about summary refs log tree commit diff
path: root/src/libnum/rational.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/libnum/rational.rs')
-rw-r--r--src/libnum/rational.rs803
1 files changed, 0 insertions, 803 deletions
diff --git a/src/libnum/rational.rs b/src/libnum/rational.rs
deleted file mode 100644
index ceaf685c19a..00000000000
--- a/src/libnum/rational.rs
+++ /dev/null
@@ -1,803 +0,0 @@
-// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
-// file at the top-level directory of this distribution and at
-// http://rust-lang.org/COPYRIGHT.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Rational numbers
-
-use Integer;
-
-use std::cmp;
-use std::fmt;
-use std::from_str::FromStr;
-use std::num;
-use std::num::{Zero, One, ToStrRadix, FromStrRadix};
-
-use bigint::{BigInt, BigUint, Sign, Plus, Minus};
-
-/// Represents the ratio between 2 numbers.
-#[deriving(Clone, Hash)]
-#[allow(missing_doc)]
-pub struct Ratio<T> {
-    numer: T,
-    denom: T
-}
-
-/// Alias for a `Ratio` of machine-sized integers.
-pub type Rational = Ratio<int>;
-pub type Rational32 = Ratio<i32>;
-pub type Rational64 = Ratio<i64>;
-
-/// Alias for arbitrary precision rationals.
-pub type BigRational = Ratio<BigInt>;
-
-impl<T: Clone + Integer + PartialOrd>
-    Ratio<T> {
-    /// Creates a ratio representing the integer `t`.
-    #[inline]
-    pub fn from_integer(t: T) -> Ratio<T> {
-        Ratio::new_raw(t, One::one())
-    }
-
-    /// Creates a ratio without checking for `denom == 0` or reducing.
-    #[inline]
-    pub fn new_raw(numer: T, denom: T) -> Ratio<T> {
-        Ratio { numer: numer, denom: denom }
-    }
-
-    /// Create a new Ratio. Fails if `denom == 0`.
-    #[inline]
-    pub fn new(numer: T, denom: T) -> Ratio<T> {
-        if denom == Zero::zero() {
-            fail!("denominator == 0");
-        }
-        let mut ret = Ratio::new_raw(numer, denom);
-        ret.reduce();
-        ret
-    }
-
-    /// Converts to an integer.
-    #[inline]
-    pub fn to_integer(&self) -> T {
-        self.trunc().numer
-    }
-
-    /// Gets an immutable reference to the numerator.
-    #[inline]
-    pub fn numer<'a>(&'a self) -> &'a T {
-        &self.numer
-    }
-
-    /// Gets an immutable reference to the denominator.
-    #[inline]
-    pub fn denom<'a>(&'a self) -> &'a T {
-        &self.denom
-    }
-
-    /// Returns true if the rational number is an integer (denominator is 1).
-    #[inline]
-    pub fn is_integer(&self) -> bool {
-        self.denom == One::one()
-    }
-
-    /// Put self into lowest terms, with denom > 0.
-    fn reduce(&mut self) {
-        let g : T = self.numer.gcd(&self.denom);
-
-        // FIXME(#5992): assignment operator overloads
-        // self.numer /= g;
-        self.numer = self.numer / g;
-        // FIXME(#5992): assignment operator overloads
-        // self.denom /= g;
-        self.denom = self.denom / g;
-
-        // keep denom positive!
-        if self.denom < Zero::zero() {
-            self.numer = -self.numer;
-            self.denom = -self.denom;
-        }
-    }
-
-    /// Returns a `reduce`d copy of self.
-    pub fn reduced(&self) -> Ratio<T> {
-        let mut ret = self.clone();
-        ret.reduce();
-        ret
-    }
-
-    /// Returns the reciprocal.
-    #[inline]
-    pub fn recip(&self) -> Ratio<T> {
-        Ratio::new_raw(self.denom.clone(), self.numer.clone())
-    }
-
-    /// Rounds towards minus infinity.
-    #[inline]
-    pub fn floor(&self) -> Ratio<T> {
-        if *self < Zero::zero() {
-            Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
-        } else {
-            Ratio::from_integer(self.numer / self.denom)
-        }
-    }
-
-    /// Rounds towards plus infinity.
-    #[inline]
-    pub fn ceil(&self) -> Ratio<T> {
-        if *self < Zero::zero() {
-            Ratio::from_integer(self.numer / self.denom)
-        } else {
-            Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
-        }
-    }
-
-    /// Rounds to the nearest integer. Rounds half-way cases away from zero.
-    #[inline]
-    pub fn round(&self) -> Ratio<T> {
-        let one: T = One::one();
-        let two: T = one + one;
-
-        // Find unsigned fractional part of rational number
-        let fractional = self.fract().abs();
-
-        // The algorithm compares the unsigned fractional part with 1/2, that
-        // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use
-        // a >= (b/2)+1. This avoids overflow issues.
-        let half_or_larger = if fractional.denom().is_even() {
-            *fractional.numer() >= *fractional.denom() / two
-        } else {
-            *fractional.numer() >= (*fractional.denom() / two) + one
-        };
-
-        if half_or_larger {
-            if *self >= Zero::zero() {
-                self.trunc() + One::one()
-            } else {
-                self.trunc() - One::one()
-            }
-        } else {
-            self.trunc()
-        }
-    }
-
-    /// Rounds towards zero.
-    #[inline]
-    pub fn trunc(&self) -> Ratio<T> {
-        Ratio::from_integer(self.numer / self.denom)
-    }
-
-    /// Returns the fractional part of a number.
-    #[inline]
-    pub fn fract(&self) -> Ratio<T> {
-        Ratio::new_raw(self.numer % self.denom, self.denom.clone())
-    }
-}
-
-impl Ratio<BigInt> {
-    /// Converts a float into a rational number.
-    pub fn from_float<T: Float>(f: T) -> Option<BigRational> {
-        if !f.is_finite() {
-            return None;
-        }
-        let (mantissa, exponent, sign) = f.integer_decode();
-        let bigint_sign: Sign = if sign == 1 { Plus } else { Minus };
-        if exponent < 0 {
-            let one: BigInt = One::one();
-            let denom: BigInt = one << ((-exponent) as uint);
-            let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
-            Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))
-        } else {
-            let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
-            numer = numer << (exponent as uint);
-            Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer)))
-        }
-    }
-}
-
-/* Comparisons */
-
-// comparing a/b and c/d is the same as comparing a*d and b*c, so we
-// abstract that pattern. The following macro takes a trait and either
-// a comma-separated list of "method name -> return value" or just
-// "method name" (return value is bool in that case)
-macro_rules! cmp_impl {
-    (impl $imp:ident, $($method:ident),+) => {
-        cmp_impl!(impl $imp, $($method -> bool),+)
-    };
-    // return something other than a Ratio<T>
-    (impl $imp:ident, $($method:ident -> $res:ty),*) => {
-        impl<T: Mul<T,T> + $imp> $imp for Ratio<T> {
-            $(
-                #[inline]
-                fn $method(&self, other: &Ratio<T>) -> $res {
-                    (self.numer * other.denom). $method (&(self.denom*other.numer))
-                }
-            )*
-        }
-    };
-}
-cmp_impl!(impl PartialEq, eq, ne)
-cmp_impl!(impl PartialOrd, lt -> bool, gt -> bool, le -> bool, ge -> bool,
-          partial_cmp -> Option<cmp::Ordering>)
-cmp_impl!(impl Eq, )
-cmp_impl!(impl Ord, cmp -> cmp::Ordering)
-
-/* Arithmetic */
-// a/b * c/d = (a*c)/(b*d)
-impl<T: Clone + Integer + PartialOrd>
-    Mul<Ratio<T>,Ratio<T>> for Ratio<T> {
-    #[inline]
-    fn mul(&self, rhs: &Ratio<T>) -> Ratio<T> {
-        Ratio::new(self.numer * rhs.numer, self.denom * rhs.denom)
-    }
-}
-
-// (a/b) / (c/d) = (a*d)/(b*c)
-impl<T: Clone + Integer + PartialOrd>
-    Div<Ratio<T>,Ratio<T>> for Ratio<T> {
-    #[inline]
-    fn div(&self, rhs: &Ratio<T>) -> Ratio<T> {
-        Ratio::new(self.numer * rhs.denom, self.denom * rhs.numer)
-    }
-}
-
-// Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern
-macro_rules! arith_impl {
-    (impl $imp:ident, $method:ident) => {
-        impl<T: Clone + Integer + PartialOrd>
-            $imp<Ratio<T>,Ratio<T>> for Ratio<T> {
-            #[inline]
-            fn $method(&self, rhs: &Ratio<T>) -> Ratio<T> {
-                Ratio::new((self.numer * rhs.denom).$method(&(self.denom * rhs.numer)),
-                           self.denom * rhs.denom)
-            }
-        }
-    }
-}
-
-// a/b + c/d = (a*d + b*c)/(b*d)
-arith_impl!(impl Add, add)
-
-// a/b - c/d = (a*d - b*c)/(b*d)
-arith_impl!(impl Sub, sub)
-
-// a/b % c/d = (a*d % b*c)/(b*d)
-arith_impl!(impl Rem, rem)
-
-impl<T: Clone + Integer + PartialOrd>
-    Neg<Ratio<T>> for Ratio<T> {
-    #[inline]
-    fn neg(&self) -> Ratio<T> {
-        Ratio::new_raw(-self.numer, self.denom.clone())
-    }
-}
-
-/* Constants */
-impl<T: Clone + Integer + PartialOrd>
-    Zero for Ratio<T> {
-    #[inline]
-    fn zero() -> Ratio<T> {
-        Ratio::new_raw(Zero::zero(), One::one())
-    }
-
-    #[inline]
-    fn is_zero(&self) -> bool {
-        *self == Zero::zero()
-    }
-}
-
-impl<T: Clone + Integer + PartialOrd>
-    One for Ratio<T> {
-    #[inline]
-    fn one() -> Ratio<T> {
-        Ratio::new_raw(One::one(), One::one())
-    }
-}
-
-impl<T: Clone + Integer + PartialOrd>
-    Num for Ratio<T> {}
-
-impl<T: Clone + Integer + PartialOrd>
-    num::Signed for Ratio<T> {
-    #[inline]
-    fn abs(&self) -> Ratio<T> {
-        if self.is_negative() { -self.clone() } else { self.clone() }
-    }
-
-    #[inline]
-    fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
-        if *self <= *other { Zero::zero() } else { *self - *other }
-    }
-
-    #[inline]
-    fn signum(&self) -> Ratio<T> {
-        if *self > Zero::zero() {
-            num::one()
-        } else if self.is_zero() {
-            num::zero()
-        } else {
-            - num::one::<Ratio<T>>()
-        }
-    }
-
-    #[inline]
-    fn is_positive(&self) -> bool { *self > Zero::zero() }
-
-    #[inline]
-    fn is_negative(&self) -> bool { *self < Zero::zero() }
-}
-
-/* String conversions */
-impl<T: fmt::Show + Eq + One> fmt::Show for Ratio<T> {
-    /// Renders as `numer/denom`. If denom=1, renders as numer.
-    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
-        if self.denom == One::one() {
-            write!(f, "{}", self.numer)
-        } else {
-            write!(f, "{}/{}", self.numer, self.denom)
-        }
-    }
-}
-
-impl<T: ToStrRadix> ToStrRadix for Ratio<T> {
-    /// Renders as `numer/denom` where the numbers are in base `radix`.
-    fn to_str_radix(&self, radix: uint) -> String {
-        format!("{}/{}",
-                self.numer.to_str_radix(radix),
-                self.denom.to_str_radix(radix))
-    }
-}
-
-impl<T: FromStr + Clone + Integer + PartialOrd>
-    FromStr for Ratio<T> {
-    /// Parses `numer/denom` or just `numer`.
-    fn from_str(s: &str) -> Option<Ratio<T>> {
-        let mut split = s.splitn(1, '/');
-
-        let num = split.next().and_then(|n| FromStr::from_str(n));
-        let den = split.next().or(Some("1")).and_then(|d| FromStr::from_str(d));
-
-        match (num, den) {
-            (Some(n), Some(d)) => Some(Ratio::new(n, d)),
-            _ => None
-        }
-    }
-}
-
-impl<T: FromStrRadix + Clone + Integer + PartialOrd>
-    FromStrRadix for Ratio<T> {
-    /// Parses `numer/denom` where the numbers are in base `radix`.
-    fn from_str_radix(s: &str, radix: uint) -> Option<Ratio<T>> {
-        let split: Vec<&str> = s.splitn(1, '/').collect();
-        if split.len() < 2 {
-            None
-        } else {
-            let a_option: Option<T> = FromStrRadix::from_str_radix(
-                *split.get(0),
-                radix);
-            a_option.and_then(|a| {
-                let b_option: Option<T> =
-                    FromStrRadix::from_str_radix(*split.get(1), radix);
-                b_option.and_then(|b| {
-                    Some(Ratio::new(a.clone(), b.clone()))
-                })
-            })
-        }
-    }
-}
-
-#[cfg(test)]
-mod test {
-
-    use super::{Ratio, Rational, BigRational};
-    use std::num::{Zero, One, FromStrRadix, FromPrimitive, ToStrRadix};
-    use std::from_str::FromStr;
-    use std::hash::hash;
-    use std::num;
-    use std::i32;
-
-    pub static _0 : Rational = Ratio { numer: 0, denom: 1};
-    pub static _1 : Rational = Ratio { numer: 1, denom: 1};
-    pub static _2: Rational = Ratio { numer: 2, denom: 1};
-    pub static _1_2: Rational = Ratio { numer: 1, denom: 2};
-    pub static _3_2: Rational = Ratio { numer: 3, denom: 2};
-    #[allow(non_uppercase_statics)]
-    pub static _neg1_2: Rational = Ratio { numer: -1, denom: 2};
-    pub static _1_3: Rational = Ratio { numer: 1, denom: 3};
-    #[allow(non_uppercase_statics)]
-    pub static _neg1_3: Rational = Ratio { numer: -1, denom: 3};
-    pub static _2_3: Rational = Ratio { numer: 2, denom: 3};
-    #[allow(non_uppercase_statics)]
-    pub static _neg2_3: Rational = Ratio { numer: -2, denom: 3};
-
-    pub fn to_big(n: Rational) -> BigRational {
-        Ratio::new(
-            FromPrimitive::from_int(n.numer).unwrap(),
-            FromPrimitive::from_int(n.denom).unwrap()
-        )
-    }
-
-    #[test]
-    fn test_test_constants() {
-        // check our constants are what Ratio::new etc. would make.
-        assert_eq!(_0, Zero::zero());
-        assert_eq!(_1, One::one());
-        assert_eq!(_2, Ratio::from_integer(2i));
-        assert_eq!(_1_2, Ratio::new(1i,2i));
-        assert_eq!(_3_2, Ratio::new(3i,2i));
-        assert_eq!(_neg1_2, Ratio::new(-1i,2i));
-    }
-
-    #[test]
-    fn test_new_reduce() {
-        let one22 = Ratio::new(2i,2);
-
-        assert_eq!(one22, One::one());
-    }
-    #[test]
-    #[should_fail]
-    fn test_new_zero() {
-        let _a = Ratio::new(1i,0);
-    }
-
-
-    #[test]
-    fn test_cmp() {
-        assert!(_0 == _0 && _1 == _1);
-        assert!(_0 != _1 && _1 != _0);
-        assert!(_0 < _1 && !(_1 < _0));
-        assert!(_1 > _0 && !(_0 > _1));
-
-        assert!(_0 <= _0 && _1 <= _1);
-        assert!(_0 <= _1 && !(_1 <= _0));
-
-        assert!(_0 >= _0 && _1 >= _1);
-        assert!(_1 >= _0 && !(_0 >= _1));
-    }
-
-
-    #[test]
-    fn test_to_integer() {
-        assert_eq!(_0.to_integer(), 0);
-        assert_eq!(_1.to_integer(), 1);
-        assert_eq!(_2.to_integer(), 2);
-        assert_eq!(_1_2.to_integer(), 0);
-        assert_eq!(_3_2.to_integer(), 1);
-        assert_eq!(_neg1_2.to_integer(), 0);
-    }
-
-
-    #[test]
-    fn test_numer() {
-        assert_eq!(_0.numer(), &0);
-        assert_eq!(_1.numer(), &1);
-        assert_eq!(_2.numer(), &2);
-        assert_eq!(_1_2.numer(), &1);
-        assert_eq!(_3_2.numer(), &3);
-        assert_eq!(_neg1_2.numer(), &(-1));
-    }
-    #[test]
-    fn test_denom() {
-        assert_eq!(_0.denom(), &1);
-        assert_eq!(_1.denom(), &1);
-        assert_eq!(_2.denom(), &1);
-        assert_eq!(_1_2.denom(), &2);
-        assert_eq!(_3_2.denom(), &2);
-        assert_eq!(_neg1_2.denom(), &2);
-    }
-
-
-    #[test]
-    fn test_is_integer() {
-        assert!(_0.is_integer());
-        assert!(_1.is_integer());
-        assert!(_2.is_integer());
-        assert!(!_1_2.is_integer());
-        assert!(!_3_2.is_integer());
-        assert!(!_neg1_2.is_integer());
-    }
-
-    #[test]
-    fn test_show() {
-        assert_eq!(format!("{}", _2), "2".to_string());
-        assert_eq!(format!("{}", _1_2), "1/2".to_string());
-        assert_eq!(format!("{}", _0), "0".to_string());
-        assert_eq!(format!("{}", Ratio::from_integer(-2i)), "-2".to_string());
-    }
-
-    mod arith {
-        use super::{_0, _1, _2, _1_2, _3_2, _neg1_2, to_big};
-        use super::super::{Ratio, Rational};
-
-        #[test]
-        fn test_add() {
-            fn test(a: Rational, b: Rational, c: Rational) {
-                assert_eq!(a + b, c);
-                assert_eq!(to_big(a) + to_big(b), to_big(c));
-            }
-
-            test(_1, _1_2, _3_2);
-            test(_1, _1, _2);
-            test(_1_2, _3_2, _2);
-            test(_1_2, _neg1_2, _0);
-        }
-
-        #[test]
-        fn test_sub() {
-            fn test(a: Rational, b: Rational, c: Rational) {
-                assert_eq!(a - b, c);
-                assert_eq!(to_big(a) - to_big(b), to_big(c))
-            }
-
-            test(_1, _1_2, _1_2);
-            test(_3_2, _1_2, _1);
-            test(_1, _neg1_2, _3_2);
-        }
-
-        #[test]
-        fn test_mul() {
-            fn test(a: Rational, b: Rational, c: Rational) {
-                assert_eq!(a * b, c);
-                assert_eq!(to_big(a) * to_big(b), to_big(c))
-            }
-
-            test(_1, _1_2, _1_2);
-            test(_1_2, _3_2, Ratio::new(3i,4i));
-            test(_1_2, _neg1_2, Ratio::new(-1i, 4i));
-        }
-
-        #[test]
-        fn test_div() {
-            fn test(a: Rational, b: Rational, c: Rational) {
-                assert_eq!(a / b, c);
-                assert_eq!(to_big(a) / to_big(b), to_big(c))
-            }
-
-            test(_1, _1_2, _2);
-            test(_3_2, _1_2, _1 + _2);
-            test(_1, _neg1_2, _neg1_2 + _neg1_2 + _neg1_2 + _neg1_2);
-        }
-
-        #[test]
-        fn test_rem() {
-            fn test(a: Rational, b: Rational, c: Rational) {
-                assert_eq!(a % b, c);
-                assert_eq!(to_big(a) % to_big(b), to_big(c))
-            }
-
-            test(_3_2, _1, _1_2);
-            test(_2, _neg1_2, _0);
-            test(_1_2, _2,  _1_2);
-        }
-
-        #[test]
-        fn test_neg() {
-            fn test(a: Rational, b: Rational) {
-                assert_eq!(-a, b);
-                assert_eq!(-to_big(a), to_big(b))
-            }
-
-            test(_0, _0);
-            test(_1_2, _neg1_2);
-            test(-_1, _1);
-        }
-        #[test]
-        fn test_zero() {
-            assert_eq!(_0 + _0, _0);
-            assert_eq!(_0 * _0, _0);
-            assert_eq!(_0 * _1, _0);
-            assert_eq!(_0 / _neg1_2, _0);
-            assert_eq!(_0 - _0, _0);
-        }
-        #[test]
-        #[should_fail]
-        fn test_div_0() {
-            let _a =  _1 / _0;
-        }
-    }
-
-    #[test]
-    fn test_round() {
-        assert_eq!(_1_3.ceil(), _1);
-        assert_eq!(_1_3.floor(), _0);
-        assert_eq!(_1_3.round(), _0);
-        assert_eq!(_1_3.trunc(), _0);
-
-        assert_eq!(_neg1_3.ceil(), _0);
-        assert_eq!(_neg1_3.floor(), -_1);
-        assert_eq!(_neg1_3.round(), _0);
-        assert_eq!(_neg1_3.trunc(), _0);
-
-        assert_eq!(_2_3.ceil(), _1);
-        assert_eq!(_2_3.floor(), _0);
-        assert_eq!(_2_3.round(), _1);
-        assert_eq!(_2_3.trunc(), _0);
-
-        assert_eq!(_neg2_3.ceil(), _0);
-        assert_eq!(_neg2_3.floor(), -_1);
-        assert_eq!(_neg2_3.round(), -_1);
-        assert_eq!(_neg2_3.trunc(), _0);
-
-        assert_eq!(_1_2.ceil(), _1);
-        assert_eq!(_1_2.floor(), _0);
-        assert_eq!(_1_2.round(), _1);
-        assert_eq!(_1_2.trunc(), _0);
-
-        assert_eq!(_neg1_2.ceil(), _0);
-        assert_eq!(_neg1_2.floor(), -_1);
-        assert_eq!(_neg1_2.round(), -_1);
-        assert_eq!(_neg1_2.trunc(), _0);
-
-        assert_eq!(_1.ceil(), _1);
-        assert_eq!(_1.floor(), _1);
-        assert_eq!(_1.round(), _1);
-        assert_eq!(_1.trunc(), _1);
-
-        // Overflow checks
-
-        let _neg1 = Ratio::from_integer(-1);
-        let _large_rat1 = Ratio::new(i32::MAX, i32::MAX-1);
-        let _large_rat2 = Ratio::new(i32::MAX-1, i32::MAX);
-        let _large_rat3 = Ratio::new(i32::MIN+2, i32::MIN+1);
-        let _large_rat4 = Ratio::new(i32::MIN+1, i32::MIN+2);
-        let _large_rat5 = Ratio::new(i32::MIN+2, i32::MAX);
-        let _large_rat6 = Ratio::new(i32::MAX, i32::MIN+2);
-        let _large_rat7 = Ratio::new(1, i32::MIN+1);
-        let _large_rat8 = Ratio::new(1, i32::MAX);
-
-        assert_eq!(_large_rat1.round(), One::one());
-        assert_eq!(_large_rat2.round(), One::one());
-        assert_eq!(_large_rat3.round(), One::one());
-        assert_eq!(_large_rat4.round(), One::one());
-        assert_eq!(_large_rat5.round(), _neg1);
-        assert_eq!(_large_rat6.round(), _neg1);
-        assert_eq!(_large_rat7.round(), Zero::zero());
-        assert_eq!(_large_rat8.round(), Zero::zero());
-    }
-
-    #[test]
-    fn test_fract() {
-        assert_eq!(_1.fract(), _0);
-        assert_eq!(_neg1_2.fract(), _neg1_2);
-        assert_eq!(_1_2.fract(), _1_2);
-        assert_eq!(_3_2.fract(), _1_2);
-    }
-
-    #[test]
-    fn test_recip() {
-        assert_eq!(_1 * _1.recip(), _1);
-        assert_eq!(_2 * _2.recip(), _1);
-        assert_eq!(_1_2 * _1_2.recip(), _1);
-        assert_eq!(_3_2 * _3_2.recip(), _1);
-        assert_eq!(_neg1_2 * _neg1_2.recip(), _1);
-    }
-
-    #[test]
-    fn test_to_from_str() {
-        fn test(r: Rational, s: String) {
-            assert_eq!(FromStr::from_str(s.as_slice()), Some(r));
-            assert_eq!(r.to_string(), s);
-        }
-        test(_1, "1".to_string());
-        test(_0, "0".to_string());
-        test(_1_2, "1/2".to_string());
-        test(_3_2, "3/2".to_string());
-        test(_2, "2".to_string());
-        test(_neg1_2, "-1/2".to_string());
-    }
-    #[test]
-    fn test_from_str_fail() {
-        fn test(s: &str) {
-            let rational: Option<Rational> = FromStr::from_str(s);
-            assert_eq!(rational, None);
-        }
-
-        let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1"];
-        for &s in xs.iter() {
-            test(s);
-        }
-    }
-
-    #[test]
-    fn test_to_from_str_radix() {
-        fn test(r: Rational, s: String, n: uint) {
-            assert_eq!(FromStrRadix::from_str_radix(s.as_slice(), n),
-                       Some(r));
-            assert_eq!(r.to_str_radix(n).to_string(), s);
-        }
-        fn test3(r: Rational, s: String) { test(r, s, 3) }
-        fn test16(r: Rational, s: String) { test(r, s, 16) }
-
-        test3(_1, "1/1".to_string());
-        test3(_0, "0/1".to_string());
-        test3(_1_2, "1/2".to_string());
-        test3(_3_2, "10/2".to_string());
-        test3(_2, "2/1".to_string());
-        test3(_neg1_2, "-1/2".to_string());
-        test3(_neg1_2 / _2, "-1/11".to_string());
-
-        test16(_1, "1/1".to_string());
-        test16(_0, "0/1".to_string());
-        test16(_1_2, "1/2".to_string());
-        test16(_3_2, "3/2".to_string());
-        test16(_2, "2/1".to_string());
-        test16(_neg1_2, "-1/2".to_string());
-        test16(_neg1_2 / _2, "-1/4".to_string());
-        test16(Ratio::new(13i,15i), "d/f".to_string());
-        test16(_1_2*_1_2*_1_2*_1_2, "1/10".to_string());
-    }
-
-    #[test]
-    fn test_from_str_radix_fail() {
-        fn test(s: &str) {
-            let radix: Option<Rational> = FromStrRadix::from_str_radix(s, 3);
-            assert_eq!(radix, None);
-        }
-
-        let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1", "3/2"];
-        for &s in xs.iter() {
-            test(s);
-        }
-    }
-
-    #[test]
-    fn test_from_float() {
-        fn test<T: Float>(given: T, (numer, denom): (&str, &str)) {
-            let ratio: BigRational = Ratio::from_float(given).unwrap();
-            assert_eq!(ratio, Ratio::new(
-                FromStr::from_str(numer).unwrap(),
-                FromStr::from_str(denom).unwrap()));
-        }
-
-        // f32
-        test(3.14159265359f32, ("13176795", "4194304"));
-        test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
-        test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1"));
-        test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376"));
-        test(684729.48391f32, ("1369459", "2"));
-        test(-8573.5918555f32, ("-4389679", "512"));
-
-        // f64
-        test(3.14159265359f64, ("3537118876014453", "1125899906842624"));
-        test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
-        test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1"));
-        test(684729.48391f64, ("367611342500051", "536870912"));
-        test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
-        test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376"));
-    }
-
-    #[test]
-    fn test_from_float_fail() {
-        use std::{f32, f64};
-
-        assert_eq!(Ratio::from_float(f32::NAN), None);
-        assert_eq!(Ratio::from_float(f32::INFINITY), None);
-        assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);
-        assert_eq!(Ratio::from_float(f64::NAN), None);
-        assert_eq!(Ratio::from_float(f64::INFINITY), None);
-        assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);
-    }
-
-    #[test]
-    fn test_signed() {
-        assert_eq!(_neg1_2.abs(), _1_2);
-        assert_eq!(_3_2.abs_sub(&_1_2), _1);
-        assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
-        assert_eq!(_1_2.signum(), One::one());
-        assert_eq!(_neg1_2.signum(), - num::one::<Ratio<int>>());
-        assert!(_neg1_2.is_negative());
-        assert!(! _neg1_2.is_positive());
-        assert!(! _1_2.is_negative());
-    }
-
-    #[test]
-    fn test_hash() {
-        assert!(hash(&_0) != hash(&_1));
-        assert!(hash(&_0) != hash(&_3_2));
-    }
-}