about summary refs log tree commit diff
path: root/src/librustc_parse/parser/expr.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/librustc_parse/parser/expr.rs')
-rw-r--r--src/librustc_parse/parser/expr.rs1963
1 files changed, 1963 insertions, 0 deletions
diff --git a/src/librustc_parse/parser/expr.rs b/src/librustc_parse/parser/expr.rs
new file mode 100644
index 00000000000..dadb91f8b3c
--- /dev/null
+++ b/src/librustc_parse/parser/expr.rs
@@ -0,0 +1,1963 @@
+use super::{Parser, Restrictions, PrevTokenKind, TokenType, PathStyle, BlockMode};
+use super::{SemiColonMode, SeqSep, TokenExpectType};
+use super::pat::{GateOr, PARAM_EXPECTED};
+use super::diagnostics::Error;
+use crate::maybe_recover_from_interpolated_ty_qpath;
+
+use syntax::ast::{
+    self, DUMMY_NODE_ID, Attribute, AttrStyle, Ident, CaptureBy, BlockCheckMode,
+    Expr, ExprKind, RangeLimits, Label, Movability, IsAsync, Arm, Ty, TyKind,
+    FunctionRetTy, Param, FnDecl, BinOpKind, BinOp, UnOp, Mac, AnonConst, Field, Lit,
+};
+use syntax::token::{self, Token, TokenKind};
+use syntax::print::pprust;
+use syntax::ptr::P;
+use syntax::source_map::{self, Span};
+use syntax::util::classify;
+use syntax::util::literal::LitError;
+use syntax::util::parser::{AssocOp, Fixity, prec_let_scrutinee_needs_par};
+use syntax_pos::symbol::{kw, sym};
+use syntax_pos::Symbol;
+use errors::{PResult, Applicability};
+use std::mem;
+use rustc_data_structures::thin_vec::ThinVec;
+
+/// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
+/// dropped into the token stream, which happens while parsing the result of
+/// macro expansion). Placement of these is not as complex as I feared it would
+/// be. The important thing is to make sure that lookahead doesn't balk at
+/// `token::Interpolated` tokens.
+macro_rules! maybe_whole_expr {
+    ($p:expr) => {
+        if let token::Interpolated(nt) = &$p.token.kind {
+            match &**nt {
+                token::NtExpr(e) | token::NtLiteral(e) => {
+                    let e = e.clone();
+                    $p.bump();
+                    return Ok(e);
+                }
+                token::NtPath(path) => {
+                    let path = path.clone();
+                    $p.bump();
+                    return Ok($p.mk_expr(
+                        $p.token.span, ExprKind::Path(None, path), ThinVec::new()
+                    ));
+                }
+                token::NtBlock(block) => {
+                    let block = block.clone();
+                    $p.bump();
+                    return Ok($p.mk_expr(
+                        $p.token.span, ExprKind::Block(block, None), ThinVec::new()
+                    ));
+                }
+                // N.B., `NtIdent(ident)` is normalized to `Ident` in `fn bump`.
+                _ => {},
+            };
+        }
+    }
+}
+
+#[derive(Debug)]
+pub(super) enum LhsExpr {
+    NotYetParsed,
+    AttributesParsed(ThinVec<Attribute>),
+    AlreadyParsed(P<Expr>),
+}
+
+impl From<Option<ThinVec<Attribute>>> for LhsExpr {
+    /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
+    /// and `None` into `LhsExpr::NotYetParsed`.
+    ///
+    /// This conversion does not allocate.
+    fn from(o: Option<ThinVec<Attribute>>) -> Self {
+        if let Some(attrs) = o {
+            LhsExpr::AttributesParsed(attrs)
+        } else {
+            LhsExpr::NotYetParsed
+        }
+    }
+}
+
+impl From<P<Expr>> for LhsExpr {
+    /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
+    ///
+    /// This conversion does not allocate.
+    fn from(expr: P<Expr>) -> Self {
+        LhsExpr::AlreadyParsed(expr)
+    }
+}
+
+impl<'a> Parser<'a> {
+    /// Parses an expression.
+    #[inline]
+    pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
+        self.parse_expr_res(Restrictions::empty(), None)
+    }
+
+    fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
+        self.parse_paren_comma_seq(|p| {
+            match p.parse_expr() {
+                Ok(expr) => Ok(expr),
+                Err(mut err) => match p.token.kind {
+                    token::Ident(name, false)
+                    if name == kw::Underscore && p.look_ahead(1, |t| {
+                        t == &token::Comma
+                    }) => {
+                        // Special-case handling of `foo(_, _, _)`
+                        err.emit();
+                        let sp = p.token.span;
+                        p.bump();
+                        Ok(p.mk_expr(sp, ExprKind::Err, ThinVec::new()))
+                    }
+                    _ => Err(err),
+                },
+            }
+        }).map(|(r, _)| r)
+    }
+
+    /// Parses an expression, subject to the given restrictions.
+    #[inline]
+    pub(super) fn parse_expr_res(
+        &mut self,
+        r: Restrictions,
+        already_parsed_attrs: Option<ThinVec<Attribute>>
+    ) -> PResult<'a, P<Expr>> {
+        self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
+    }
+
+    /// Parses an associative expression.
+    ///
+    /// This parses an expression accounting for associativity and precedence of the operators in
+    /// the expression.
+    #[inline]
+    fn parse_assoc_expr(
+        &mut self,
+        already_parsed_attrs: Option<ThinVec<Attribute>>,
+    ) -> PResult<'a, P<Expr>> {
+        self.parse_assoc_expr_with(0, already_parsed_attrs.into())
+    }
+
+    /// Parses an associative expression with operators of at least `min_prec` precedence.
+    pub(super) fn parse_assoc_expr_with(
+        &mut self,
+        min_prec: usize,
+        lhs: LhsExpr,
+    ) -> PResult<'a, P<Expr>> {
+        let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
+            expr
+        } else {
+            let attrs = match lhs {
+                LhsExpr::AttributesParsed(attrs) => Some(attrs),
+                _ => None,
+            };
+            if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
+                return self.parse_prefix_range_expr(attrs);
+            } else {
+                self.parse_prefix_expr(attrs)?
+            }
+        };
+        let last_type_ascription_set = self.last_type_ascription.is_some();
+
+        match (self.expr_is_complete(&lhs), AssocOp::from_token(&self.token)) {
+            (true, None) => {
+                self.last_type_ascription = None;
+                // Semi-statement forms are odd. See https://github.com/rust-lang/rust/issues/29071
+                return Ok(lhs);
+            }
+            (false, _) => {} // continue parsing the expression
+            // An exhaustive check is done in the following block, but these are checked first
+            // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
+            // want to keep their span info to improve diagnostics in these cases in a later stage.
+            (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
+            (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
+            (true, Some(AssocOp::LAnd)) | // `{ 42 } &&x` (#61475)
+            (true, Some(AssocOp::Add)) // `{ 42 } + 42
+            // If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
+            // `if x { a } else { b } && if y { c } else { d }`
+            if !self.look_ahead(1, |t| t.is_reserved_ident()) => {
+                self.last_type_ascription = None;
+                // These cases are ambiguous and can't be identified in the parser alone
+                let sp = self.sess.source_map().start_point(self.token.span);
+                self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
+                return Ok(lhs);
+            }
+            (true, Some(ref op)) if !op.can_continue_expr_unambiguously() => {
+                self.last_type_ascription = None;
+                return Ok(lhs);
+            }
+            (true, Some(_)) => {
+                // We've found an expression that would be parsed as a statement, but the next
+                // token implies this should be parsed as an expression.
+                // For example: `if let Some(x) = x { x } else { 0 } / 2`
+                let mut err = self.struct_span_err(self.token.span, &format!(
+                    "expected expression, found `{}`",
+                    pprust::token_to_string(&self.token),
+                ));
+                err.span_label(self.token.span, "expected expression");
+                self.sess.expr_parentheses_needed(
+                    &mut err,
+                    lhs.span,
+                    Some(pprust::expr_to_string(&lhs),
+                ));
+                err.emit();
+            }
+        }
+        self.expected_tokens.push(TokenType::Operator);
+        while let Some(op) = AssocOp::from_token(&self.token) {
+
+            // Adjust the span for interpolated LHS to point to the `$lhs` token and not to what
+            // it refers to. Interpolated identifiers are unwrapped early and never show up here
+            // as `PrevTokenKind::Interpolated` so if LHS is a single identifier we always process
+            // it as "interpolated", it doesn't change the answer for non-interpolated idents.
+            let lhs_span = match (self.prev_token_kind, &lhs.kind) {
+                (PrevTokenKind::Interpolated, _) => self.prev_span,
+                (PrevTokenKind::Ident, &ExprKind::Path(None, ref path))
+                    if path.segments.len() == 1 => self.prev_span,
+                _ => lhs.span,
+            };
+
+            let cur_op_span = self.token.span;
+            let restrictions = if op.is_assign_like() {
+                self.restrictions & Restrictions::NO_STRUCT_LITERAL
+            } else {
+                self.restrictions
+            };
+            let prec = op.precedence();
+            if prec < min_prec {
+                break;
+            }
+            // Check for deprecated `...` syntax
+            if self.token == token::DotDotDot && op == AssocOp::DotDotEq {
+                self.err_dotdotdot_syntax(self.token.span);
+            }
+
+            if self.token == token::LArrow {
+                self.err_larrow_operator(self.token.span);
+            }
+
+            self.bump();
+            if op.is_comparison() {
+                if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
+                    return Ok(expr);
+                }
+            }
+            // Special cases:
+            if op == AssocOp::As {
+                lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
+                continue
+            } else if op == AssocOp::Colon {
+                let maybe_path = self.could_ascription_be_path(&lhs.kind);
+                self.last_type_ascription = Some((self.prev_span, maybe_path));
+
+                lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
+                self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
+                continue
+            } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
+                // If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to
+                // generalise it to the Fixity::None code.
+                //
+                // We have 2 alternatives here: `x..y`/`x..=y` and `x..`/`x..=` The other
+                // two variants are handled with `parse_prefix_range_expr` call above.
+                let rhs = if self.is_at_start_of_range_notation_rhs() {
+                    Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
+                } else {
+                    None
+                };
+                let (lhs_span, rhs_span) = (lhs.span, if let Some(ref x) = rhs {
+                    x.span
+                } else {
+                    cur_op_span
+                });
+                let limits = if op == AssocOp::DotDot {
+                    RangeLimits::HalfOpen
+                } else {
+                    RangeLimits::Closed
+                };
+
+                let r = self.mk_range(Some(lhs), rhs, limits)?;
+                lhs = self.mk_expr(lhs_span.to(rhs_span), r, ThinVec::new());
+                break
+            }
+
+            let fixity = op.fixity();
+            let prec_adjustment = match fixity {
+                Fixity::Right => 0,
+                Fixity::Left => 1,
+                // We currently have no non-associative operators that are not handled above by
+                // the special cases. The code is here only for future convenience.
+                Fixity::None => 1,
+            };
+            let rhs = self.with_res(
+                restrictions - Restrictions::STMT_EXPR,
+                |this| this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
+            )?;
+
+            // Make sure that the span of the parent node is larger than the span of lhs and rhs,
+            // including the attributes.
+            let lhs_span = lhs
+                .attrs
+                .iter()
+                .filter(|a| a.style == AttrStyle::Outer)
+                .next()
+                .map_or(lhs_span, |a| a.span);
+            let span = lhs_span.to(rhs.span);
+            lhs = match op {
+                AssocOp::Add | AssocOp::Subtract | AssocOp::Multiply | AssocOp::Divide |
+                AssocOp::Modulus | AssocOp::LAnd | AssocOp::LOr | AssocOp::BitXor |
+                AssocOp::BitAnd | AssocOp::BitOr | AssocOp::ShiftLeft | AssocOp::ShiftRight |
+                AssocOp::Equal | AssocOp::Less | AssocOp::LessEqual | AssocOp::NotEqual |
+                AssocOp::Greater | AssocOp::GreaterEqual => {
+                    let ast_op = op.to_ast_binop().unwrap();
+                    let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
+                    self.mk_expr(span, binary, ThinVec::new())
+                }
+                AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs), ThinVec::new()),
+                AssocOp::AssignOp(k) => {
+                    let aop = match k {
+                        token::Plus =>    BinOpKind::Add,
+                        token::Minus =>   BinOpKind::Sub,
+                        token::Star =>    BinOpKind::Mul,
+                        token::Slash =>   BinOpKind::Div,
+                        token::Percent => BinOpKind::Rem,
+                        token::Caret =>   BinOpKind::BitXor,
+                        token::And =>     BinOpKind::BitAnd,
+                        token::Or =>      BinOpKind::BitOr,
+                        token::Shl =>     BinOpKind::Shl,
+                        token::Shr =>     BinOpKind::Shr,
+                    };
+                    let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
+                    self.mk_expr(span, aopexpr, ThinVec::new())
+                }
+                AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
+                    self.bug("AssocOp should have been handled by special case")
+                }
+            };
+
+            if let Fixity::None = fixity { break }
+        }
+        if last_type_ascription_set {
+            self.last_type_ascription = None;
+        }
+        Ok(lhs)
+    }
+
+    /// Checks if this expression is a successfully parsed statement.
+    fn expr_is_complete(&self, e: &Expr) -> bool {
+        self.restrictions.contains(Restrictions::STMT_EXPR) &&
+            !classify::expr_requires_semi_to_be_stmt(e)
+    }
+
+    fn is_at_start_of_range_notation_rhs(&self) -> bool {
+        if self.token.can_begin_expr() {
+            // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
+            if self.token == token::OpenDelim(token::Brace) {
+                return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
+            }
+            true
+        } else {
+            false
+        }
+    }
+
+    /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
+    fn parse_prefix_range_expr(
+        &mut self,
+        already_parsed_attrs: Option<ThinVec<Attribute>>
+    ) -> PResult<'a, P<Expr>> {
+        // Check for deprecated `...` syntax.
+        if self.token == token::DotDotDot {
+            self.err_dotdotdot_syntax(self.token.span);
+        }
+
+        debug_assert!([token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
+                      "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
+                      self.token);
+        let tok = self.token.clone();
+        let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
+        let lo = self.token.span;
+        let mut hi = self.token.span;
+        self.bump();
+        let opt_end = if self.is_at_start_of_range_notation_rhs() {
+            // RHS must be parsed with more associativity than the dots.
+            let next_prec = AssocOp::from_token(&tok).unwrap().precedence() + 1;
+            Some(self.parse_assoc_expr_with(next_prec, LhsExpr::NotYetParsed)
+                .map(|x| {
+                    hi = x.span;
+                    x
+                })?)
+        } else {
+            None
+        };
+        let limits = if tok == token::DotDot {
+            RangeLimits::HalfOpen
+        } else {
+            RangeLimits::Closed
+        };
+
+        let r = self.mk_range(None, opt_end, limits)?;
+        Ok(self.mk_expr(lo.to(hi), r, attrs))
+    }
+
+    /// Parses a prefix-unary-operator expr.
+    fn parse_prefix_expr(
+        &mut self,
+        already_parsed_attrs: Option<ThinVec<Attribute>>
+    ) -> PResult<'a, P<Expr>> {
+        let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
+        let lo = self.token.span;
+        // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
+        let (hi, ex) = match self.token.kind {
+            token::Not => {
+                self.bump();
+                let e = self.parse_prefix_expr(None);
+                let (span, e) = self.interpolated_or_expr_span(e)?;
+                (lo.to(span), self.mk_unary(UnOp::Not, e))
+            }
+            // Suggest `!` for bitwise negation when encountering a `~`
+            token::Tilde => {
+                self.bump();
+                let e = self.parse_prefix_expr(None);
+                let (span, e) = self.interpolated_or_expr_span(e)?;
+                let span_of_tilde = lo;
+                self.struct_span_err(span_of_tilde, "`~` cannot be used as a unary operator")
+                    .span_suggestion_short(
+                        span_of_tilde,
+                        "use `!` to perform bitwise not",
+                        "!".to_owned(),
+                        Applicability::MachineApplicable
+                    )
+                    .emit();
+                (lo.to(span), self.mk_unary(UnOp::Not, e))
+            }
+            token::BinOp(token::Minus) => {
+                self.bump();
+                let e = self.parse_prefix_expr(None);
+                let (span, e) = self.interpolated_or_expr_span(e)?;
+                (lo.to(span), self.mk_unary(UnOp::Neg, e))
+            }
+            token::BinOp(token::Star) => {
+                self.bump();
+                let e = self.parse_prefix_expr(None);
+                let (span, e) = self.interpolated_or_expr_span(e)?;
+                (lo.to(span), self.mk_unary(UnOp::Deref, e))
+            }
+            token::BinOp(token::And) | token::AndAnd => {
+                self.expect_and()?;
+                let m = self.parse_mutability();
+                let e = self.parse_prefix_expr(None);
+                let (span, e) = self.interpolated_or_expr_span(e)?;
+                (lo.to(span), ExprKind::AddrOf(m, e))
+            }
+            token::Ident(..) if self.token.is_keyword(kw::Box) => {
+                self.bump();
+                let e = self.parse_prefix_expr(None);
+                let (span, e) = self.interpolated_or_expr_span(e)?;
+                let span = lo.to(span);
+                self.sess.gated_spans.gate(sym::box_syntax, span);
+                (span, ExprKind::Box(e))
+            }
+            token::Ident(..) if self.token.is_ident_named(sym::not) => {
+                // `not` is just an ordinary identifier in Rust-the-language,
+                // but as `rustc`-the-compiler, we can issue clever diagnostics
+                // for confused users who really want to say `!`
+                let token_cannot_continue_expr = |t: &Token| match t.kind {
+                    // These tokens can start an expression after `!`, but
+                    // can't continue an expression after an ident
+                    token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
+                    token::Literal(..) | token::Pound => true,
+                    _ => t.is_whole_expr(),
+                };
+                let cannot_continue_expr = self.look_ahead(1, token_cannot_continue_expr);
+                if cannot_continue_expr {
+                    self.bump();
+                    // Emit the error ...
+                    self.struct_span_err(
+                        self.token.span,
+                        &format!("unexpected {} after identifier",self.this_token_descr())
+                    )
+                    .span_suggestion_short(
+                        // Span the `not` plus trailing whitespace to avoid
+                        // trailing whitespace after the `!` in our suggestion
+                        self.sess.source_map()
+                            .span_until_non_whitespace(lo.to(self.token.span)),
+                        "use `!` to perform logical negation",
+                        "!".to_owned(),
+                        Applicability::MachineApplicable
+                    )
+                    .emit();
+                    // —and recover! (just as if we were in the block
+                    // for the `token::Not` arm)
+                    let e = self.parse_prefix_expr(None);
+                    let (span, e) = self.interpolated_or_expr_span(e)?;
+                    (lo.to(span), self.mk_unary(UnOp::Not, e))
+                } else {
+                    return self.parse_dot_or_call_expr(Some(attrs));
+                }
+            }
+            _ => { return self.parse_dot_or_call_expr(Some(attrs)); }
+        };
+        return Ok(self.mk_expr(lo.to(hi), ex, attrs));
+    }
+
+    /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
+    fn interpolated_or_expr_span(
+        &self,
+        expr: PResult<'a, P<Expr>>,
+    ) -> PResult<'a, (Span, P<Expr>)> {
+        expr.map(|e| {
+            if self.prev_token_kind == PrevTokenKind::Interpolated {
+                (self.prev_span, e)
+            } else {
+                (e.span, e)
+            }
+        })
+    }
+
+    fn parse_assoc_op_cast(&mut self, lhs: P<Expr>, lhs_span: Span,
+                           expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind)
+                           -> PResult<'a, P<Expr>> {
+        let mk_expr = |this: &mut Self, rhs: P<Ty>| {
+            this.mk_expr(lhs_span.to(rhs.span), expr_kind(lhs, rhs), ThinVec::new())
+        };
+
+        // Save the state of the parser before parsing type normally, in case there is a
+        // LessThan comparison after this cast.
+        let parser_snapshot_before_type = self.clone();
+        match self.parse_ty_no_plus() {
+            Ok(rhs) => {
+                Ok(mk_expr(self, rhs))
+            }
+            Err(mut type_err) => {
+                // Rewind to before attempting to parse the type with generics, to recover
+                // from situations like `x as usize < y` in which we first tried to parse
+                // `usize < y` as a type with generic arguments.
+                let parser_snapshot_after_type = self.clone();
+                mem::replace(self, parser_snapshot_before_type);
+
+                match self.parse_path(PathStyle::Expr) {
+                    Ok(path) => {
+                        let (op_noun, op_verb) = match self.token.kind {
+                            token::Lt => ("comparison", "comparing"),
+                            token::BinOp(token::Shl) => ("shift", "shifting"),
+                            _ => {
+                                // We can end up here even without `<` being the next token, for
+                                // example because `parse_ty_no_plus` returns `Err` on keywords,
+                                // but `parse_path` returns `Ok` on them due to error recovery.
+                                // Return original error and parser state.
+                                mem::replace(self, parser_snapshot_after_type);
+                                return Err(type_err);
+                            }
+                        };
+
+                        // Successfully parsed the type path leaving a `<` yet to parse.
+                        type_err.cancel();
+
+                        // Report non-fatal diagnostics, keep `x as usize` as an expression
+                        // in AST and continue parsing.
+                        let msg = format!(
+                            "`<` is interpreted as a start of generic arguments for `{}`, not a {}",
+                            pprust::path_to_string(&path),
+                            op_noun,
+                        );
+                        let span_after_type = parser_snapshot_after_type.token.span;
+                        let expr = mk_expr(self, P(Ty {
+                            span: path.span,
+                            kind: TyKind::Path(None, path),
+                            id: DUMMY_NODE_ID,
+                        }));
+
+                        let expr_str = self.span_to_snippet(expr.span)
+                            .unwrap_or_else(|_| pprust::expr_to_string(&expr));
+
+                        self.struct_span_err(self.token.span, &msg)
+                            .span_label(
+                                self.look_ahead(1, |t| t.span).to(span_after_type),
+                                "interpreted as generic arguments"
+                            )
+                            .span_label(self.token.span, format!("not interpreted as {}", op_noun))
+                            .span_suggestion(
+                                expr.span,
+                                &format!("try {} the cast value", op_verb),
+                                format!("({})", expr_str),
+                                Applicability::MachineApplicable,
+                            )
+                            .emit();
+
+                        Ok(expr)
+                    }
+                    Err(mut path_err) => {
+                        // Couldn't parse as a path, return original error and parser state.
+                        path_err.cancel();
+                        mem::replace(self, parser_snapshot_after_type);
+                        Err(type_err)
+                    }
+                }
+            }
+        }
+    }
+
+    /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
+    fn parse_dot_or_call_expr(
+        &mut self,
+        already_parsed_attrs: Option<ThinVec<Attribute>>,
+    ) -> PResult<'a, P<Expr>> {
+        let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
+
+        let b = self.parse_bottom_expr();
+        let (span, b) = self.interpolated_or_expr_span(b)?;
+        self.parse_dot_or_call_expr_with(b, span, attrs)
+    }
+
+    pub(super) fn parse_dot_or_call_expr_with(
+        &mut self,
+        e0: P<Expr>,
+        lo: Span,
+        mut attrs: ThinVec<Attribute>,
+    ) -> PResult<'a, P<Expr>> {
+        // Stitch the list of outer attributes onto the return value.
+        // A little bit ugly, but the best way given the current code
+        // structure
+        self.parse_dot_or_call_expr_with_(e0, lo).map(|expr|
+            expr.map(|mut expr| {
+                attrs.extend::<Vec<_>>(expr.attrs.into());
+                expr.attrs = attrs;
+                match expr.kind {
+                    ExprKind::If(..) if !expr.attrs.is_empty() => {
+                        // Just point to the first attribute in there...
+                        let span = expr.attrs[0].span;
+                        self.span_err(span, "attributes are not yet allowed on `if` expressions");
+                    }
+                    _ => {}
+                }
+                expr
+            })
+        )
+    }
+
+    fn parse_dot_or_call_expr_with_(&mut self, e0: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
+        let mut e = e0;
+        let mut hi;
+        loop {
+            // expr?
+            while self.eat(&token::Question) {
+                let hi = self.prev_span;
+                e = self.mk_expr(lo.to(hi), ExprKind::Try(e), ThinVec::new());
+            }
+
+            // expr.f
+            if self.eat(&token::Dot) {
+                match self.token.kind {
+                    token::Ident(..) => {
+                        e = self.parse_dot_suffix(e, lo)?;
+                    }
+                    token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
+                        let span = self.token.span;
+                        self.bump();
+                        let field = ExprKind::Field(e, Ident::new(symbol, span));
+                        e = self.mk_expr(lo.to(span), field, ThinVec::new());
+
+                        self.expect_no_suffix(span, "a tuple index", suffix);
+                    }
+                    token::Literal(token::Lit { kind: token::Float, symbol, .. }) => {
+                      self.bump();
+                      let fstr = symbol.as_str();
+                      let msg = format!("unexpected token: `{}`", symbol);
+                      let mut err = self.diagnostic().struct_span_err(self.prev_span, &msg);
+                      err.span_label(self.prev_span, "unexpected token");
+                      if fstr.chars().all(|x| "0123456789.".contains(x)) {
+                          let float = match fstr.parse::<f64>().ok() {
+                              Some(f) => f,
+                              None => continue,
+                          };
+                          let sugg = pprust::to_string(|s| {
+                              s.popen();
+                              s.print_expr(&e);
+                              s.s.word( ".");
+                              s.print_usize(float.trunc() as usize);
+                              s.pclose();
+                              s.s.word(".");
+                              s.s.word(fstr.splitn(2, ".").last().unwrap().to_string())
+                          });
+                          err.span_suggestion(
+                              lo.to(self.prev_span),
+                              "try parenthesizing the first index",
+                              sugg,
+                              Applicability::MachineApplicable
+                          );
+                      }
+                      return Err(err);
+
+                    }
+                    _ => {
+                        // FIXME Could factor this out into non_fatal_unexpected or something.
+                        let actual = self.this_token_to_string();
+                        self.span_err(self.token.span, &format!("unexpected token: `{}`", actual));
+                    }
+                }
+                continue;
+            }
+            if self.expr_is_complete(&e) { break; }
+            match self.token.kind {
+                // expr(...)
+                token::OpenDelim(token::Paren) => {
+                    let seq = self.parse_paren_expr_seq().map(|es| {
+                        let nd = self.mk_call(e, es);
+                        let hi = self.prev_span;
+                        self.mk_expr(lo.to(hi), nd, ThinVec::new())
+                    });
+                    e = self.recover_seq_parse_error(token::Paren, lo, seq);
+                }
+
+                // expr[...]
+                // Could be either an index expression or a slicing expression.
+                token::OpenDelim(token::Bracket) => {
+                    self.bump();
+                    let ix = self.parse_expr()?;
+                    hi = self.token.span;
+                    self.expect(&token::CloseDelim(token::Bracket))?;
+                    let index = self.mk_index(e, ix);
+                    e = self.mk_expr(lo.to(hi), index, ThinVec::new())
+                }
+                _ => return Ok(e)
+            }
+        }
+        return Ok(e);
+    }
+
+    /// Assuming we have just parsed `.`, continue parsing into an expression.
+    fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
+        if self.token.span.rust_2018() && self.eat_keyword(kw::Await) {
+            return self.mk_await_expr(self_arg, lo);
+        }
+
+        let segment = self.parse_path_segment(PathStyle::Expr)?;
+        self.check_trailing_angle_brackets(&segment, token::OpenDelim(token::Paren));
+
+        Ok(match self.token.kind {
+            token::OpenDelim(token::Paren) => {
+                // Method call `expr.f()`
+                let mut args = self.parse_paren_expr_seq()?;
+                args.insert(0, self_arg);
+
+                let span = lo.to(self.prev_span);
+                self.mk_expr(span, ExprKind::MethodCall(segment, args), ThinVec::new())
+            }
+            _ => {
+                // Field access `expr.f`
+                if let Some(args) = segment.args {
+                    self.span_err(args.span(),
+                                  "field expressions may not have generic arguments");
+                }
+
+                let span = lo.to(self.prev_span);
+                self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), ThinVec::new())
+            }
+        })
+    }
+
+    /// At the bottom (top?) of the precedence hierarchy,
+    /// Parses things like parenthesized exprs, macros, `return`, etc.
+    ///
+    /// N.B., this does not parse outer attributes, and is private because it only works
+    /// correctly if called from `parse_dot_or_call_expr()`.
+    fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
+        maybe_recover_from_interpolated_ty_qpath!(self, true);
+        maybe_whole_expr!(self);
+
+        // Outer attributes are already parsed and will be
+        // added to the return value after the fact.
+        //
+        // Therefore, prevent sub-parser from parsing
+        // attributes by giving them a empty "already-parsed" list.
+        let mut attrs = ThinVec::new();
+
+        let lo = self.token.span;
+        let mut hi = self.token.span;
+
+        let ex: ExprKind;
+
+        macro_rules! parse_lit {
+            () => {
+                match self.parse_lit() {
+                    Ok(literal) => {
+                        hi = self.prev_span;
+                        ex = ExprKind::Lit(literal);
+                    }
+                    Err(mut err) => {
+                        err.cancel();
+                        return Err(self.expected_expression_found());
+                    }
+                }
+            }
+        }
+
+        // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
+        match self.token.kind {
+            // This match arm is a special-case of the `_` match arm below and
+            // could be removed without changing functionality, but it's faster
+            // to have it here, especially for programs with large constants.
+            token::Literal(_) => {
+                parse_lit!()
+            }
+            token::OpenDelim(token::Paren) => {
+                self.bump();
+
+                attrs.extend(self.parse_inner_attributes()?);
+
+                // `(e)` is parenthesized `e`.
+                // `(e,)` is a tuple with only one field, `e`.
+                let mut es = vec![];
+                let mut trailing_comma = false;
+                let mut recovered = false;
+                while self.token != token::CloseDelim(token::Paren) {
+                    es.push(match self.parse_expr() {
+                        Ok(es) => es,
+                        Err(mut err) => {
+                            // Recover from parse error in tuple list.
+                            match self.token.kind {
+                                token::Ident(name, false)
+                                if name == kw::Underscore && self.look_ahead(1, |t| {
+                                    t == &token::Comma
+                                }) => {
+                                    // Special-case handling of `Foo<(_, _, _)>`
+                                    err.emit();
+                                    let sp = self.token.span;
+                                    self.bump();
+                                    self.mk_expr(sp, ExprKind::Err, ThinVec::new())
+                                }
+                                _ => return Ok(
+                                    self.recover_seq_parse_error(token::Paren, lo, Err(err)),
+                                ),
+                            }
+                        }
+                    });
+                    recovered = self.expect_one_of(
+                        &[],
+                        &[token::Comma, token::CloseDelim(token::Paren)],
+                    )?;
+                    if self.eat(&token::Comma) {
+                        trailing_comma = true;
+                    } else {
+                        trailing_comma = false;
+                        break;
+                    }
+                }
+                if !recovered {
+                    self.bump();
+                }
+
+                hi = self.prev_span;
+                ex = if es.len() == 1 && !trailing_comma {
+                    ExprKind::Paren(es.into_iter().nth(0).unwrap())
+                } else {
+                    ExprKind::Tup(es)
+                };
+            }
+            token::OpenDelim(token::Brace) => {
+                return self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs);
+            }
+            token::BinOp(token::Or) | token::OrOr => {
+                return self.parse_closure_expr(attrs);
+            }
+            token::OpenDelim(token::Bracket) => {
+                self.bump();
+
+                attrs.extend(self.parse_inner_attributes()?);
+
+                if self.eat(&token::CloseDelim(token::Bracket)) {
+                    // Empty vector
+                    ex = ExprKind::Array(Vec::new());
+                } else {
+                    // Non-empty vector
+                    let first_expr = self.parse_expr()?;
+                    if self.eat(&token::Semi) {
+                        // Repeating array syntax: `[ 0; 512 ]`
+                        let count = AnonConst {
+                            id: DUMMY_NODE_ID,
+                            value: self.parse_expr()?,
+                        };
+                        self.expect(&token::CloseDelim(token::Bracket))?;
+                        ex = ExprKind::Repeat(first_expr, count);
+                    } else if self.eat(&token::Comma) {
+                        // Vector with two or more elements
+                        let remaining_exprs = self.parse_seq_to_end(
+                            &token::CloseDelim(token::Bracket),
+                            SeqSep::trailing_allowed(token::Comma),
+                            |p| Ok(p.parse_expr()?)
+                        )?;
+                        let mut exprs = vec![first_expr];
+                        exprs.extend(remaining_exprs);
+                        ex = ExprKind::Array(exprs);
+                    } else {
+                        // Vector with one element
+                        self.expect(&token::CloseDelim(token::Bracket))?;
+                        ex = ExprKind::Array(vec![first_expr]);
+                    }
+                }
+                hi = self.prev_span;
+            }
+            _ => {
+                if self.eat_lt() {
+                    let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
+                    hi = path.span;
+                    return Ok(self.mk_expr(lo.to(hi), ExprKind::Path(Some(qself), path), attrs));
+                }
+                if self.token.is_path_start() {
+                    let path = self.parse_path(PathStyle::Expr)?;
+
+                    // `!`, as an operator, is prefix, so we know this isn't that.
+                    if self.eat(&token::Not) {
+                        // MACRO INVOCATION expression
+                        let (delim, tts) = self.expect_delimited_token_tree()?;
+                        hi = self.prev_span;
+                        ex = ExprKind::Mac(Mac {
+                            path,
+                            tts,
+                            delim,
+                            span: lo.to(hi),
+                            prior_type_ascription: self.last_type_ascription,
+                        });
+                    } else if self.check(&token::OpenDelim(token::Brace)) {
+                        if let Some(expr) = self.maybe_parse_struct_expr(lo, &path, &attrs) {
+                            return expr;
+                        } else {
+                            hi = path.span;
+                            ex = ExprKind::Path(None, path);
+                        }
+                    } else {
+                        hi = path.span;
+                        ex = ExprKind::Path(None, path);
+                    }
+
+                    let expr = self.mk_expr(lo.to(hi), ex, attrs);
+                    return self.maybe_recover_from_bad_qpath(expr, true);
+                }
+                if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
+                    return self.parse_closure_expr(attrs);
+                }
+                if self.eat_keyword(kw::If) {
+                    return self.parse_if_expr(attrs);
+                }
+                if self.eat_keyword(kw::For) {
+                    let lo = self.prev_span;
+                    return self.parse_for_expr(None, lo, attrs);
+                }
+                if self.eat_keyword(kw::While) {
+                    let lo = self.prev_span;
+                    return self.parse_while_expr(None, lo, attrs);
+                }
+                if let Some(label) = self.eat_label() {
+                    let lo = label.ident.span;
+                    self.expect(&token::Colon)?;
+                    if self.eat_keyword(kw::While) {
+                        return self.parse_while_expr(Some(label), lo, attrs)
+                    }
+                    if self.eat_keyword(kw::For) {
+                        return self.parse_for_expr(Some(label), lo, attrs)
+                    }
+                    if self.eat_keyword(kw::Loop) {
+                        return self.parse_loop_expr(Some(label), lo, attrs)
+                    }
+                    if self.token == token::OpenDelim(token::Brace) {
+                        return self.parse_block_expr(Some(label),
+                                                     lo,
+                                                     BlockCheckMode::Default,
+                                                     attrs);
+                    }
+                    let msg = "expected `while`, `for`, `loop` or `{` after a label";
+                    let mut err = self.fatal(msg);
+                    err.span_label(self.token.span, msg);
+                    return Err(err);
+                }
+                if self.eat_keyword(kw::Loop) {
+                    let lo = self.prev_span;
+                    return self.parse_loop_expr(None, lo, attrs);
+                }
+                if self.eat_keyword(kw::Continue) {
+                    let label = self.eat_label();
+                    let ex = ExprKind::Continue(label);
+                    let hi = self.prev_span;
+                    return Ok(self.mk_expr(lo.to(hi), ex, attrs));
+                }
+                if self.eat_keyword(kw::Match) {
+                    let match_sp = self.prev_span;
+                    return self.parse_match_expr(attrs).map_err(|mut err| {
+                        err.span_label(match_sp, "while parsing this match expression");
+                        err
+                    });
+                }
+                if self.eat_keyword(kw::Unsafe) {
+                    return self.parse_block_expr(
+                        None,
+                        lo,
+                        BlockCheckMode::Unsafe(ast::UserProvided),
+                        attrs);
+                }
+                if self.is_do_catch_block() {
+                    let mut db = self.fatal("found removed `do catch` syntax");
+                    db.help("following RFC #2388, the new non-placeholder syntax is `try`");
+                    return Err(db);
+                }
+                if self.is_try_block() {
+                    let lo = self.token.span;
+                    assert!(self.eat_keyword(kw::Try));
+                    return self.parse_try_block(lo, attrs);
+                }
+
+                // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
+                let is_span_rust_2018 = self.token.span.rust_2018();
+                if is_span_rust_2018 && self.check_keyword(kw::Async) {
+                    return if self.is_async_block() { // Check for `async {` and `async move {`.
+                        self.parse_async_block(attrs)
+                    } else {
+                        self.parse_closure_expr(attrs)
+                    };
+                }
+                if self.eat_keyword(kw::Return) {
+                    if self.token.can_begin_expr() {
+                        let e = self.parse_expr()?;
+                        hi = e.span;
+                        ex = ExprKind::Ret(Some(e));
+                    } else {
+                        ex = ExprKind::Ret(None);
+                    }
+                } else if self.eat_keyword(kw::Break) {
+                    let label = self.eat_label();
+                    let e = if self.token.can_begin_expr()
+                               && !(self.token == token::OpenDelim(token::Brace)
+                                    && self.restrictions.contains(
+                                           Restrictions::NO_STRUCT_LITERAL)) {
+                        Some(self.parse_expr()?)
+                    } else {
+                        None
+                    };
+                    ex = ExprKind::Break(label, e);
+                    hi = self.prev_span;
+                } else if self.eat_keyword(kw::Yield) {
+                    if self.token.can_begin_expr() {
+                        let e = self.parse_expr()?;
+                        hi = e.span;
+                        ex = ExprKind::Yield(Some(e));
+                    } else {
+                        ex = ExprKind::Yield(None);
+                    }
+
+                    let span = lo.to(hi);
+                    self.sess.gated_spans.gate(sym::generators, span);
+                } else if self.eat_keyword(kw::Let) {
+                    return self.parse_let_expr(attrs);
+                } else if is_span_rust_2018 && self.eat_keyword(kw::Await) {
+                    let (await_hi, e_kind) = self.parse_incorrect_await_syntax(lo, self.prev_span)?;
+                    hi = await_hi;
+                    ex = e_kind;
+                } else {
+                    if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
+                        // Don't complain about bare semicolons after unclosed braces
+                        // recovery in order to keep the error count down. Fixing the
+                        // delimiters will possibly also fix the bare semicolon found in
+                        // expression context. For example, silence the following error:
+                        //
+                        //     error: expected expression, found `;`
+                        //      --> file.rs:2:13
+                        //       |
+                        //     2 |     foo(bar(;
+                        //       |             ^ expected expression
+                        self.bump();
+                        return Ok(self.mk_expr(self.token.span, ExprKind::Err, ThinVec::new()));
+                    }
+                    parse_lit!()
+                }
+            }
+        }
+
+        let expr = self.mk_expr(lo.to(hi), ex, attrs);
+        self.maybe_recover_from_bad_qpath(expr, true)
+    }
+
+    /// Matches `lit = true | false | token_lit`.
+    pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
+        let mut recovered = None;
+        if self.token == token::Dot {
+            // Attempt to recover `.4` as `0.4`.
+            recovered = self.look_ahead(1, |next_token| {
+                if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix })
+                        = next_token.kind {
+                    if self.token.span.hi() == next_token.span.lo() {
+                        let s = String::from("0.") + &symbol.as_str();
+                        let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
+                        return Some(Token::new(kind, self.token.span.to(next_token.span)));
+                    }
+                }
+                None
+            });
+            if let Some(token) = &recovered {
+                self.bump();
+                self.struct_span_err(token.span, "float literals must have an integer part")
+                    .span_suggestion(
+                        token.span,
+                        "must have an integer part",
+                        pprust::token_to_string(token),
+                        Applicability::MachineApplicable,
+                    )
+                    .emit();
+            }
+        }
+
+        let token = recovered.as_ref().unwrap_or(&self.token);
+        match Lit::from_token(token) {
+            Ok(lit) => {
+                self.bump();
+                Ok(lit)
+            }
+            Err(LitError::NotLiteral) => {
+                let msg = format!("unexpected token: {}", self.this_token_descr());
+                Err(self.span_fatal(token.span, &msg))
+            }
+            Err(err) => {
+                let span = token.span;
+                let lit = match token.kind {
+                    token::Literal(lit) => lit,
+                    _ => unreachable!(),
+                };
+                self.bump();
+                self.error_literal_from_token(err, lit, span);
+                // Pack possible quotes and prefixes from the original literal into
+                // the error literal's symbol so they can be pretty-printed faithfully.
+                let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
+                let symbol = Symbol::intern(&suffixless_lit.to_string());
+                let lit = token::Lit::new(token::Err, symbol, lit.suffix);
+                Lit::from_lit_token(lit, span).map_err(|_| unreachable!())
+            }
+        }
+    }
+
+    fn error_literal_from_token(&self, err: LitError, lit: token::Lit, span: Span) {
+        // Checks if `s` looks like i32 or u1234 etc.
+        fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
+            s.len() > 1
+            && s.starts_with(first_chars)
+            && s[1..].chars().all(|c| c.is_ascii_digit())
+        }
+
+        let token::Lit { kind, suffix, .. } = lit;
+        match err {
+            // `NotLiteral` is not an error by itself, so we don't report
+            // it and give the parser opportunity to try something else.
+            LitError::NotLiteral => {}
+            // `LexerError` *is* an error, but it was already reported
+            // by lexer, so here we don't report it the second time.
+            LitError::LexerError => {}
+            LitError::InvalidSuffix => {
+                self.expect_no_suffix(
+                    span,
+                    &format!("{} {} literal", kind.article(), kind.descr()),
+                    suffix,
+                );
+            }
+            LitError::InvalidIntSuffix => {
+                let suf = suffix.expect("suffix error with no suffix").as_str();
+                if looks_like_width_suffix(&['i', 'u'], &suf) {
+                    // If it looks like a width, try to be helpful.
+                    let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
+                    self.struct_span_err(span, &msg)
+                        .help("valid widths are 8, 16, 32, 64 and 128")
+                        .emit();
+                } else {
+                    let msg = format!("invalid suffix `{}` for integer literal", suf);
+                    self.struct_span_err(span, &msg)
+                        .span_label(span, format!("invalid suffix `{}`", suf))
+                        .help("the suffix must be one of the integral types (`u32`, `isize`, etc)")
+                        .emit();
+                }
+            }
+            LitError::InvalidFloatSuffix => {
+                let suf = suffix.expect("suffix error with no suffix").as_str();
+                if looks_like_width_suffix(&['f'], &suf) {
+                    // If it looks like a width, try to be helpful.
+                    let msg = format!("invalid width `{}` for float literal", &suf[1..]);
+                    self.struct_span_err(span, &msg)
+                        .help("valid widths are 32 and 64")
+                        .emit();
+                } else {
+                    let msg = format!("invalid suffix `{}` for float literal", suf);
+                    self.struct_span_err(span, &msg)
+                        .span_label(span, format!("invalid suffix `{}`", suf))
+                        .help("valid suffixes are `f32` and `f64`")
+                        .emit();
+                }
+            }
+            LitError::NonDecimalFloat(base) => {
+                let descr = match base {
+                    16 => "hexadecimal",
+                    8 => "octal",
+                    2 => "binary",
+                    _ => unreachable!(),
+                };
+                self.struct_span_err(span, &format!("{} float literal is not supported", descr))
+                    .span_label(span, "not supported")
+                    .emit();
+            }
+            LitError::IntTooLarge => {
+                self.struct_span_err(span, "integer literal is too large")
+                    .emit();
+            }
+        }
+    }
+
+    pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
+        if let Some(suf) = suffix {
+            let mut err = if kind == "a tuple index"
+                && [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
+            {
+                // #59553: warn instead of reject out of hand to allow the fix to percolate
+                // through the ecosystem when people fix their macros
+                let mut err = self.sess.span_diagnostic.struct_span_warn(
+                    sp,
+                    &format!("suffixes on {} are invalid", kind),
+                );
+                err.note(&format!(
+                    "`{}` is *temporarily* accepted on tuple index fields as it was \
+                        incorrectly accepted on stable for a few releases",
+                    suf,
+                ));
+                err.help(
+                    "on proc macros, you'll want to use `syn::Index::from` or \
+                        `proc_macro::Literal::*_unsuffixed` for code that will desugar \
+                        to tuple field access",
+                );
+                err.note(
+                    "for more context, see https://github.com/rust-lang/rust/issues/60210",
+                );
+                err
+            } else {
+                self.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
+            };
+            err.span_label(sp, format!("invalid suffix `{}`", suf));
+            err.emit();
+        }
+    }
+
+    /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
+    pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
+        maybe_whole_expr!(self);
+
+        let minus_lo = self.token.span;
+        let minus_present = self.eat(&token::BinOp(token::Minus));
+        let lo = self.token.span;
+        let literal = self.parse_lit()?;
+        let hi = self.prev_span;
+        let expr = self.mk_expr(lo.to(hi), ExprKind::Lit(literal), ThinVec::new());
+
+        if minus_present {
+            let minus_hi = self.prev_span;
+            let unary = self.mk_unary(UnOp::Neg, expr);
+            Ok(self.mk_expr(minus_lo.to(minus_hi), unary, ThinVec::new()))
+        } else {
+            Ok(expr)
+        }
+    }
+
+    /// Parses a block or unsafe block.
+    pub(super) fn parse_block_expr(
+        &mut self,
+        opt_label: Option<Label>,
+        lo: Span,
+        blk_mode: BlockCheckMode,
+        outer_attrs: ThinVec<Attribute>,
+    ) -> PResult<'a, P<Expr>> {
+        if let Some(label) = opt_label {
+            self.sess.gated_spans.gate(sym::label_break_value, label.ident.span);
+        }
+
+        self.expect(&token::OpenDelim(token::Brace))?;
+
+        let mut attrs = outer_attrs;
+        attrs.extend(self.parse_inner_attributes()?);
+
+        let blk = self.parse_block_tail(lo, blk_mode)?;
+        Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
+    }
+
+    /// Parses a closure expression (e.g., `move |args| expr`).
+    fn parse_closure_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+        let lo = self.token.span;
+
+        let movability = if self.eat_keyword(kw::Static) {
+            Movability::Static
+        } else {
+            Movability::Movable
+        };
+
+        let asyncness = if self.token.span.rust_2018() {
+            self.parse_asyncness()
+        } else {
+            IsAsync::NotAsync
+        };
+        if asyncness.is_async() {
+            // Feature-gate `async ||` closures.
+            self.sess.gated_spans.gate(sym::async_closure, self.prev_span);
+        }
+
+        let capture_clause = self.parse_capture_clause();
+        let decl = self.parse_fn_block_decl()?;
+        let decl_hi = self.prev_span;
+        let body = match decl.output {
+            FunctionRetTy::Default(_) => {
+                let restrictions = self.restrictions - Restrictions::STMT_EXPR;
+                self.parse_expr_res(restrictions, None)?
+            },
+            _ => {
+                // If an explicit return type is given, require a block to appear (RFC 968).
+                let body_lo = self.token.span;
+                self.parse_block_expr(None, body_lo, BlockCheckMode::Default, ThinVec::new())?
+            }
+        };
+
+        Ok(self.mk_expr(
+            lo.to(body.span),
+            ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
+            attrs))
+    }
+
+    /// Parses an optional `move` prefix to a closure lke construct.
+    fn parse_capture_clause(&mut self) -> CaptureBy {
+        if self.eat_keyword(kw::Move) {
+            CaptureBy::Value
+        } else {
+            CaptureBy::Ref
+        }
+    }
+
+    /// Parses the `|arg, arg|` header of a closure.
+    fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
+        let inputs_captures = {
+            if self.eat(&token::OrOr) {
+                Vec::new()
+            } else {
+                self.expect(&token::BinOp(token::Or))?;
+                let args = self.parse_seq_to_before_tokens(
+                    &[&token::BinOp(token::Or), &token::OrOr],
+                    SeqSep::trailing_allowed(token::Comma),
+                    TokenExpectType::NoExpect,
+                    |p| p.parse_fn_block_param()
+                )?.0;
+                self.expect_or()?;
+                args
+            }
+        };
+        let output = self.parse_ret_ty(true)?;
+
+        Ok(P(FnDecl {
+            inputs: inputs_captures,
+            output,
+        }))
+    }
+
+    /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
+    fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
+        let lo = self.token.span;
+        let attrs = self.parse_outer_attributes()?;
+        let pat = self.parse_pat(PARAM_EXPECTED)?;
+        let t = if self.eat(&token::Colon) {
+            self.parse_ty()?
+        } else {
+            P(Ty {
+                id: DUMMY_NODE_ID,
+                kind: TyKind::Infer,
+                span: self.prev_span,
+            })
+        };
+        let span = lo.to(self.token.span);
+        Ok(Param {
+            attrs: attrs.into(),
+            ty: t,
+            pat,
+            span,
+            id: DUMMY_NODE_ID,
+            is_placeholder: false,
+        })
+    }
+
+    /// Parses an `if` expression (`if` token already eaten).
+    fn parse_if_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+        let lo = self.prev_span;
+        let cond = self.parse_cond_expr()?;
+
+        // Verify that the parsed `if` condition makes sense as a condition. If it is a block, then
+        // verify that the last statement is either an implicit return (no `;`) or an explicit
+        // return. This won't catch blocks with an explicit `return`, but that would be caught by
+        // the dead code lint.
+        if self.eat_keyword(kw::Else) || !cond.returns() {
+            let sp = self.sess.source_map().next_point(lo);
+            let mut err = self.diagnostic()
+                .struct_span_err(sp, "missing condition for `if` expression");
+            err.span_label(sp, "expected if condition here");
+            return Err(err)
+        }
+        let not_block = self.token != token::OpenDelim(token::Brace);
+        let thn = self.parse_block().map_err(|mut err| {
+            if not_block {
+                err.span_label(lo, "this `if` statement has a condition, but no block");
+            }
+            err
+        })?;
+        let mut els: Option<P<Expr>> = None;
+        let mut hi = thn.span;
+        if self.eat_keyword(kw::Else) {
+            let elexpr = self.parse_else_expr()?;
+            hi = elexpr.span;
+            els = Some(elexpr);
+        }
+        Ok(self.mk_expr(lo.to(hi), ExprKind::If(cond, thn, els), attrs))
+    }
+
+    /// Parses the condition of a `if` or `while` expression.
+    fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
+        let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+
+        if let ExprKind::Let(..) = cond.kind {
+            // Remove the last feature gating of a `let` expression since it's stable.
+            self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
+        }
+
+        Ok(cond)
+    }
+
+    /// Parses a `let $pat = $expr` pseudo-expression.
+    /// The `let` token has already been eaten.
+    fn parse_let_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+        let lo = self.prev_span;
+        let pat = self.parse_top_pat(GateOr::No)?;
+        self.expect(&token::Eq)?;
+        let expr = self.with_res(
+            Restrictions::NO_STRUCT_LITERAL,
+            |this| this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
+        )?;
+        let span = lo.to(expr.span);
+        self.sess.gated_spans.gate(sym::let_chains, span);
+        Ok(self.mk_expr(span, ExprKind::Let(pat, expr), attrs))
+    }
+
+    /// Parses an `else { ... }` expression (`else` token already eaten).
+    fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
+        if self.eat_keyword(kw::If) {
+            return self.parse_if_expr(ThinVec::new());
+        } else {
+            let blk = self.parse_block()?;
+            return Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None), ThinVec::new()));
+        }
+    }
+
+    /// Parses a `for ... in` expression (`for` token already eaten).
+    fn parse_for_expr(
+        &mut self,
+        opt_label: Option<Label>,
+        span_lo: Span,
+        mut attrs: ThinVec<Attribute>
+    ) -> PResult<'a, P<Expr>> {
+        // Parse: `for <src_pat> in <src_expr> <src_loop_block>`
+
+        // Record whether we are about to parse `for (`.
+        // This is used below for recovery in case of `for ( $stuff ) $block`
+        // in which case we will suggest `for $stuff $block`.
+        let begin_paren = match self.token.kind {
+            token::OpenDelim(token::Paren) => Some(self.token.span),
+            _ => None,
+        };
+
+        let pat = self.parse_top_pat(GateOr::Yes)?;
+        if !self.eat_keyword(kw::In) {
+            let in_span = self.prev_span.between(self.token.span);
+            self.struct_span_err(in_span, "missing `in` in `for` loop")
+                .span_suggestion_short(
+                    in_span,
+                    "try adding `in` here", " in ".into(),
+                    // has been misleading, at least in the past (closed Issue #48492)
+                    Applicability::MaybeIncorrect
+                )
+                .emit();
+        }
+        let in_span = self.prev_span;
+        self.check_for_for_in_in_typo(in_span);
+        let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+
+        let pat = self.recover_parens_around_for_head(pat, &expr, begin_paren);
+
+        let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+
+        let hi = self.prev_span;
+        Ok(self.mk_expr(span_lo.to(hi), ExprKind::ForLoop(pat, expr, loop_block, opt_label), attrs))
+    }
+
+    /// Parses a `while` or `while let` expression (`while` token already eaten).
+    fn parse_while_expr(
+        &mut self,
+        opt_label: Option<Label>,
+        span_lo: Span,
+        mut attrs: ThinVec<Attribute>
+    ) -> PResult<'a, P<Expr>> {
+        let cond = self.parse_cond_expr()?;
+        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+        let span = span_lo.to(body.span);
+        Ok(self.mk_expr(span, ExprKind::While(cond, body, opt_label), attrs))
+    }
+
+    /// Parses `loop { ... }` (`loop` token already eaten).
+    fn parse_loop_expr(
+        &mut self,
+        opt_label: Option<Label>,
+        span_lo: Span,
+        mut attrs: ThinVec<Attribute>
+    ) -> PResult<'a, P<Expr>> {
+        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+        let span = span_lo.to(body.span);
+        Ok(self.mk_expr(span, ExprKind::Loop(body, opt_label), attrs))
+    }
+
+    fn eat_label(&mut self) -> Option<Label> {
+        if let Some(ident) = self.token.lifetime() {
+            let span = self.token.span;
+            self.bump();
+            Some(Label { ident: Ident::new(ident.name, span) })
+        } else {
+            None
+        }
+    }
+
+    /// Parses a `match ... { ... }` expression (`match` token already eaten).
+    fn parse_match_expr(&mut self, mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+        let match_span = self.prev_span;
+        let lo = self.prev_span;
+        let discriminant = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+        if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
+            if self.token == token::Semi {
+                e.span_suggestion_short(
+                    match_span,
+                    "try removing this `match`",
+                    String::new(),
+                    Applicability::MaybeIncorrect // speculative
+                );
+            }
+            return Err(e)
+        }
+        attrs.extend(self.parse_inner_attributes()?);
+
+        let mut arms: Vec<Arm> = Vec::new();
+        while self.token != token::CloseDelim(token::Brace) {
+            match self.parse_arm() {
+                Ok(arm) => arms.push(arm),
+                Err(mut e) => {
+                    // Recover by skipping to the end of the block.
+                    e.emit();
+                    self.recover_stmt();
+                    let span = lo.to(self.token.span);
+                    if self.token == token::CloseDelim(token::Brace) {
+                        self.bump();
+                    }
+                    return Ok(self.mk_expr(span, ExprKind::Match(discriminant, arms), attrs));
+                }
+            }
+        }
+        let hi = self.token.span;
+        self.bump();
+        return Ok(self.mk_expr(lo.to(hi), ExprKind::Match(discriminant, arms), attrs));
+    }
+
+    pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
+        let attrs = self.parse_outer_attributes()?;
+        let lo = self.token.span;
+        let pat = self.parse_top_pat(GateOr::No)?;
+        let guard = if self.eat_keyword(kw::If) {
+            Some(self.parse_expr()?)
+        } else {
+            None
+        };
+        let arrow_span = self.token.span;
+        self.expect(&token::FatArrow)?;
+        let arm_start_span = self.token.span;
+
+        let expr = self.parse_expr_res(Restrictions::STMT_EXPR, None)
+            .map_err(|mut err| {
+                err.span_label(arrow_span, "while parsing the `match` arm starting here");
+                err
+            })?;
+
+        let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
+            && self.token != token::CloseDelim(token::Brace);
+
+        let hi = self.token.span;
+
+        if require_comma {
+            let cm = self.sess.source_map();
+            self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)])
+                .map_err(|mut err| {
+                    match (cm.span_to_lines(expr.span), cm.span_to_lines(arm_start_span)) {
+                        (Ok(ref expr_lines), Ok(ref arm_start_lines))
+                        if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
+                            && expr_lines.lines.len() == 2
+                            && self.token == token::FatArrow => {
+                            // We check whether there's any trailing code in the parse span,
+                            // if there isn't, we very likely have the following:
+                            //
+                            // X |     &Y => "y"
+                            //   |        --    - missing comma
+                            //   |        |
+                            //   |        arrow_span
+                            // X |     &X => "x"
+                            //   |      - ^^ self.token.span
+                            //   |      |
+                            //   |      parsed until here as `"y" & X`
+                            err.span_suggestion_short(
+                                cm.next_point(arm_start_span),
+                                "missing a comma here to end this `match` arm",
+                                ",".to_owned(),
+                                Applicability::MachineApplicable
+                            );
+                        }
+                        _ => {
+                            err.span_label(arrow_span,
+                                           "while parsing the `match` arm starting here");
+                        }
+                    }
+                    err
+                })?;
+        } else {
+            self.eat(&token::Comma);
+        }
+
+        Ok(ast::Arm {
+            attrs,
+            pat,
+            guard,
+            body: expr,
+            span: lo.to(hi),
+            id: DUMMY_NODE_ID,
+            is_placeholder: false,
+        })
+    }
+
+    /// Parses a `try {...}` expression (`try` token already eaten).
+    fn parse_try_block(
+        &mut self,
+        span_lo: Span,
+        mut attrs: ThinVec<Attribute>
+    ) -> PResult<'a, P<Expr>> {
+        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+        if self.eat_keyword(kw::Catch) {
+            let mut error = self.struct_span_err(self.prev_span,
+                                                 "keyword `catch` cannot follow a `try` block");
+            error.help("try using `match` on the result of the `try` block instead");
+            error.emit();
+            Err(error)
+        } else {
+            let span = span_lo.to(body.span);
+            self.sess.gated_spans.gate(sym::try_blocks, span);
+            Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
+        }
+    }
+
+    fn is_do_catch_block(&self) -> bool {
+        self.token.is_keyword(kw::Do) &&
+        self.is_keyword_ahead(1, &[kw::Catch]) &&
+        self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace)) &&
+        !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
+    }
+
+    fn is_try_block(&self) -> bool {
+        self.token.is_keyword(kw::Try) &&
+        self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace)) &&
+        self.token.span.rust_2018() &&
+        // Prevent `while try {} {}`, `if try {} {} else {}`, etc.
+        !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
+    }
+
+    /// Parses an `async move? {...}` expression.
+    fn parse_async_block(&mut self, mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+        let span_lo = self.token.span;
+        self.expect_keyword(kw::Async)?;
+        let capture_clause = self.parse_capture_clause();
+        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+        Ok(self.mk_expr(
+            span_lo.to(body.span),
+            ExprKind::Async(capture_clause, DUMMY_NODE_ID, body), attrs))
+    }
+
+    fn is_async_block(&self) -> bool {
+        self.token.is_keyword(kw::Async) &&
+        (
+            ( // `async move {`
+                self.is_keyword_ahead(1, &[kw::Move]) &&
+                self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
+            ) || ( // `async {`
+                self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
+            )
+        )
+    }
+
+    fn maybe_parse_struct_expr(
+        &mut self,
+        lo: Span,
+        path: &ast::Path,
+        attrs: &ThinVec<Attribute>,
+    ) -> Option<PResult<'a, P<Expr>>> {
+        let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
+        let certainly_not_a_block = || self.look_ahead(1, |t| t.is_ident()) && (
+            // `{ ident, ` cannot start a block.
+            self.look_ahead(2, |t| t == &token::Comma) ||
+            self.look_ahead(2, |t| t == &token::Colon) && (
+                // `{ ident: token, ` cannot start a block.
+                self.look_ahead(4, |t| t == &token::Comma) ||
+                // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
+                self.look_ahead(3, |t| !t.can_begin_type())
+            )
+        );
+
+        if struct_allowed || certainly_not_a_block() {
+            // This is a struct literal, but we don't can't accept them here.
+            let expr = self.parse_struct_expr(lo, path.clone(), attrs.clone());
+            if let (Ok(expr), false) = (&expr, struct_allowed) {
+                self.struct_span_err(
+                    expr.span,
+                    "struct literals are not allowed here",
+                )
+                .multipart_suggestion(
+                    "surround the struct literal with parentheses",
+                    vec![
+                        (lo.shrink_to_lo(), "(".to_string()),
+                        (expr.span.shrink_to_hi(), ")".to_string()),
+                    ],
+                    Applicability::MachineApplicable,
+                )
+                .emit();
+            }
+            return Some(expr);
+        }
+        None
+    }
+
+    pub(super) fn parse_struct_expr(
+        &mut self,
+        lo: Span,
+        pth: ast::Path,
+        mut attrs: ThinVec<Attribute>
+    ) -> PResult<'a, P<Expr>> {
+        let struct_sp = lo.to(self.prev_span);
+        self.bump();
+        let mut fields = Vec::new();
+        let mut base = None;
+
+        attrs.extend(self.parse_inner_attributes()?);
+
+        while self.token != token::CloseDelim(token::Brace) {
+            if self.eat(&token::DotDot) {
+                let exp_span = self.prev_span;
+                match self.parse_expr() {
+                    Ok(e) => {
+                        base = Some(e);
+                    }
+                    Err(mut e) => {
+                        e.emit();
+                        self.recover_stmt();
+                    }
+                }
+                if self.token == token::Comma {
+                    self.struct_span_err(
+                        exp_span.to(self.prev_span),
+                        "cannot use a comma after the base struct",
+                    )
+                    .span_suggestion_short(
+                        self.token.span,
+                        "remove this comma",
+                        String::new(),
+                        Applicability::MachineApplicable
+                    )
+                    .note("the base struct must always be the last field")
+                    .emit();
+                    self.recover_stmt();
+                }
+                break;
+            }
+
+            let mut recovery_field = None;
+            if let token::Ident(name, _) = self.token.kind {
+                if !self.token.is_reserved_ident() && self.look_ahead(1, |t| *t == token::Colon) {
+                    // Use in case of error after field-looking code: `S { foo: () with a }`.
+                    recovery_field = Some(ast::Field {
+                        ident: Ident::new(name, self.token.span),
+                        span: self.token.span,
+                        expr: self.mk_expr(self.token.span, ExprKind::Err, ThinVec::new()),
+                        is_shorthand: false,
+                        attrs: ThinVec::new(),
+                        id: DUMMY_NODE_ID,
+                        is_placeholder: false,
+                    });
+                }
+            }
+            let mut parsed_field = None;
+            match self.parse_field() {
+                Ok(f) => parsed_field = Some(f),
+                Err(mut e) => {
+                    e.span_label(struct_sp, "while parsing this struct");
+                    e.emit();
+
+                    // If the next token is a comma, then try to parse
+                    // what comes next as additional fields, rather than
+                    // bailing out until next `}`.
+                    if self.token != token::Comma {
+                        self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
+                        if self.token != token::Comma {
+                            break;
+                        }
+                    }
+                }
+            }
+
+            match self.expect_one_of(&[token::Comma],
+                                     &[token::CloseDelim(token::Brace)]) {
+                Ok(_) => if let Some(f) = parsed_field.or(recovery_field) {
+                    // Only include the field if there's no parse error for the field name.
+                    fields.push(f);
+                }
+                Err(mut e) => {
+                    if let Some(f) = recovery_field {
+                        fields.push(f);
+                    }
+                    e.span_label(struct_sp, "while parsing this struct");
+                    e.emit();
+                    self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
+                    self.eat(&token::Comma);
+                }
+            }
+        }
+
+        let span = lo.to(self.token.span);
+        self.expect(&token::CloseDelim(token::Brace))?;
+        return Ok(self.mk_expr(span, ExprKind::Struct(pth, fields, base), attrs));
+    }
+
+    /// Parses `ident (COLON expr)?`.
+    fn parse_field(&mut self) -> PResult<'a, Field> {
+        let attrs = self.parse_outer_attributes()?;
+        let lo = self.token.span;
+
+        // Check if a colon exists one ahead. This means we're parsing a fieldname.
+        let (fieldname, expr, is_shorthand) = if self.look_ahead(1, |t| {
+            t == &token::Colon || t == &token::Eq
+        }) {
+            let fieldname = self.parse_field_name()?;
+
+            // Check for an equals token. This means the source incorrectly attempts to
+            // initialize a field with an eq rather than a colon.
+            if self.token == token::Eq {
+                self.diagnostic()
+                    .struct_span_err(self.token.span, "expected `:`, found `=`")
+                    .span_suggestion(
+                        fieldname.span.shrink_to_hi().to(self.token.span),
+                        "replace equals symbol with a colon",
+                        ":".to_string(),
+                        Applicability::MachineApplicable,
+                    )
+                    .emit();
+            }
+            self.bump(); // `:`
+            (fieldname, self.parse_expr()?, false)
+        } else {
+            let fieldname = self.parse_ident_common(false)?;
+
+            // Mimic `x: x` for the `x` field shorthand.
+            let path = ast::Path::from_ident(fieldname);
+            let expr = self.mk_expr(fieldname.span, ExprKind::Path(None, path), ThinVec::new());
+            (fieldname, expr, true)
+        };
+        Ok(ast::Field {
+            ident: fieldname,
+            span: lo.to(expr.span),
+            expr,
+            is_shorthand,
+            attrs: attrs.into(),
+            id: DUMMY_NODE_ID,
+            is_placeholder: false,
+        })
+    }
+
+    fn err_dotdotdot_syntax(&self, span: Span) {
+        self.struct_span_err(span, "unexpected token: `...`")
+            .span_suggestion(
+                span,
+                "use `..` for an exclusive range", "..".to_owned(),
+                Applicability::MaybeIncorrect
+            )
+            .span_suggestion(
+                span,
+                "or `..=` for an inclusive range", "..=".to_owned(),
+                Applicability::MaybeIncorrect
+            )
+            .emit();
+    }
+
+    fn err_larrow_operator(&self, span: Span) {
+        self.struct_span_err(
+            span,
+            "unexpected token: `<-`"
+        ).span_suggestion(
+            span,
+            "if you meant to write a comparison against a negative value, add a \
+             space in between `<` and `-`",
+            "< -".to_string(),
+            Applicability::MaybeIncorrect
+        ).emit();
+    }
+
+    fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
+        ExprKind::AssignOp(binop, lhs, rhs)
+    }
+
+    fn mk_range(
+        &self,
+        start: Option<P<Expr>>,
+        end: Option<P<Expr>>,
+        limits: RangeLimits
+    ) -> PResult<'a, ExprKind> {
+        if end.is_none() && limits == RangeLimits::Closed {
+            Err(self.span_fatal_err(self.token.span, Error::InclusiveRangeWithNoEnd))
+        } else {
+            Ok(ExprKind::Range(start, end, limits))
+        }
+    }
+
+    fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
+        ExprKind::Unary(unop, expr)
+    }
+
+    fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
+        ExprKind::Binary(binop, lhs, rhs)
+    }
+
+    fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
+        ExprKind::Index(expr, idx)
+    }
+
+    fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
+        ExprKind::Call(f, args)
+    }
+
+    fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
+        let span = lo.to(self.prev_span);
+        let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), ThinVec::new());
+        self.recover_from_await_method_call();
+        Ok(await_expr)
+    }
+
+    crate fn mk_expr(&self, span: Span, kind: ExprKind, attrs: ThinVec<Attribute>) -> P<Expr> {
+        P(Expr { kind, span, attrs, id: DUMMY_NODE_ID })
+    }
+
+    pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
+        self.mk_expr(span, ExprKind::Err, ThinVec::new())
+    }
+}