == One::one() - } - - /// Put self into lowest terms, with denom > 0. - fn reduce(&mut self) { - let g : T = self.numer.gcd(&self.denom); - - // FIXME(#5992): assignment operator overloads - // self.numer /= g; - self.numer = self.numer / g; - // FIXME(#5992): assignment operator overloads - // self.denom /= g; - self.denom = self.denom / g; - - // keep denom positive! - if self.denom < Zero::zero() { - self.numer = -self.numer; - self.denom = -self.denom; - } - } - - /// Returns a `reduce`d copy of self. - pub fn reduced(&self) -> Ratio<T> { - let mut ret = self.clone(); - ret.reduce(); - ret - } - - /// Returns the reciprocal. - #[inline] - pub fn recip(&self) -> Ratio<T> { - Ratio::new_raw(self.denom.clone(), self.numer.clone()) - } - - /// Rounds towards minus infinity. - #[inline] - pub fn floor(&self) -> Ratio<T> { - if *self < Zero::zero() { - Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom) - } else { - Ratio::from_integer(self.numer / self.denom) - } - } - - /// Rounds towards plus infinity. - #[inline] - pub fn ceil(&self) -> Ratio<T> { - if *self < Zero::zero() { - Ratio::from_integer(self.numer / self.denom) - } else { - Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom) - } - } - - /// Rounds to the nearest integer. Rounds half-way cases away from zero. - #[inline] - pub fn round(&self) -> Ratio<T> { - let one: T = One::one(); - let two: T = one + one; - - // Find unsigned fractional part of rational number - let fractional = self.fract().abs(); - - // The algorithm compares the unsigned fractional part with 1/2, that - // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use - // a >= (b/2)+1. This avoids overflow issues. - let half_or_larger = if fractional.denom().is_even() { - *fractional.numer() >= *fractional.denom() / two - } else { - *fractional.numer() >= (*fractional.denom() / two) + one - }; - - if half_or_larger { - if *self >= Zero::zero() { - self.trunc() + One::one() - } else { - self.trunc() - One::one() - } - } else { - self.trunc() - } - } - - /// Rounds towards zero. - #[inline] - pub fn trunc(&self) -> Ratio<T> { - Ratio::from_integer(self.numer / self.denom) - } - - /// Returns the fractional part of a number. - #[inline] - pub fn fract(&self) -> Ratio<T> { - Ratio::new_raw(self.numer % self.denom, self.denom.clone()) - } -} - -impl Ratio<BigInt> { - /// Converts a float into a rational number. - pub fn from_float<T: Float>(f: T) -> Option<BigRational> { - if !f.is_finite() { - return None; - } - let (mantissa, exponent, sign) = f.integer_decode(); - let bigint_sign: Sign = if sign == 1 { Plus } else { Minus }; - if exponent < 0 { - let one: BigInt = One::one(); - let denom: BigInt = one << ((-exponent) as uint); - let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); - Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom)) - } else { - let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); - numer = numer << (exponent as uint); - Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer))) - } - } -} - -/* Comparisons */ - -// comparing a/b and c/d is the same as comparing a*d and b*c, so we -// abstract that pattern. The following macro takes a trait and either -// a comma-separated list of "method name -> return value" or just -// "method name" (return value is bool in that case) -macro_rules! cmp_impl { - (impl $imp:ident, $($method:ident),+) => { - cmp_impl!(impl $imp, $($method -> bool),+) - }; - // return something other than a Ratio<T> - (impl $imp:ident, $($method:ident -> $res:ty),*) => { - impl<T: Mul<T,T> + $imp> $imp for Ratio<T> { - $( - #[inline] - fn $method(&self, other: &Ratio<T>) -> $res { - (self.numer * other.denom). $method (&(self.denom*other.numer)) - } - )* - } - }; -} -cmp_impl!(impl PartialEq, eq, ne) -cmp_impl!(impl PartialOrd, lt -> bool, gt -> bool, le -> bool, ge -> bool, - partial_cmp -> Option<cmp::Ordering>) -cmp_impl!(impl Eq, ) -cmp_impl!(impl Ord, cmp -> cmp::Ordering) - -/* Arithmetic */ -// a/b * c/d = (a*c)/(b*d) -impl<T: Clone + Integer + PartialOrd> - Mul<Ratio<T>,Ratio<T>> for Ratio<T> { - #[inline] - fn mul(&self, rhs: &Ratio<T>) -> Ratio<T> { - Ratio::new(self.numer * rhs.numer, self.denom * rhs.denom) - } -} - -// (a/b) / (c/d) = (a*d)/(b*c) -impl<T: Clone + Integer + PartialOrd> - Div<Ratio<T>,Ratio<T>> for Ratio<T> { - #[inline] - fn div(&self, rhs: &Ratio<T>) -> Ratio<T> { - Ratio::new(self.numer * rhs.denom, self.denom * rhs.numer) - } -} - -// Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern -macro_rules! arith_impl { - (impl $imp:ident, $method:ident) => { - impl<T: Clone + Integer + PartialOrd> - $imp<Ratio<T>,Ratio<T>> for Ratio<T> { - #[inline] - fn $method(&self, rhs: &Ratio<T>) -> Ratio<T> { - Ratio::new((self.numer * rhs.denom).$method(&(self.denom * rhs.numer)), - self.denom * rhs.denom) - } - } - } -} - -// a/b + c/d = (a*d + b*c)/(b*d) -arith_impl!(impl Add, add) - -// a/b - c/d = (a*d - b*c)/(b*d) -arith_impl!(impl Sub, sub) - -// a/b % c/d = (a*d % b*c)/(b*d) -arith_impl!(impl Rem, rem) - -impl<T: Clone + Integer + PartialOrd> - Neg<Ratio<T>> for Ratio<T> { - #[inline] - fn neg(&self) -> Ratio<T> { - Ratio::new_raw(-self.numer, self.denom.clone()) - } -} - -/* Constants */ -impl<T: Clone + Integer + PartialOrd> - Zero for Ratio<T> { - #[inline] - fn zero() -> Ratio<T> { - Ratio::new_raw(Zero::zero(), One::one()) - } - - #[inline] - fn is_zero(&self) -> bool { - *self == Zero::zero() - } -} - -impl<T: Clone + Integer + PartialOrd> - One for Ratio<T> { - #[inline] - fn one() -> Ratio<T> { - Ratio::new_raw(One::one(), One::one()) - } -} - -impl<T: Clone + Integer + PartialOrd> - Num for Ratio<T> {} - -impl<T: Clone + Integer + PartialOrd> - num::Signed for Ratio<T> { - #[inline] - fn abs(&self) -> Ratio<T> { - if self.is_negative() { -self.clone() } else { self.clone() } - } - - #[inline] - fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> { - if *self <= *other { Zero::zero() } else { *self - *other } - } - - #[inline] - fn signum(&self) -> Ratio<T> { - if *self > Zero::zero() { - num::one() - } else if self.is_zero() { - num::zero() - } else { - - num::one::<Ratio<T>>() - } - } - - #[inline] - fn is_positive(&self) -> bool { *self > Zero::zero() } - - #[inline] - fn is_negative(&self) -> bool { *self < Zero::zero() } -} - -/* String conversions */ -impl<T: fmt::Show + Eq + One> fmt::Show for Ratio<T> { - /// Renders as `numer/denom`. If denom=1, renders as numer. - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - if self.denom == One::one() { - write!(f, "{}", self.numer) - } else { - write!(f, "{}/{}", self.numer, self.denom) - } - } -} - -impl<T: ToStrRadix> ToStrRadix for Ratio<T> { - /// Renders as `numer/denom` where the numbers are in base `radix`. - fn to_str_radix(&self, radix: uint) -> String { - format!("{}/{}", - self.numer.to_str_radix(radix), - self.denom.to_str_radix(radix)) - } -} - -impl<T: FromStr + Clone + Integer + PartialOrd> - FromStr for Ratio<T> { - /// Parses `numer/denom` or just `numer`. - fn from_str(s: &str) -> Option<Ratio<T>> { - let mut split = s.splitn(1, '/'); - - let num = split.next().and_then(|n| FromStr::from_str(n)); - let den = split.next().or(Some("1")).and_then(|d| FromStr::from_str(d)); - - match (num, den) { - (Some(n), Some(d)) => Some(Ratio::new(n, d)), - _ => None - } - } -} - -impl<T: FromStrRadix + Clone + Integer + PartialOrd> - FromStrRadix for Ratio<T> { - /// Parses `numer/denom` where the numbers are in base `radix`. - fn from_str_radix(s: &str, radix: uint) -> Option<Ratio<T>> { - let split: Vec<&str> = s.splitn(1, '/').collect(); - if split.len() < 2 { - None - } else { - let a_option: Option<T> = FromStrRadix::from_str_radix( - *split.get(0), - radix); - a_option.and_then(|a| { - let b_option: Option<T> = - FromStrRadix::from_str_radix(*split.get(1), radix); - b_option.and_then(|b| { - Some(Ratio::new(a.clone(), b.clone())) - }) - }) - } - } -} - -#[cfg(test)] -mod test { - - use super::{Ratio, Rational, BigRational}; - use std::num::{Zero, One, FromStrRadix, FromPrimitive, ToStrRadix}; - use std::from_str::FromStr; - use std::hash::hash; - use std::num; - use std::i32; - - pub static _0 : Rational = Ratio { numer: 0, denom: 1}; - pub static _1 : Rational = Ratio { numer: 1, denom: 1}; - pub static _2: Rational = Ratio { numer: 2, denom: 1}; - pub static _1_2: Rational = Ratio { numer: 1, denom: 2}; - pub static _3_2: Rational = Ratio { numer: 3, denom: 2}; - #[allow(non_uppercase_statics)] - pub static _neg1_2: Rational = Ratio { numer: -1, denom: 2}; - pub static _1_3: Rational = Ratio { numer: 1, denom: 3}; - #[allow(non_uppercase_statics)] - pub static _neg1_3: Rational = Ratio { numer: -1, denom: 3}; - pub static _2_3: Rational = Ratio { numer: 2, denom: 3}; - #[allow(non_uppercase_statics)] - pub static _neg2_3: Rational = Ratio { numer: -2, denom: 3}; - - pub fn to_big(n: Rational) -> BigRational { - Ratio::new( - FromPrimitive::from_int(n.numer).unwrap(), - FromPrimitive::from_int(n.denom).unwrap() - ) - } - - #[test] - fn test_test_constants() { - // check our constants are what Ratio::new etc. would make. - assert_eq!(_0, Zero::zero()); - assert_eq!(_1, One::one()); - assert_eq!(_2, Ratio::from_integer(2i)); - assert_eq!(_1_2, Ratio::new(1i,2i)); - assert_eq!(_3_2, Ratio::new(3i,2i)); - assert_eq!(_neg1_2, Ratio::new(-1i,2i)); - } - - #[test] - fn test_new_reduce() { - let one22 = Ratio::new(2i,2); - - assert_eq!(one22, One::one()); - } - #[test] - #[should_fail] - fn test_new_zero() { - let _a = Ratio::new(1i,0); - } - - - #[test] - fn test_cmp() { - assert!(_0 == _0 && _1 == _1); - assert!(_0 != _1 && _1 != _0); - assert!(_0 < _1 && !(_1 < _0)); - assert!(_1 > _0 && !(_0 > _1)); - - assert!(_0 <= _0 && _1 <= _1); - assert!(_0 <= _1 && !(_1 <= _0)); - - assert!(_0 >= _0 && _1 >= _1); - assert!(_1 >= _0 && !(_0 >= _1)); - } - - - #[test] - fn test_to_integer() { - assert_eq!(_0.to_integer(), 0); - assert_eq!(_1.to_integer(), 1); - assert_eq!(_2.to_integer(), 2); - assert_eq!(_1_2.to_integer(), 0); - assert_eq!(_3_2.to_integer(), 1); - assert_eq!(_neg1_2.to_integer(), 0); - } - - - #[test] - fn test_numer() { - assert_eq!(_0.numer(), &0); - assert_eq!(_1.numer(), &1); - assert_eq!(_2.numer(), &2); - assert_eq!(_1_2.numer(), &1); - assert_eq!(_3_2.numer(), &3); - assert_eq!(_neg1_2.numer(), &(-1)); - } - #[test] - fn test_denom() { - assert_eq!(_0.denom(), &1); - assert_eq!(_1.denom(), &1); - assert_eq!(_2.denom(), &1); - assert_eq!(_1_2.denom(), &2); - assert_eq!(_3_2.denom(), &2); - assert_eq!(_neg1_2.denom(), &2); - } - - - #[test] - fn test_is_integer() { - assert!(_0.is_integer()); - assert!(_1.is_integer()); - assert!(_2.is_integer()); - assert!(!_1_2.is_integer()); - assert!(!_3_2.is_integer()); - assert!(!_neg1_2.is_integer()); - } - - #[test] - fn test_show() { - assert_eq!(format!("{}", _2), "2".to_string()); - assert_eq!(format!("{}", _1_2), "1/2".to_string()); - assert_eq!(format!("{}", _0), "0".to_string()); - assert_eq!(format!("{}", Ratio::from_integer(-2i)), "-2".to_string()); - } - - mod arith { - use super::{_0, _1, _2, _1_2, _3_2, _neg1_2, to_big}; - use super::super::{Ratio, Rational}; - - #[test] - fn test_add() { - fn test(a: Rational, b: Rational, c: Rational) { - assert_eq!(a + b, c); - assert_eq!(to_big(a) + to_big(b), to_big(c)); - } - - test(_1, _1_2, _3_2); - test(_1, _1, _2); - test(_1_2, _3_2, _2); - test(_1_2, _neg1_2, _0); - } - - #[test] - fn test_sub() { - fn test(a: Rational, b: Rational, c: Rational) { - assert_eq!(a - b, c); - assert_eq!(to_big(a) - to_big(b), to_big(c)) - } - - test(_1, _1_2, _1_2); - test(_3_2, _1_2, _1); - test(_1, _neg1_2, _3_2); - } - - #[test] - fn test_mul() { - fn test(a: Rational, b: Rational, c: Rational) { - assert_eq!(a * b, c); - assert_eq!(to_big(a) * to_big(b), to_big(c)) - } - - test(_1, _1_2, _1_2); - test(_1_2, _3_2, Ratio::new(3i,4i)); - test(_1_2, _neg1_2, Ratio::new(-1i, 4i)); - } - - #[test] - fn test_div() { - fn test(a: Rational, b: Rational, c: Rational) { - assert_eq!(a / b, c); - assert_eq!(to_big(a) / to_big(b), to_big(c)) - } - - test(_1, _1_2, _2); - test(_3_2, _1_2, _1 + _2); - test(_1, _neg1_2, _neg1_2 + _neg1_2 + _neg1_2 + _neg1_2); - } - - #[test] - fn test_rem() { - fn test(a: Rational, b: Rational, c: Rational) { - assert_eq!(a % b, c); - assert_eq!(to_big(a) % to_big(b), to_big(c)) - } - - test(_3_2, _1, _1_2); - test(_2, _neg1_2, _0); - test(_1_2, _2, _1_2); - } - - #[test] - fn test_neg() { - fn test(a: Rational, b: Rational) { - assert_eq!(-a, b); - assert_eq!(-to_big(a), to_big(b)) - } - - test(_0, _0); - test(_1_2, _neg1_2); - test(-_1, _1); - } - #[test] - fn test_zero() { - assert_eq!(_0 + _0, _0); - assert_eq!(_0 * _0, _0); - assert_eq!(_0 * _1, _0); - assert_eq!(_0 / _neg1_2, _0); - assert_eq!(_0 - _0, _0); - } - #[test] - #[should_fail] - fn test_div_0() { - let _a = _1 / _0; - } - } - - #[test] - fn test_round() { - assert_eq!(_1_3.ceil(), _1); - assert_eq!(_1_3.floor(), _0); - assert_eq!(_1_3.round(), _0); - assert_eq!(_1_3.trunc(), _0); - - assert_eq!(_neg1_3.ceil(), _0); - assert_eq!(_neg1_3.floor(), -_1); - assert_eq!(_neg1_3.round(), _0); - assert_eq!(_neg1_3.trunc(), _0); - - assert_eq!(_2_3.ceil(), _1); - assert_eq!(_2_3.floor(), _0); - assert_eq!(_2_3.round(), _1); - assert_eq!(_2_3.trunc(), _0); - - assert_eq!(_neg2_3.ceil(), _0); - assert_eq!(_neg2_3.floor(), -_1); - assert_eq!(_neg2_3.round(), -_1); - assert_eq!(_neg2_3.trunc(), _0); - - assert_eq!(_1_2.ceil(), _1); - assert_eq!(_1_2.floor(), _0); - assert_eq!(_1_2.round(), _1); - assert_eq!(_1_2.trunc(), _0); - - assert_eq!(_neg1_2.ceil(), _0); - assert_eq!(_neg1_2.floor(), -_1); - assert_eq!(_neg1_2.round(), -_1); - assert_eq!(_neg1_2.trunc(), _0); - - assert_eq!(_1.ceil(), _1); - assert_eq!(_1.floor(), _1); - assert_eq!(_1.round(), _1); - assert_eq!(_1.trunc(), _1); - - // Overflow checks - - let _neg1 = Ratio::from_integer(-1); - let _large_rat1 = Ratio::new(i32::MAX, i32::MAX-1); - let _large_rat2 = Ratio::new(i32::MAX-1, i32::MAX); - let _large_rat3 = Ratio::new(i32::MIN+2, i32::MIN+1); - let _large_rat4 = Ratio::new(i32::MIN+1, i32::MIN+2); - let _large_rat5 = Ratio::new(i32::MIN+2, i32::MAX); - let _large_rat6 = Ratio::new(i32::MAX, i32::MIN+2); - let _large_rat7 = Ratio::new(1, i32::MIN+1); - let _large_rat8 = Ratio::new(1, i32::MAX); - - assert_eq!(_large_rat1.round(), One::one()); - assert_eq!(_large_rat2.round(), One::one()); - assert_eq!(_large_rat3.round(), One::one()); - assert_eq!(_large_rat4.round(), One::one()); - assert_eq!(_large_rat5.round(), _neg1); - assert_eq!(_large_rat6.round(), _neg1); - assert_eq!(_large_rat7.round(), Zero::zero()); - assert_eq!(_large_rat8.round(), Zero::zero()); - } - - #[test] - fn test_fract() { - assert_eq!(_1.fract(), _0); - assert_eq!(_neg1_2.fract(), _neg1_2); - assert_eq!(_1_2.fract(), _1_2); - assert_eq!(_3_2.fract(), _1_2); - } - - #[test] - fn test_recip() { - assert_eq!(_1 * _1.recip(), _1); - assert_eq!(_2 * _2.recip(), _1); - assert_eq!(_1_2 * _1_2.recip(), _1); - assert_eq!(_3_2 * _3_2.recip(), _1); - assert_eq!(_neg1_2 * _neg1_2.recip(), _1); - } - - #[test] - fn test_to_from_str() { - fn test(r: Rational, s: String) { - assert_eq!(FromStr::from_str(s.as_slice()), Some(r)); - assert_eq!(r.to_string(), s); - } - test(_1, "1".to_string()); - test(_0, "0".to_string()); - test(_1_2, "1/2".to_string()); - test(_3_2, "3/2".to_string()); - test(_2, "2".to_string()); - test(_neg1_2, "-1/2".to_string()); - } - #[test] - fn test_from_str_fail() { - fn test(s: &str) { - let rational: Option<Rational> = FromStr::from_str(s); - assert_eq!(rational, None); - } - - let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1"]; - for &s in xs.iter() { - test(s); - } - } - - #[test] - fn test_to_from_str_radix() { - fn test(r: Rational, s: String, n: uint) { - assert_eq!(FromStrRadix::from_str_radix(s.as_slice(), n), - Some(r)); - assert_eq!(r.to_str_radix(n).to_string(), s); - } - fn test3(r: Rational, s: String) { test(r, s, 3) } - fn test16(r: Rational, s: String) { test(r, s, 16) } - - test3(_1, "1/1".to_string()); - test3(_0, "0/1".to_string()); - test3(_1_2, "1/2".to_string()); - test3(_3_2, "10/2".to_string()); - test3(_2, "2/1".to_string()); - test3(_neg1_2, "-1/2".to_string()); - test3(_neg1_2 / _2, "-1/11".to_string()); - - test16(_1, "1/1".to_string()); - test16(_0, "0/1".to_string()); - test16(_1_2, "1/2".to_string()); - test16(_3_2, "3/2".to_string()); - test16(_2, "2/1".to_string()); - test16(_neg1_2, "-1/2".to_string()); - test16(_neg1_2 / _2, "-1/4".to_string()); - test16(Ratio::new(13i,15i), "d/f".to_string()); - test16(_1_2*_1_2*_1_2*_1_2, "1/10".to_string()); - } - - #[test] - fn test_from_str_radix_fail() { - fn test(s: &str) { - let radix: Option<Rational> = FromStrRadix::from_str_radix(s, 3); - assert_eq!(radix, None); - } - - let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1", "3/2"]; - for &s in xs.iter() { - test(s); - } - } - - #[test] - fn test_from_float() { - fn test<T: Float>(given: T, (numer, denom): (&str, &str)) { - let ratio: BigRational = Ratio::from_float(given).unwrap(); - assert_eq!(ratio, Ratio::new( - FromStr::from_str(numer).unwrap(), - FromStr::from_str(denom).unwrap())); - } - - // f32 - test(3.14159265359f32, ("13176795", "4194304")); - test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); - test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1")); - test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376")); - test(684729.48391f32, ("1369459", "2")); - test(-8573.5918555f32, ("-4389679", "512")); - - // f64 - test(3.14159265359f64, ("3537118876014453", "1125899906842624")); - test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); - test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1")); - test(684729.48391f64, ("367611342500051", "536870912")); - test(-8573.5918555f64, ("-4713381968463931", "549755813888")); - test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376")); - } - - #[test] - fn test_from_float_fail() { - use std::{f32, f64}; - - assert_eq!(Ratio::from_float(f32::NAN), None); - assert_eq!(Ratio::from_float(f32::INFINITY), None); - assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); - assert_eq!(Ratio::from_float(f64::NAN), None); - assert_eq!(Ratio::from_float(f64::INFINITY), None); - assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); - } - - #[test] - fn test_signed() { - assert_eq!(_neg1_2.abs(), _1_2); - assert_eq!(_3_2.abs_sub(&_1_2), _1); - assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); - assert_eq!(_1_2.signum(), One::one()); - assert_eq!(_neg1_2.signum(), - num::one::<Ratio<int>>()); - assert!(_neg1_2.is_negative()); - assert!(! _neg1_2.is_positive()); - assert!(! _1_2.is_negative()); - } - - #[test] - fn test_hash() { - assert!(hash(&_0) != hash(&_1)); - assert!(hash(&_0) != hash(&_3_2)); - } -} |
