about summary refs log tree commit diff
path: root/src/librustc_trans/trans/common.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/librustc_trans/trans/common.rs')
-rw-r--r--src/librustc_trans/trans/common.rs955
1 files changed, 955 insertions, 0 deletions
diff --git a/src/librustc_trans/trans/common.rs b/src/librustc_trans/trans/common.rs
new file mode 100644
index 00000000000..d06cfa4a027
--- /dev/null
+++ b/src/librustc_trans/trans/common.rs
@@ -0,0 +1,955 @@
+// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+#![allow(non_camel_case_types, non_snake_case)]
+
+//! Code that is useful in various trans modules.
+
+pub use self::ExprOrMethodCall::*;
+
+use session::Session;
+use llvm;
+use llvm::{ValueRef, BasicBlockRef, BuilderRef, ContextRef};
+use llvm::{True, False, Bool};
+use middle::def;
+use middle::lang_items::LangItem;
+use middle::mem_categorization as mc;
+use middle::subst;
+use middle::subst::Subst;
+use trans::base;
+use trans::build;
+use trans::cleanup;
+use trans::datum;
+use trans::debuginfo;
+use trans::machine;
+use trans::type_::Type;
+use trans::type_of;
+use middle::traits;
+use middle::ty;
+use middle::ty_fold;
+use middle::ty_fold::TypeFoldable;
+use middle::typeck;
+use middle::typeck::infer;
+use util::ppaux::Repr;
+use util::nodemap::{DefIdMap, FnvHashMap, NodeMap};
+
+use arena::TypedArena;
+use libc::{c_uint, c_char};
+use std::c_str::ToCStr;
+use std::cell::{Cell, RefCell};
+use std::rc::Rc;
+use std::vec::Vec;
+use syntax::ast::Ident;
+use syntax::ast;
+use syntax::ast_map::{PathElem, PathName};
+use syntax::codemap::Span;
+use syntax::parse::token::InternedString;
+use syntax::parse::token;
+
+pub use trans::context::CrateContext;
+
+fn type_is_newtype_immediate(ccx: &CrateContext, ty: ty::t) -> bool {
+    match ty::get(ty).sty {
+        ty::ty_struct(def_id, ref substs) => {
+            let fields = ty::struct_fields(ccx.tcx(), def_id, substs);
+            fields.len() == 1 &&
+                fields[0].name ==
+                    token::special_idents::unnamed_field.name &&
+                type_is_immediate(ccx, fields[0].mt.ty)
+        }
+        _ => false
+    }
+}
+
+pub fn type_is_immediate(ccx: &CrateContext, ty: ty::t) -> bool {
+    use trans::machine::llsize_of_alloc;
+    use trans::type_of::sizing_type_of;
+
+    let tcx = ccx.tcx();
+    let simple = ty::type_is_scalar(ty) ||
+        ty::type_is_unique(ty) || ty::type_is_region_ptr(ty) ||
+        type_is_newtype_immediate(ccx, ty) ||
+        ty::type_is_simd(tcx, ty);
+    if simple && !ty::type_is_fat_ptr(tcx, ty) {
+        return true;
+    }
+    if !ty::type_is_sized(tcx, ty) {
+        return false;
+    }
+    match ty::get(ty).sty {
+        ty::ty_struct(..) | ty::ty_enum(..) | ty::ty_tup(..) |
+        ty::ty_unboxed_closure(..) => {
+            let llty = sizing_type_of(ccx, ty);
+            llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type())
+        }
+        _ => type_is_zero_size(ccx, ty)
+    }
+}
+
+pub fn type_is_zero_size(ccx: &CrateContext, ty: ty::t) -> bool {
+    /*!
+     * Identify types which have size zero at runtime.
+     */
+
+    use trans::machine::llsize_of_alloc;
+    use trans::type_of::sizing_type_of;
+    let llty = sizing_type_of(ccx, ty);
+    llsize_of_alloc(ccx, llty) == 0
+}
+
+pub fn return_type_is_void(ccx: &CrateContext, ty: ty::t) -> bool {
+    /*!
+     * Identifies types which we declare to be equivalent to `void`
+     * in C for the purpose of function return types. These are
+     * `()`, bot, and uninhabited enums. Note that all such types
+     * are also zero-size, but not all zero-size types use a `void`
+     * return type (in order to aid with C ABI compatibility).
+     */
+
+    ty::type_is_nil(ty) || ty::type_is_empty(ccx.tcx(), ty)
+}
+
+/// Generates a unique symbol based off the name given. This is used to create
+/// unique symbols for things like closures.
+pub fn gensym_name(name: &str) -> PathElem {
+    let num = token::gensym(name).uint();
+    // use one colon which will get translated to a period by the mangler, and
+    // we're guaranteed that `num` is globally unique for this crate.
+    PathName(token::gensym(format!("{}:{}", name, num).as_slice()))
+}
+
+pub struct tydesc_info {
+    pub ty: ty::t,
+    pub tydesc: ValueRef,
+    pub size: ValueRef,
+    pub align: ValueRef,
+    pub name: ValueRef,
+}
+
+/*
+ * A note on nomenclature of linking: "extern", "foreign", and "upcall".
+ *
+ * An "extern" is an LLVM symbol we wind up emitting an undefined external
+ * reference to. This means "we don't have the thing in this compilation unit,
+ * please make sure you link it in at runtime". This could be a reference to
+ * C code found in a C library, or rust code found in a rust crate.
+ *
+ * Most "externs" are implicitly declared (automatically) as a result of a
+ * user declaring an extern _module_ dependency; this causes the rust driver
+ * to locate an extern crate, scan its compilation metadata, and emit extern
+ * declarations for any symbols used by the declaring crate.
+ *
+ * A "foreign" is an extern that references C (or other non-rust ABI) code.
+ * There is no metadata to scan for extern references so in these cases either
+ * a header-digester like bindgen, or manual function prototypes, have to
+ * serve as declarators. So these are usually given explicitly as prototype
+ * declarations, in rust code, with ABI attributes on them noting which ABI to
+ * link via.
+ *
+ * An "upcall" is a foreign call generated by the compiler (not corresponding
+ * to any user-written call in the code) into the runtime library, to perform
+ * some helper task such as bringing a task to life, allocating memory, etc.
+ *
+ */
+
+pub struct NodeInfo {
+    pub id: ast::NodeId,
+    pub span: Span,
+}
+
+pub fn expr_info(expr: &ast::Expr) -> NodeInfo {
+    NodeInfo { id: expr.id, span: expr.span }
+}
+
+pub struct BuilderRef_res {
+    pub b: BuilderRef,
+}
+
+impl Drop for BuilderRef_res {
+    fn drop(&mut self) {
+        unsafe {
+            llvm::LLVMDisposeBuilder(self.b);
+        }
+    }
+}
+
+pub fn BuilderRef_res(b: BuilderRef) -> BuilderRef_res {
+    BuilderRef_res {
+        b: b
+    }
+}
+
+pub type ExternMap = FnvHashMap<String, ValueRef>;
+
+// Here `self_ty` is the real type of the self parameter to this method. It
+// will only be set in the case of default methods.
+pub struct param_substs {
+    pub substs: subst::Substs,
+}
+
+impl param_substs {
+    pub fn empty() -> param_substs {
+        param_substs {
+            substs: subst::Substs::trans_empty(),
+        }
+    }
+
+    pub fn validate(&self) {
+        assert!(self.substs.types.all(|t| !ty::type_needs_infer(*t)));
+    }
+}
+
+impl Repr for param_substs {
+    fn repr(&self, tcx: &ty::ctxt) -> String {
+        self.substs.repr(tcx)
+    }
+}
+
+pub trait SubstP {
+    fn substp(&self, tcx: &ty::ctxt, param_substs: &param_substs)
+              -> Self;
+}
+
+impl<T: Subst + Clone> SubstP for T {
+    fn substp(&self, tcx: &ty::ctxt, substs: &param_substs) -> T {
+        self.subst(tcx, &substs.substs)
+    }
+}
+
+// work around bizarre resolve errors
+pub type RvalueDatum = datum::Datum<datum::Rvalue>;
+pub type LvalueDatum = datum::Datum<datum::Lvalue>;
+
+// Function context.  Every LLVM function we create will have one of
+// these.
+pub struct FunctionContext<'a, 'tcx: 'a> {
+    // The ValueRef returned from a call to llvm::LLVMAddFunction; the
+    // address of the first instruction in the sequence of
+    // instructions for this function that will go in the .text
+    // section of the executable we're generating.
+    pub llfn: ValueRef,
+
+    // The environment argument in a closure.
+    pub llenv: Option<ValueRef>,
+
+    // A pointer to where to store the return value. If the return type is
+    // immediate, this points to an alloca in the function. Otherwise, it's a
+    // pointer to the hidden first parameter of the function. After function
+    // construction, this should always be Some.
+    pub llretslotptr: Cell<Option<ValueRef>>,
+
+    // These pub elements: "hoisted basic blocks" containing
+    // administrative activities that have to happen in only one place in
+    // the function, due to LLVM's quirks.
+    // A marker for the place where we want to insert the function's static
+    // allocas, so that LLVM will coalesce them into a single alloca call.
+    pub alloca_insert_pt: Cell<Option<ValueRef>>,
+    pub llreturn: Cell<Option<BasicBlockRef>>,
+
+    // If the function has any nested return's, including something like:
+    // fn foo() -> Option<Foo> { Some(Foo { x: return None }) }, then
+    // we use a separate alloca for each return
+    pub needs_ret_allocas: bool,
+
+    // The a value alloca'd for calls to upcalls.rust_personality. Used when
+    // outputting the resume instruction.
+    pub personality: Cell<Option<ValueRef>>,
+
+    // True if the caller expects this fn to use the out pointer to
+    // return. Either way, your code should write into the slot llretslotptr
+    // points to, but if this value is false, that slot will be a local alloca.
+    pub caller_expects_out_pointer: bool,
+
+    // Maps the DefId's for local variables to the allocas created for
+    // them in llallocas.
+    pub lllocals: RefCell<NodeMap<LvalueDatum>>,
+
+    // Same as above, but for closure upvars
+    pub llupvars: RefCell<NodeMap<ValueRef>>,
+
+    // The NodeId of the function, or -1 if it doesn't correspond to
+    // a user-defined function.
+    pub id: ast::NodeId,
+
+    // If this function is being monomorphized, this contains the type
+    // substitutions used.
+    pub param_substs: &'a param_substs,
+
+    // The source span and nesting context where this function comes from, for
+    // error reporting and symbol generation.
+    pub span: Option<Span>,
+
+    // The arena that blocks are allocated from.
+    pub block_arena: &'a TypedArena<BlockS<'a, 'tcx>>,
+
+    // This function's enclosing crate context.
+    pub ccx: &'a CrateContext<'a, 'tcx>,
+
+    // Used and maintained by the debuginfo module.
+    pub debug_context: debuginfo::FunctionDebugContext,
+
+    // Cleanup scopes.
+    pub scopes: RefCell<Vec<cleanup::CleanupScope<'a, 'tcx>>>,
+}
+
+impl<'a, 'tcx> FunctionContext<'a, 'tcx> {
+    pub fn arg_pos(&self, arg: uint) -> uint {
+        let arg = self.env_arg_pos() + arg;
+        if self.llenv.is_some() {
+            arg + 1
+        } else {
+            arg
+        }
+    }
+
+    pub fn out_arg_pos(&self) -> uint {
+        assert!(self.caller_expects_out_pointer);
+        0u
+    }
+
+    pub fn env_arg_pos(&self) -> uint {
+        if self.caller_expects_out_pointer {
+            1u
+        } else {
+            0u
+        }
+    }
+
+    pub fn cleanup(&self) {
+        unsafe {
+            llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt
+                                                     .get()
+                                                     .unwrap());
+        }
+    }
+
+    pub fn get_llreturn(&self) -> BasicBlockRef {
+        if self.llreturn.get().is_none() {
+
+            self.llreturn.set(Some(unsafe {
+                "return".with_c_str(|buf| {
+                    llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx(), self.llfn, buf)
+                })
+            }))
+        }
+
+        self.llreturn.get().unwrap()
+    }
+
+    pub fn get_ret_slot(&self, bcx: Block, output: ty::FnOutput, name: &str) -> ValueRef {
+        if self.needs_ret_allocas {
+            base::alloca_no_lifetime(bcx, match output {
+                ty::FnConverging(output_type) => type_of::type_of(bcx.ccx(), output_type),
+                ty::FnDiverging => Type::void(bcx.ccx())
+            }, name)
+        } else {
+            self.llretslotptr.get().unwrap()
+        }
+    }
+
+    pub fn new_block(&'a self,
+                     is_lpad: bool,
+                     name: &str,
+                     opt_node_id: Option<ast::NodeId>)
+                     -> Block<'a, 'tcx> {
+        unsafe {
+            let llbb = name.with_c_str(|buf| {
+                    llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx(),
+                                                        self.llfn,
+                                                        buf)
+                });
+            BlockS::new(llbb, is_lpad, opt_node_id, self)
+        }
+    }
+
+    pub fn new_id_block(&'a self,
+                        name: &str,
+                        node_id: ast::NodeId)
+                        -> Block<'a, 'tcx> {
+        self.new_block(false, name, Some(node_id))
+    }
+
+    pub fn new_temp_block(&'a self,
+                          name: &str)
+                          -> Block<'a, 'tcx> {
+        self.new_block(false, name, None)
+    }
+
+    pub fn join_blocks(&'a self,
+                       id: ast::NodeId,
+                       in_cxs: &[Block<'a, 'tcx>])
+                       -> Block<'a, 'tcx> {
+        let out = self.new_id_block("join", id);
+        let mut reachable = false;
+        for bcx in in_cxs.iter() {
+            if !bcx.unreachable.get() {
+                build::Br(*bcx, out.llbb);
+                reachable = true;
+            }
+        }
+        if !reachable {
+            build::Unreachable(out);
+        }
+        return out;
+    }
+}
+
+// Basic block context.  We create a block context for each basic block
+// (single-entry, single-exit sequence of instructions) we generate from Rust
+// code.  Each basic block we generate is attached to a function, typically
+// with many basic blocks per function.  All the basic blocks attached to a
+// function are organized as a directed graph.
+pub struct BlockS<'blk, 'tcx: 'blk> {
+    // The BasicBlockRef returned from a call to
+    // llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
+    // block to the function pointed to by llfn.  We insert
+    // instructions into that block by way of this block context.
+    // The block pointing to this one in the function's digraph.
+    pub llbb: BasicBlockRef,
+    pub terminated: Cell<bool>,
+    pub unreachable: Cell<bool>,
+
+    // Is this block part of a landing pad?
+    pub is_lpad: bool,
+
+    // AST node-id associated with this block, if any. Used for
+    // debugging purposes only.
+    pub opt_node_id: Option<ast::NodeId>,
+
+    // The function context for the function to which this block is
+    // attached.
+    pub fcx: &'blk FunctionContext<'blk, 'tcx>,
+}
+
+pub type Block<'blk, 'tcx> = &'blk BlockS<'blk, 'tcx>;
+
+impl<'blk, 'tcx> BlockS<'blk, 'tcx> {
+    pub fn new(llbb: BasicBlockRef,
+               is_lpad: bool,
+               opt_node_id: Option<ast::NodeId>,
+               fcx: &'blk FunctionContext<'blk, 'tcx>)
+               -> Block<'blk, 'tcx> {
+        fcx.block_arena.alloc(BlockS {
+            llbb: llbb,
+            terminated: Cell::new(false),
+            unreachable: Cell::new(false),
+            is_lpad: is_lpad,
+            opt_node_id: opt_node_id,
+            fcx: fcx
+        })
+    }
+
+    pub fn ccx(&self) -> &'blk CrateContext<'blk, 'tcx> {
+        self.fcx.ccx
+    }
+    pub fn tcx(&self) -> &'blk ty::ctxt<'tcx> {
+        self.fcx.ccx.tcx()
+    }
+    pub fn sess(&self) -> &'blk Session { self.fcx.ccx.sess() }
+
+    pub fn ident(&self, ident: Ident) -> String {
+        token::get_ident(ident).get().to_string()
+    }
+
+    pub fn node_id_to_string(&self, id: ast::NodeId) -> String {
+        self.tcx().map.node_to_string(id).to_string()
+    }
+
+    pub fn expr_to_string(&self, e: &ast::Expr) -> String {
+        e.repr(self.tcx())
+    }
+
+    pub fn def(&self, nid: ast::NodeId) -> def::Def {
+        match self.tcx().def_map.borrow().get(&nid) {
+            Some(v) => v.clone(),
+            None => {
+                self.tcx().sess.bug(format!(
+                    "no def associated with node id {}", nid).as_slice());
+            }
+        }
+    }
+
+    pub fn val_to_string(&self, val: ValueRef) -> String {
+        self.ccx().tn().val_to_string(val)
+    }
+
+    pub fn llty_str(&self, ty: Type) -> String {
+        self.ccx().tn().type_to_string(ty)
+    }
+
+    pub fn ty_to_string(&self, t: ty::t) -> String {
+        t.repr(self.tcx())
+    }
+
+    pub fn to_str(&self) -> String {
+        format!("[block {:p}]", self)
+    }
+}
+
+impl<'blk, 'tcx> mc::Typer<'tcx> for BlockS<'blk, 'tcx> {
+    fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx> {
+        self.tcx()
+    }
+
+    fn node_ty(&self, id: ast::NodeId) -> mc::McResult<ty::t> {
+        Ok(node_id_type(self, id))
+    }
+
+    fn node_method_ty(&self, method_call: typeck::MethodCall) -> Option<ty::t> {
+        self.tcx()
+            .method_map
+            .borrow()
+            .get(&method_call)
+            .map(|method| monomorphize_type(self, method.ty))
+    }
+
+    fn adjustments<'a>(&'a self) -> &'a RefCell<NodeMap<ty::AutoAdjustment>> {
+        &self.tcx().adjustments
+    }
+
+    fn is_method_call(&self, id: ast::NodeId) -> bool {
+        self.tcx().method_map.borrow().contains_key(&typeck::MethodCall::expr(id))
+    }
+
+    fn temporary_scope(&self, rvalue_id: ast::NodeId) -> Option<ast::NodeId> {
+        self.tcx().region_maps.temporary_scope(rvalue_id)
+    }
+
+    fn unboxed_closures<'a>(&'a self)
+                        -> &'a RefCell<DefIdMap<ty::UnboxedClosure>> {
+        &self.tcx().unboxed_closures
+    }
+
+    fn upvar_borrow(&self, upvar_id: ty::UpvarId) -> ty::UpvarBorrow {
+        self.tcx().upvar_borrow_map.borrow()[upvar_id].clone()
+    }
+
+    fn capture_mode(&self, closure_expr_id: ast::NodeId)
+                    -> ast::CaptureClause {
+        self.tcx().capture_modes.borrow()[closure_expr_id].clone()
+    }
+}
+
+pub struct Result<'blk, 'tcx: 'blk> {
+    pub bcx: Block<'blk, 'tcx>,
+    pub val: ValueRef
+}
+
+impl<'b, 'tcx> Result<'b, 'tcx> {
+    pub fn new(bcx: Block<'b, 'tcx>, val: ValueRef) -> Result<'b, 'tcx> {
+        Result {
+            bcx: bcx,
+            val: val,
+        }
+    }
+}
+
+pub fn val_ty(v: ValueRef) -> Type {
+    unsafe {
+        Type::from_ref(llvm::LLVMTypeOf(v))
+    }
+}
+
+// LLVM constant constructors.
+pub fn C_null(t: Type) -> ValueRef {
+    unsafe {
+        llvm::LLVMConstNull(t.to_ref())
+    }
+}
+
+pub fn C_undef(t: Type) -> ValueRef {
+    unsafe {
+        llvm::LLVMGetUndef(t.to_ref())
+    }
+}
+
+pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
+    unsafe {
+        llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
+    }
+}
+
+pub fn C_floating(s: &str, t: Type) -> ValueRef {
+    unsafe {
+        s.with_c_str(|buf| llvm::LLVMConstRealOfString(t.to_ref(), buf))
+    }
+}
+
+pub fn C_nil(ccx: &CrateContext) -> ValueRef {
+    C_struct(ccx, &[], false)
+}
+
+pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef {
+    C_integral(Type::i1(ccx), val as u64, false)
+}
+
+pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef {
+    C_integral(Type::i32(ccx), i as u64, true)
+}
+
+pub fn C_i64(ccx: &CrateContext, i: i64) -> ValueRef {
+    C_integral(Type::i64(ccx), i as u64, true)
+}
+
+pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef {
+    C_integral(Type::i64(ccx), i, false)
+}
+
+pub fn C_int<I: AsI64>(ccx: &CrateContext, i: I) -> ValueRef {
+    let v = i.as_i64();
+
+    match machine::llbitsize_of_real(ccx, ccx.int_type()) {
+        32 => assert!(v < (1<<31) && v >= -(1<<31)),
+        64 => {},
+        n => panic!("unsupported target size: {}", n)
+    }
+
+    C_integral(ccx.int_type(), v as u64, true)
+}
+
+pub fn C_uint<I: AsU64>(ccx: &CrateContext, i: I) -> ValueRef {
+    let v = i.as_u64();
+
+    match machine::llbitsize_of_real(ccx, ccx.int_type()) {
+        32 => assert!(v < (1<<32)),
+        64 => {},
+        n => panic!("unsupported target size: {}", n)
+    }
+
+    C_integral(ccx.int_type(), v, false)
+}
+
+pub trait AsI64 { fn as_i64(self) -> i64; }
+pub trait AsU64 { fn as_u64(self) -> u64; }
+
+// FIXME: remove the intptr conversions, because they
+// are host-architecture-dependent
+impl AsI64 for i64 { fn as_i64(self) -> i64 { self as i64 }}
+impl AsI64 for i32 { fn as_i64(self) -> i64 { self as i64 }}
+impl AsI64 for int { fn as_i64(self) -> i64 { self as i64 }}
+
+impl AsU64 for u64  { fn as_u64(self) -> u64 { self as u64 }}
+impl AsU64 for u32  { fn as_u64(self) -> u64 { self as u64 }}
+impl AsU64 for uint { fn as_u64(self) -> u64 { self as u64 }}
+
+pub fn C_u8(ccx: &CrateContext, i: uint) -> ValueRef {
+    C_integral(Type::i8(ccx), i as u64, false)
+}
+
+
+// This is a 'c-like' raw string, which differs from
+// our boxed-and-length-annotated strings.
+pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef {
+    unsafe {
+        match cx.const_cstr_cache().borrow().get(&s) {
+            Some(&llval) => return llval,
+            None => ()
+        }
+
+        let sc = llvm::LLVMConstStringInContext(cx.llcx(),
+                                                s.get().as_ptr() as *const c_char,
+                                                s.get().len() as c_uint,
+                                                !null_terminated as Bool);
+
+        let gsym = token::gensym("str");
+        let g = format!("str{}", gsym.uint()).with_c_str(|buf| {
+            llvm::LLVMAddGlobal(cx.llmod(), val_ty(sc).to_ref(), buf)
+        });
+        llvm::LLVMSetInitializer(g, sc);
+        llvm::LLVMSetGlobalConstant(g, True);
+        llvm::SetLinkage(g, llvm::InternalLinkage);
+
+        cx.const_cstr_cache().borrow_mut().insert(s, g);
+        g
+    }
+}
+
+// NB: Do not use `do_spill_noroot` to make this into a constant string, or
+// you will be kicked off fast isel. See issue #4352 for an example of this.
+pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef {
+    unsafe {
+        let len = s.get().len();
+        let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s, false),
+                                            Type::i8p(cx).to_ref());
+        C_named_struct(cx.tn().find_type("str_slice").unwrap(), &[cs, C_uint(cx, len)])
+    }
+}
+
+pub fn C_binary_slice(cx: &CrateContext, data: &[u8]) -> ValueRef {
+    unsafe {
+        let len = data.len();
+        let lldata = C_bytes(cx, data);
+
+        let gsym = token::gensym("binary");
+        let g = format!("binary{}", gsym.uint()).with_c_str(|buf| {
+            llvm::LLVMAddGlobal(cx.llmod(), val_ty(lldata).to_ref(), buf)
+        });
+        llvm::LLVMSetInitializer(g, lldata);
+        llvm::LLVMSetGlobalConstant(g, True);
+        llvm::SetLinkage(g, llvm::InternalLinkage);
+
+        let cs = llvm::LLVMConstPointerCast(g, Type::i8p(cx).to_ref());
+        C_struct(cx, &[cs, C_uint(cx, len)], false)
+    }
+}
+
+pub fn C_struct(cx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef {
+    C_struct_in_context(cx.llcx(), elts, packed)
+}
+
+pub fn C_struct_in_context(llcx: ContextRef, elts: &[ValueRef], packed: bool) -> ValueRef {
+    unsafe {
+        llvm::LLVMConstStructInContext(llcx,
+                                       elts.as_ptr(), elts.len() as c_uint,
+                                       packed as Bool)
+    }
+}
+
+pub fn C_named_struct(t: Type, elts: &[ValueRef]) -> ValueRef {
+    unsafe {
+        llvm::LLVMConstNamedStruct(t.to_ref(), elts.as_ptr(), elts.len() as c_uint)
+    }
+}
+
+pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
+    unsafe {
+        return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint);
+    }
+}
+
+pub fn C_bytes(cx: &CrateContext, bytes: &[u8]) -> ValueRef {
+    C_bytes_in_context(cx.llcx(), bytes)
+}
+
+pub fn C_bytes_in_context(llcx: ContextRef, bytes: &[u8]) -> ValueRef {
+    unsafe {
+        let ptr = bytes.as_ptr() as *const c_char;
+        return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True);
+    }
+}
+
+pub fn const_get_elt(cx: &CrateContext, v: ValueRef, us: &[c_uint])
+                  -> ValueRef {
+    unsafe {
+        let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
+
+        debug!("const_get_elt(v={}, us={}, r={})",
+               cx.tn().val_to_string(v), us, cx.tn().val_to_string(r));
+
+        return r;
+    }
+}
+
+pub fn is_const(v: ValueRef) -> bool {
+    unsafe {
+        llvm::LLVMIsConstant(v) == True
+    }
+}
+
+pub fn const_to_int(v: ValueRef) -> i64 {
+    unsafe {
+        llvm::LLVMConstIntGetSExtValue(v)
+    }
+}
+
+pub fn const_to_uint(v: ValueRef) -> u64 {
+    unsafe {
+        llvm::LLVMConstIntGetZExtValue(v)
+    }
+}
+
+pub fn is_undef(val: ValueRef) -> bool {
+    unsafe {
+        llvm::LLVMIsUndef(val) != False
+    }
+}
+
+pub fn is_null(val: ValueRef) -> bool {
+    unsafe {
+        llvm::LLVMIsNull(val) != False
+    }
+}
+
+pub fn monomorphize_type(bcx: &BlockS, t: ty::t) -> ty::t {
+    t.subst(bcx.tcx(), &bcx.fcx.param_substs.substs)
+}
+
+pub fn node_id_type(bcx: &BlockS, id: ast::NodeId) -> ty::t {
+    let tcx = bcx.tcx();
+    let t = ty::node_id_to_type(tcx, id);
+    monomorphize_type(bcx, t)
+}
+
+pub fn expr_ty(bcx: Block, ex: &ast::Expr) -> ty::t {
+    node_id_type(bcx, ex.id)
+}
+
+pub fn expr_ty_adjusted(bcx: Block, ex: &ast::Expr) -> ty::t {
+    monomorphize_type(bcx, ty::expr_ty_adjusted(bcx.tcx(), ex))
+}
+
+pub fn fulfill_obligation(ccx: &CrateContext,
+                          span: Span,
+                          trait_ref: Rc<ty::TraitRef>)
+                          -> traits::Vtable<()>
+{
+    /*!
+     * Attempts to resolve an obligation. The result is a shallow
+     * vtable resolution -- meaning that we do not (necessarily) resolve
+     * all nested obligations on the impl. Note that type check should
+     * guarantee to us that all nested obligations *could be* resolved
+     * if we wanted to.
+     */
+
+    let tcx = ccx.tcx();
+
+    // Remove any references to regions; this helps improve caching.
+    let trait_ref = ty_fold::erase_regions(tcx, trait_ref);
+
+    // First check the cache.
+    match ccx.trait_cache().borrow().get(&trait_ref) {
+        Some(vtable) => {
+            info!("Cache hit: {}", trait_ref.repr(ccx.tcx()));
+            return (*vtable).clone();
+        }
+        None => { }
+    }
+
+    ty::populate_implementations_for_trait_if_necessary(tcx, trait_ref.def_id);
+    let infcx = infer::new_infer_ctxt(tcx);
+
+    // Parameter environment is used to give details about type parameters,
+    // but since we are in trans, everything is fully monomorphized.
+    let param_env = ty::empty_parameter_environment();
+
+    // Do the initial selection for the obligation. This yields the
+    // shallow result we are looking for -- that is, what specific impl.
+    let mut selcx = traits::SelectionContext::new(&infcx, &param_env, tcx);
+    let obligation = traits::Obligation::misc(span, trait_ref.clone());
+    let selection = match selcx.select(&obligation) {
+        Ok(Some(selection)) => selection,
+        Ok(None) => {
+            // Ambiguity can happen when monomorphizing during trans
+            // expands to some humongo type that never occurred
+            // statically -- this humongo type can then overflow,
+            // leading to an ambiguous result. So report this as an
+            // overflow bug, since I believe this is the only case
+            // where ambiguity can result.
+            debug!("Encountered ambiguity selecting `{}` during trans, \
+                    presuming due to overflow",
+                   trait_ref.repr(tcx));
+            ccx.sess().span_fatal(
+                span,
+                "reached the recursion limit during monomorphization");
+        }
+        Err(e) => {
+            tcx.sess.span_bug(
+                span,
+                format!("Encountered error `{}` selecting `{}` during trans",
+                        e.repr(tcx),
+                        trait_ref.repr(tcx)).as_slice())
+        }
+    };
+
+    // Currently, we use a fulfillment context to completely resolve
+    // all nested obligations. This is because they can inform the
+    // inference of the impl's type parameters. However, in principle,
+    // we only need to do this until the impl's type parameters are
+    // fully bound. It could be a slight optimization to stop
+    // iterating early.
+    let mut fulfill_cx = traits::FulfillmentContext::new();
+    let vtable = selection.map_move_nested(|obligation| {
+        fulfill_cx.register_obligation(tcx, obligation);
+    });
+    match fulfill_cx.select_all_or_error(&infcx, &param_env, tcx) {
+        Ok(()) => { }
+        Err(errors) => {
+            if errors.iter().all(|e| e.is_overflow()) {
+                // See Ok(None) case above.
+                ccx.sess().span_fatal(
+                    span,
+                    "reached the recursion limit during monomorphization");
+            } else {
+                tcx.sess.span_bug(
+                    span,
+                    format!("Encountered errors `{}` fulfilling `{}` during trans",
+                            errors.repr(tcx),
+                            trait_ref.repr(tcx)).as_slice());
+            }
+        }
+    }
+
+    // Use skolemize to simultaneously replace all type variables with
+    // their bindings and replace all regions with 'static.  This is
+    // sort of overkill because we do not expect there to be any
+    // unbound type variables, hence no skolemized types should ever
+    // be inserted.
+    let vtable = vtable.fold_with(&mut infcx.skolemizer());
+
+    info!("Cache miss: {}", trait_ref.repr(ccx.tcx()));
+    ccx.trait_cache().borrow_mut().insert(trait_ref,
+                                          vtable.clone());
+
+    vtable
+}
+
+// Key used to lookup values supplied for type parameters in an expr.
+#[deriving(PartialEq, Show)]
+pub enum ExprOrMethodCall {
+    // Type parameters for a path like `None::<int>`
+    ExprId(ast::NodeId),
+
+    // Type parameters for a method call like `a.foo::<int>()`
+    MethodCall(typeck::MethodCall)
+}
+
+pub fn node_id_substs(bcx: Block,
+                      node: ExprOrMethodCall)
+                      -> subst::Substs
+{
+    let tcx = bcx.tcx();
+
+    let substs = match node {
+        ExprId(id) => {
+            ty::node_id_item_substs(tcx, id).substs
+        }
+        MethodCall(method_call) => {
+            (*tcx.method_map.borrow())[method_call].substs.clone()
+        }
+    };
+
+    if substs.types.any(|t| ty::type_needs_infer(*t)) {
+        bcx.sess().bug(
+            format!("type parameters for node {} include inference types: \
+                     {}",
+                    node,
+                    substs.repr(bcx.tcx())).as_slice());
+    }
+
+    let substs = substs.erase_regions();
+    substs.substp(tcx, bcx.fcx.param_substs)
+}
+
+pub fn langcall(bcx: Block,
+                span: Option<Span>,
+                msg: &str,
+                li: LangItem)
+                -> ast::DefId {
+    match bcx.tcx().lang_items.require(li) {
+        Ok(id) => id,
+        Err(s) => {
+            let msg = format!("{} {}", msg, s);
+            match span {
+                Some(span) => bcx.tcx().sess.span_fatal(span, msg.as_slice()),
+                None => bcx.tcx().sess.fatal(msg.as_slice()),
+            }
+        }
+    }
+}