about summary refs log tree commit diff
path: root/src/librustc_parse/parser/path.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/librustc_parse/parser/path.rs')
-rw-r--r--src/librustc_parse/parser/path.rs497
1 files changed, 497 insertions, 0 deletions
diff --git a/src/librustc_parse/parser/path.rs b/src/librustc_parse/parser/path.rs
new file mode 100644
index 00000000000..68307440712
--- /dev/null
+++ b/src/librustc_parse/parser/path.rs
@@ -0,0 +1,497 @@
+use super::{Parser, TokenType};
+use crate::maybe_whole;
+use syntax::ast::{self, QSelf, Path, PathSegment, Ident, ParenthesizedArgs, AngleBracketedArgs};
+use syntax::ast::{AnonConst, GenericArg, AssocTyConstraint, AssocTyConstraintKind, BlockCheckMode};
+use syntax::ThinVec;
+use syntax::token::{self, Token};
+use syntax::source_map::{Span, BytePos};
+use syntax_pos::symbol::{kw, sym};
+
+use std::mem;
+use log::debug;
+use errors::{PResult, Applicability, pluralize};
+
+/// Specifies how to parse a path.
+#[derive(Copy, Clone, PartialEq)]
+pub enum PathStyle {
+    /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
+    /// with something else. For example, in expressions `segment < ....` can be interpreted
+    /// as a comparison and `segment ( ....` can be interpreted as a function call.
+    /// In all such contexts the non-path interpretation is preferred by default for practical
+    /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
+    /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
+    Expr,
+    /// In other contexts, notably in types, no ambiguity exists and paths can be written
+    /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
+    /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
+    Type,
+    /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
+    /// visibilities or attributes.
+    /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
+    /// (paths in "mod" contexts have to be checked later for absence of generic arguments
+    /// anyway, due to macros), but it is used to avoid weird suggestions about expected
+    /// tokens when something goes wrong.
+    Mod,
+}
+
+impl<'a> Parser<'a> {
+    /// Parses a qualified path.
+    /// Assumes that the leading `<` has been parsed already.
+    ///
+    /// `qualified_path = <type [as trait_ref]>::path`
+    ///
+    /// # Examples
+    /// `<T>::default`
+    /// `<T as U>::a`
+    /// `<T as U>::F::a<S>` (without disambiguator)
+    /// `<T as U>::F::a::<S>` (with disambiguator)
+    pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, Path)> {
+        let lo = self.prev_span;
+        let ty = self.parse_ty()?;
+
+        // `path` will contain the prefix of the path up to the `>`,
+        // if any (e.g., `U` in the `<T as U>::*` examples
+        // above). `path_span` has the span of that path, or an empty
+        // span in the case of something like `<T>::Bar`.
+        let (mut path, path_span);
+        if self.eat_keyword(kw::As) {
+            let path_lo = self.token.span;
+            path = self.parse_path(PathStyle::Type)?;
+            path_span = path_lo.to(self.prev_span);
+        } else {
+            path_span = self.token.span.to(self.token.span);
+            path = ast::Path { segments: Vec::new(), span: path_span };
+        }
+
+        // See doc comment for `unmatched_angle_bracket_count`.
+        self.expect(&token::Gt)?;
+        if self.unmatched_angle_bracket_count > 0 {
+            self.unmatched_angle_bracket_count -= 1;
+            debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
+        }
+
+        self.expect(&token::ModSep)?;
+
+        let qself = QSelf { ty, path_span, position: path.segments.len() };
+        self.parse_path_segments(&mut path.segments, style)?;
+
+        Ok((qself, Path { segments: path.segments, span: lo.to(self.prev_span) }))
+    }
+
+    /// Parses simple paths.
+    ///
+    /// `path = [::] segment+`
+    /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
+    ///
+    /// # Examples
+    /// `a::b::C<D>` (without disambiguator)
+    /// `a::b::C::<D>` (with disambiguator)
+    /// `Fn(Args)` (without disambiguator)
+    /// `Fn::(Args)` (with disambiguator)
+    pub fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
+        maybe_whole!(self, NtPath, |path| {
+            if style == PathStyle::Mod &&
+               path.segments.iter().any(|segment| segment.args.is_some()) {
+                self.diagnostic().span_err(path.span, "unexpected generic arguments in path");
+            }
+            path
+        });
+
+        let lo = self.meta_var_span.unwrap_or(self.token.span);
+        let mut segments = Vec::new();
+        let mod_sep_ctxt = self.token.span.ctxt();
+        if self.eat(&token::ModSep) {
+            segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
+        }
+        self.parse_path_segments(&mut segments, style)?;
+
+        Ok(Path { segments, span: lo.to(self.prev_span) })
+    }
+
+    /// Like `parse_path`, but also supports parsing `Word` meta items into paths for
+    /// backwards-compatibility. This is used when parsing derive macro paths in `#[derive]`
+    /// attributes.
+    fn parse_path_allowing_meta(&mut self, style: PathStyle) -> PResult<'a, Path> {
+        let meta_ident = match self.token.kind {
+            token::Interpolated(ref nt) => match **nt {
+                token::NtMeta(ref item) => match item.tokens.is_empty() {
+                    true => Some(item.path.clone()),
+                    false => None,
+                },
+                _ => None,
+            },
+            _ => None,
+        };
+        if let Some(path) = meta_ident {
+            self.bump();
+            return Ok(path);
+        }
+        self.parse_path(style)
+    }
+
+    /// Parse a list of paths inside `#[derive(path_0, ..., path_n)]`.
+    pub fn parse_derive_paths(&mut self) -> PResult<'a, Vec<Path>> {
+        self.expect(&token::OpenDelim(token::Paren))?;
+        let mut list = Vec::new();
+        while !self.eat(&token::CloseDelim(token::Paren)) {
+            let path = self.parse_path_allowing_meta(PathStyle::Mod)?;
+            list.push(path);
+            if !self.eat(&token::Comma) {
+                self.expect(&token::CloseDelim(token::Paren))?;
+                break
+            }
+        }
+        Ok(list)
+    }
+
+    pub(super) fn parse_path_segments(
+        &mut self,
+        segments: &mut Vec<PathSegment>,
+        style: PathStyle,
+    ) -> PResult<'a, ()> {
+        loop {
+            let segment = self.parse_path_segment(style)?;
+            if style == PathStyle::Expr {
+                // In order to check for trailing angle brackets, we must have finished
+                // recursing (`parse_path_segment` can indirectly call this function),
+                // that is, the next token must be the highlighted part of the below example:
+                //
+                // `Foo::<Bar as Baz<T>>::Qux`
+                //                      ^ here
+                //
+                // As opposed to the below highlight (if we had only finished the first
+                // recursion):
+                //
+                // `Foo::<Bar as Baz<T>>::Qux`
+                //                     ^ here
+                //
+                // `PathStyle::Expr` is only provided at the root invocation and never in
+                // `parse_path_segment` to recurse and therefore can be checked to maintain
+                // this invariant.
+                self.check_trailing_angle_brackets(&segment, token::ModSep);
+            }
+            segments.push(segment);
+
+            if self.is_import_coupler() || !self.eat(&token::ModSep) {
+                return Ok(());
+            }
+        }
+    }
+
+    pub(super) fn parse_path_segment(&mut self, style: PathStyle) -> PResult<'a, PathSegment> {
+        let ident = self.parse_path_segment_ident()?;
+
+        let is_args_start = |token: &Token| match token.kind {
+            token::Lt | token::BinOp(token::Shl) | token::OpenDelim(token::Paren)
+            | token::LArrow => true,
+            _ => false,
+        };
+        let check_args_start = |this: &mut Self| {
+            this.expected_tokens.extend_from_slice(
+                &[TokenType::Token(token::Lt), TokenType::Token(token::OpenDelim(token::Paren))]
+            );
+            is_args_start(&this.token)
+        };
+
+        Ok(if style == PathStyle::Type && check_args_start(self) ||
+              style != PathStyle::Mod && self.check(&token::ModSep)
+                                      && self.look_ahead(1, |t| is_args_start(t)) {
+            // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
+            // it isn't, then we reset the unmatched angle bracket count as we're about to start
+            // parsing a new path.
+            if style == PathStyle::Expr {
+                self.unmatched_angle_bracket_count = 0;
+                self.max_angle_bracket_count = 0;
+            }
+
+            // Generic arguments are found - `<`, `(`, `::<` or `::(`.
+            self.eat(&token::ModSep);
+            let lo = self.token.span;
+            let args = if self.eat_lt() {
+                // `<'a, T, A = U>`
+                let (args, constraints) =
+                    self.parse_generic_args_with_leaning_angle_bracket_recovery(style, lo)?;
+                self.expect_gt()?;
+                let span = lo.to(self.prev_span);
+                AngleBracketedArgs { args, constraints, span }.into()
+            } else {
+                // `(T, U) -> R`
+                let (inputs, _) = self.parse_paren_comma_seq(|p| p.parse_ty())?;
+                let span = ident.span.to(self.prev_span);
+                let output = if self.eat(&token::RArrow) {
+                    Some(self.parse_ty_common(false, false, false)?)
+                } else {
+                    None
+                };
+                ParenthesizedArgs { inputs, output, span }.into()
+            };
+
+            PathSegment { ident, args, id: ast::DUMMY_NODE_ID }
+        } else {
+            // Generic arguments are not found.
+            PathSegment::from_ident(ident)
+        })
+    }
+
+    pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
+        match self.token.kind {
+            token::Ident(name, _) if name.is_path_segment_keyword() => {
+                let span = self.token.span;
+                self.bump();
+                Ok(Ident::new(name, span))
+            }
+            _ => self.parse_ident(),
+        }
+    }
+
+    /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
+    /// For the purposes of understanding the parsing logic of generic arguments, this function
+    /// can be thought of being the same as just calling `self.parse_generic_args()` if the source
+    /// had the correct amount of leading angle brackets.
+    ///
+    /// ```ignore (diagnostics)
+    /// bar::<<<<T as Foo>::Output>();
+    ///      ^^ help: remove extra angle brackets
+    /// ```
+    fn parse_generic_args_with_leaning_angle_bracket_recovery(
+        &mut self,
+        style: PathStyle,
+        lo: Span,
+    ) -> PResult<'a, (Vec<GenericArg>, Vec<AssocTyConstraint>)> {
+        // We need to detect whether there are extra leading left angle brackets and produce an
+        // appropriate error and suggestion. This cannot be implemented by looking ahead at
+        // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
+        // then there won't be matching `>` tokens to find.
+        //
+        // To explain how this detection works, consider the following example:
+        //
+        // ```ignore (diagnostics)
+        // bar::<<<<T as Foo>::Output>();
+        //      ^^ help: remove extra angle brackets
+        // ```
+        //
+        // Parsing of the left angle brackets starts in this function. We start by parsing the
+        // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
+        // `eat_lt`):
+        //
+        // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
+        // *Unmatched count:* 1
+        // *`parse_path_segment` calls deep:* 0
+        //
+        // This has the effect of recursing as this function is called if a `<` character
+        // is found within the expected generic arguments:
+        //
+        // *Upcoming tokens:* `<<<T as Foo>::Output>;`
+        // *Unmatched count:* 2
+        // *`parse_path_segment` calls deep:* 1
+        //
+        // Eventually we will have recursed until having consumed all of the `<` tokens and
+        // this will be reflected in the count:
+        //
+        // *Upcoming tokens:* `T as Foo>::Output>;`
+        // *Unmatched count:* 4
+        // `parse_path_segment` calls deep:* 3
+        //
+        // The parser will continue until reaching the first `>` - this will decrement the
+        // unmatched angle bracket count and return to the parent invocation of this function
+        // having succeeded in parsing:
+        //
+        // *Upcoming tokens:* `::Output>;`
+        // *Unmatched count:* 3
+        // *`parse_path_segment` calls deep:* 2
+        //
+        // This will continue until the next `>` character which will also return successfully
+        // to the parent invocation of this function and decrement the count:
+        //
+        // *Upcoming tokens:* `;`
+        // *Unmatched count:* 2
+        // *`parse_path_segment` calls deep:* 1
+        //
+        // At this point, this function will expect to find another matching `>` character but
+        // won't be able to and will return an error. This will continue all the way up the
+        // call stack until the first invocation:
+        //
+        // *Upcoming tokens:* `;`
+        // *Unmatched count:* 2
+        // *`parse_path_segment` calls deep:* 0
+        //
+        // In doing this, we have managed to work out how many unmatched leading left angle
+        // brackets there are, but we cannot recover as the unmatched angle brackets have
+        // already been consumed. To remedy this, we keep a snapshot of the parser state
+        // before we do the above. We can then inspect whether we ended up with a parsing error
+        // and unmatched left angle brackets and if so, restore the parser state before we
+        // consumed any `<` characters to emit an error and consume the erroneous tokens to
+        // recover by attempting to parse again.
+        //
+        // In practice, the recursion of this function is indirect and there will be other
+        // locations that consume some `<` characters - as long as we update the count when
+        // this happens, it isn't an issue.
+
+        let is_first_invocation = style == PathStyle::Expr;
+        // Take a snapshot before attempting to parse - we can restore this later.
+        let snapshot = if is_first_invocation {
+            Some(self.clone())
+        } else {
+            None
+        };
+
+        debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
+        match self.parse_generic_args() {
+            Ok(value) => Ok(value),
+            Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
+                // Cancel error from being unable to find `>`. We know the error
+                // must have been this due to a non-zero unmatched angle bracket
+                // count.
+                e.cancel();
+
+                // Swap `self` with our backup of the parser state before attempting to parse
+                // generic arguments.
+                let snapshot = mem::replace(self, snapshot.unwrap());
+
+                debug!(
+                    "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
+                     snapshot.count={:?}",
+                    snapshot.unmatched_angle_bracket_count,
+                );
+
+                // Eat the unmatched angle brackets.
+                for _ in 0..snapshot.unmatched_angle_bracket_count {
+                    self.eat_lt();
+                }
+
+                // Make a span over ${unmatched angle bracket count} characters.
+                let span = lo.with_hi(
+                    lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count)
+                );
+                self.diagnostic()
+                    .struct_span_err(
+                        span,
+                        &format!(
+                            "unmatched angle bracket{}",
+                            pluralize!(snapshot.unmatched_angle_bracket_count)
+                        ),
+                    )
+                    .span_suggestion(
+                        span,
+                        &format!(
+                            "remove extra angle bracket{}",
+                            pluralize!(snapshot.unmatched_angle_bracket_count)
+                        ),
+                        String::new(),
+                        Applicability::MachineApplicable,
+                    )
+                    .emit();
+
+                // Try again without unmatched angle bracket characters.
+                self.parse_generic_args()
+            },
+            Err(e) => Err(e),
+        }
+    }
+
+    /// Parses (possibly empty) list of lifetime and type arguments and associated type bindings,
+    /// possibly including trailing comma.
+    fn parse_generic_args(&mut self) -> PResult<'a, (Vec<GenericArg>, Vec<AssocTyConstraint>)> {
+        let mut args = Vec::new();
+        let mut constraints = Vec::new();
+        let mut misplaced_assoc_ty_constraints: Vec<Span> = Vec::new();
+        let mut assoc_ty_constraints: Vec<Span> = Vec::new();
+
+        let args_lo = self.token.span;
+
+        loop {
+            if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
+                // Parse lifetime argument.
+                args.push(GenericArg::Lifetime(self.expect_lifetime()));
+                misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints);
+            } else if self.check_ident()
+                && self.look_ahead(1, |t| t == &token::Eq || t == &token::Colon)
+            {
+                // Parse associated type constraint.
+                let lo = self.token.span;
+                let ident = self.parse_ident()?;
+                let kind = if self.eat(&token::Eq) {
+                    AssocTyConstraintKind::Equality {
+                        ty: self.parse_ty()?,
+                    }
+                } else if self.eat(&token::Colon) {
+                    AssocTyConstraintKind::Bound {
+                        bounds: self.parse_generic_bounds(Some(self.prev_span))?,
+                    }
+                } else {
+                    unreachable!();
+                };
+
+                let span = lo.to(self.prev_span);
+
+                // Gate associated type bounds, e.g., `Iterator<Item: Ord>`.
+                if let AssocTyConstraintKind::Bound { .. } = kind {
+                    self.sess.gated_spans.gate(sym::associated_type_bounds, span);
+                }
+
+                constraints.push(AssocTyConstraint {
+                    id: ast::DUMMY_NODE_ID,
+                    ident,
+                    kind,
+                    span,
+                });
+                assoc_ty_constraints.push(span);
+            } else if self.check_const_arg() {
+                // Parse const argument.
+                let expr = if let token::OpenDelim(token::Brace) = self.token.kind {
+                    self.parse_block_expr(
+                        None, self.token.span, BlockCheckMode::Default, ThinVec::new()
+                    )?
+                } else if self.token.is_ident() {
+                    // FIXME(const_generics): to distinguish between idents for types and consts,
+                    // we should introduce a GenericArg::Ident in the AST and distinguish when
+                    // lowering to the HIR. For now, idents for const args are not permitted.
+                    if self.token.is_bool_lit() {
+                        self.parse_literal_maybe_minus()?
+                    } else {
+                        return Err(
+                            self.fatal("identifiers may currently not be used for const generics")
+                        );
+                    }
+                } else {
+                    self.parse_literal_maybe_minus()?
+                };
+                let value = AnonConst {
+                    id: ast::DUMMY_NODE_ID,
+                    value: expr,
+                };
+                args.push(GenericArg::Const(value));
+                misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints);
+            } else if self.check_type() {
+                // Parse type argument.
+                args.push(GenericArg::Type(self.parse_ty()?));
+                misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints);
+            } else {
+                break
+            }
+
+            if !self.eat(&token::Comma) {
+                break
+            }
+        }
+
+        // FIXME: we would like to report this in ast_validation instead, but we currently do not
+        // preserve ordering of generic parameters with respect to associated type binding, so we
+        // lose that information after parsing.
+        if misplaced_assoc_ty_constraints.len() > 0 {
+            let mut err = self.struct_span_err(
+                args_lo.to(self.prev_span),
+                "associated type bindings must be declared after generic parameters",
+            );
+            for span in misplaced_assoc_ty_constraints {
+                err.span_label(
+                    span,
+                    "this associated type binding should be moved after the generic parameters",
+                );
+            }
+            err.emit();
+        }
+
+        Ok((args, constraints))
+    }
+}