diff options
Diffstat (limited to 'src/libstd/num/float.rs')
| -rw-r--r-- | src/libstd/num/float.rs | 1444 |
1 files changed, 0 insertions, 1444 deletions
diff --git a/src/libstd/num/float.rs b/src/libstd/num/float.rs deleted file mode 100644 index 4f676545d4f..00000000000 --- a/src/libstd/num/float.rs +++ /dev/null @@ -1,1444 +0,0 @@ -// Copyright 2012 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// http://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Operations and constants for `float` - -// Even though this module exports everything defined in it, -// because it contains re-exports, we also have to explicitly -// export locally defined things. That's a bit annoying. - - -// export when m_float == c_double - - -// PORT this must match in width according to architecture - -#[allow(missing_doc)]; -#[allow(non_uppercase_statics)]; - -use default::Default; -use num::{Zero, One, strconv}; -use num::FPCategory; -use num; -use prelude::*; -use to_str; - -pub static NaN: float = 0.0/0.0; - -pub static infinity: float = 1.0/0.0; - -pub static neg_infinity: float = -1.0/0.0; - -/* Module: consts */ -pub mod consts { - // FIXME (requires Issue #1433 to fix): replace with mathematical - // constants from cmath. - /// Archimedes' constant - pub static pi: float = 3.14159265358979323846264338327950288; - - /// pi/2.0 - pub static frac_pi_2: float = 1.57079632679489661923132169163975144; - - /// pi/4.0 - pub static frac_pi_4: float = 0.785398163397448309615660845819875721; - - /// 1.0/pi - pub static frac_1_pi: float = 0.318309886183790671537767526745028724; - - /// 2.0/pi - pub static frac_2_pi: float = 0.636619772367581343075535053490057448; - - /// 2.0/sqrt(pi) - pub static frac_2_sqrtpi: float = 1.12837916709551257389615890312154517; - - /// sqrt(2.0) - pub static sqrt2: float = 1.41421356237309504880168872420969808; - - /// 1.0/sqrt(2.0) - pub static frac_1_sqrt2: float = 0.707106781186547524400844362104849039; - - /// Euler's number - pub static e: float = 2.71828182845904523536028747135266250; - - /// log2(e) - pub static log2_e: float = 1.44269504088896340735992468100189214; - - /// log10(e) - pub static log10_e: float = 0.434294481903251827651128918916605082; - - /// ln(2.0) - pub static ln_2: float = 0.693147180559945309417232121458176568; - - /// ln(10.0) - pub static ln_10: float = 2.30258509299404568401799145468436421; -} - -// -// Section: String Conversions -// - -/// -/// Converts a float to a string -/// -/// # Arguments -/// -/// * num - The float value -/// -#[inline] -pub fn to_str(num: float) -> ~str { - let (r, _) = strconv::float_to_str_common( - num, 10u, true, strconv::SignNeg, strconv::DigAll); - r -} - -/// -/// Converts a float to a string in hexadecimal format -/// -/// # Arguments -/// -/// * num - The float value -/// -#[inline] -pub fn to_str_hex(num: float) -> ~str { - let (r, _) = strconv::float_to_str_common( - num, 16u, true, strconv::SignNeg, strconv::DigAll); - r -} - -/// -/// Converts a float to a string in a given radix, and a flag indicating -/// whether it's a special value -/// -/// # Arguments -/// -/// * num - The float value -/// * radix - The base to use -/// -#[inline] -pub fn to_str_radix_special(num: float, radix: uint) -> (~str, bool) { - strconv::float_to_str_common(num, radix, true, - strconv::SignNeg, strconv::DigAll) -} - -/// -/// Converts a float to a string with exactly the number of -/// provided significant digits -/// -/// # Arguments -/// -/// * num - The float value -/// * digits - The number of significant digits -/// -#[inline] -pub fn to_str_exact(num: float, digits: uint) -> ~str { - let (r, _) = strconv::float_to_str_common( - num, 10u, true, strconv::SignNeg, strconv::DigExact(digits)); - r -} - -/// -/// Converts a float to a string with a maximum number of -/// significant digits -/// -/// # Arguments -/// -/// * num - The float value -/// * digits - The number of significant digits -/// -#[inline] -pub fn to_str_digits(num: float, digits: uint) -> ~str { - let (r, _) = strconv::float_to_str_common( - num, 10u, true, strconv::SignNeg, strconv::DigMax(digits)); - r -} - -impl to_str::ToStr for float { - #[inline] - fn to_str(&self) -> ~str { to_str_digits(*self, 8) } -} - -impl num::ToStrRadix for float { - /// Converts a float to a string in a given radix - /// - /// # Arguments - /// - /// * num - The float value - /// * radix - The base to use - /// - /// # Failure - /// - /// Fails if called on a special value like `inf`, `-inf` or `NaN` due to - /// possible misinterpretation of the result at higher bases. If those values - /// are expected, use `to_str_radix_special()` instead. - #[inline] - fn to_str_radix(&self, radix: uint) -> ~str { - let (r, special) = strconv::float_to_str_common( - *self, radix, true, strconv::SignNeg, strconv::DigAll); - if special { fail2!("number has a special value, \ - try to_str_radix_special() if those are expected") } - r - } -} - -/// -/// Convert a string in base 16 to a float. -/// Accepts a optional binary exponent. -/// -/// This function accepts strings such as -/// -/// * 'a4.fe' -/// * '+a4.fe', equivalent to 'a4.fe' -/// * '-a4.fe' -/// * '2b.aP128', or equivalently, '2b.ap128' -/// * '2b.aP-128' -/// * '.' (understood as 0) -/// * 'c.' -/// * '.c', or, equivalently, '0.c' -/// * '+inf', 'inf', '-inf', 'NaN' -/// -/// Leading and trailing whitespace represent an error. -/// -/// # Arguments -/// -/// * num - A string -/// -/// # Return value -/// -/// `none` if the string did not represent a valid number. Otherwise, -/// `Some(n)` where `n` is the floating-point number represented by `[num]`. -/// -#[inline] -pub fn from_str_hex(num: &str) -> Option<float> { - strconv::from_str_common(num, 16u, true, true, true, - strconv::ExpBin, false, false) -} - -impl FromStr for float { - /// - /// Convert a string in base 10 to a float. - /// Accepts a optional decimal exponent. - /// - /// This function accepts strings such as - /// - /// * '3.14' - /// * '+3.14', equivalent to '3.14' - /// * '-3.14' - /// * '2.5E10', or equivalently, '2.5e10' - /// * '2.5E-10' - /// * '.' (understood as 0) - /// * '5.' - /// * '.5', or, equivalently, '0.5' - /// * '+inf', 'inf', '-inf', 'NaN' - /// - /// Leading and trailing whitespace represent an error. - /// - /// # Arguments - /// - /// * num - A string - /// - /// # Return value - /// - /// `none` if the string did not represent a valid number. Otherwise, - /// `Some(n)` where `n` is the floating-point number represented by `num`. - /// - #[inline] - fn from_str(val: &str) -> Option<float> { - strconv::from_str_common(val, 10u, true, true, true, - strconv::ExpDec, false, false) - } -} - -impl num::FromStrRadix for float { - /// - /// Convert a string in an given base to a float. - /// - /// Due to possible conflicts, this function does **not** accept - /// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor** - /// does it recognize exponents of any kind. - /// - /// Leading and trailing whitespace represent an error. - /// - /// # Arguments - /// - /// * num - A string - /// * radix - The base to use. Must lie in the range [2 .. 36] - /// - /// # Return value - /// - /// `none` if the string did not represent a valid number. Otherwise, - /// `Some(n)` where `n` is the floating-point number represented by `num`. - /// - #[inline] - fn from_str_radix(val: &str, radix: uint) -> Option<float> { - strconv::from_str_common(val, radix, true, true, false, - strconv::ExpNone, false, false) - } -} - -// -// Section: Arithmetics -// - -/// -/// Compute the exponentiation of an integer by another integer as a float -/// -/// # Arguments -/// -/// * x - The base -/// * pow - The exponent -/// -/// # Return value -/// -/// `NaN` if both `x` and `pow` are `0u`, otherwise `x^pow` -/// -pub fn pow_with_uint(base: uint, pow: uint) -> float { - if base == 0u { - if pow == 0u { - return NaN as float; - } - return 0.; - } - let mut my_pow = pow; - let mut total = 1f; - let mut multiplier = base as float; - while (my_pow > 0u) { - if my_pow % 2u == 1u { - total = total * multiplier; - } - my_pow /= 2u; - multiplier *= multiplier; - } - return total; -} - -impl Num for float {} - -#[cfg(not(test))] -impl Eq for float { - #[inline] - fn eq(&self, other: &float) -> bool { (*self) == (*other) } -} - -#[cfg(not(test))] -impl ApproxEq<float> for float { - #[inline] - fn approx_epsilon() -> float { 1.0e-6 } - - #[inline] - fn approx_eq(&self, other: &float) -> bool { - self.approx_eq_eps(other, &1.0e-6) - } - - #[inline] - fn approx_eq_eps(&self, other: &float, approx_epsilon: &float) -> bool { - (*self - *other).abs() < *approx_epsilon - } -} - -#[cfg(not(test))] -impl Ord for float { - #[inline] - fn lt(&self, other: &float) -> bool { (*self) < (*other) } - #[inline] - fn le(&self, other: &float) -> bool { (*self) <= (*other) } - #[inline] - fn ge(&self, other: &float) -> bool { (*self) >= (*other) } - #[inline] - fn gt(&self, other: &float) -> bool { (*self) > (*other) } -} - -impl Orderable for float { - /// Returns `NaN` if either of the numbers are `NaN`. - #[inline] - fn min(&self, other: &float) -> float { - (*self as f64).min(&(*other as f64)) as float - } - - /// Returns `NaN` if either of the numbers are `NaN`. - #[inline] - fn max(&self, other: &float) -> float { - (*self as f64).max(&(*other as f64)) as float - } - - /// Returns the number constrained within the range `mn <= self <= mx`. - /// If any of the numbers are `NaN` then `NaN` is returned. - #[inline] - fn clamp(&self, mn: &float, mx: &float) -> float { - (*self as f64).clamp(&(*mn as f64), &(*mx as f64)) as float - } -} - -impl Default for float { - #[inline] - fn default() -> float { 0.0 } -} - -impl Zero for float { - #[inline] - fn zero() -> float { 0.0 } - - /// Returns true if the number is equal to either `0.0` or `-0.0` - #[inline] - fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 } -} - -impl One for float { - #[inline] - fn one() -> float { 1.0 } -} - -impl Round for float { - /// Round half-way cases toward `neg_infinity` - #[inline] - fn floor(&self) -> float { (*self as f64).floor() as float } - - /// Round half-way cases toward `infinity` - #[inline] - fn ceil(&self) -> float { (*self as f64).ceil() as float } - - /// Round half-way cases away from `0.0` - #[inline] - fn round(&self) -> float { (*self as f64).round() as float } - - /// The integer part of the number (rounds towards `0.0`) - #[inline] - fn trunc(&self) -> float { (*self as f64).trunc() as float } - - /// - /// The fractional part of the number, satisfying: - /// - /// ```rust - /// assert!(x == trunc(x) + fract(x)) - /// ``` - /// - #[inline] - fn fract(&self) -> float { *self - self.trunc() } -} - -impl Fractional for float { - /// The reciprocal (multiplicative inverse) of the number - #[inline] - fn recip(&self) -> float { 1.0 / *self } -} - -impl Algebraic for float { - #[inline] - fn pow(&self, n: &float) -> float { - (*self as f64).pow(&(*n as f64)) as float - } - - #[inline] - fn sqrt(&self) -> float { - (*self as f64).sqrt() as float - } - - #[inline] - fn rsqrt(&self) -> float { - (*self as f64).rsqrt() as float - } - - #[inline] - fn cbrt(&self) -> float { - (*self as f64).cbrt() as float - } - - #[inline] - fn hypot(&self, other: &float) -> float { - (*self as f64).hypot(&(*other as f64)) as float - } -} - -impl Trigonometric for float { - #[inline] - fn sin(&self) -> float { - (*self as f64).sin() as float - } - - #[inline] - fn cos(&self) -> float { - (*self as f64).cos() as float - } - - #[inline] - fn tan(&self) -> float { - (*self as f64).tan() as float - } - - #[inline] - fn asin(&self) -> float { - (*self as f64).asin() as float - } - - #[inline] - fn acos(&self) -> float { - (*self as f64).acos() as float - } - - #[inline] - fn atan(&self) -> float { - (*self as f64).atan() as float - } - - #[inline] - fn atan2(&self, other: &float) -> float { - (*self as f64).atan2(&(*other as f64)) as float - } - - /// Simultaneously computes the sine and cosine of the number - #[inline] - fn sin_cos(&self) -> (float, float) { - match (*self as f64).sin_cos() { - (s, c) => (s as float, c as float) - } - } -} - -impl Exponential for float { - /// Returns the exponential of the number - #[inline] - fn exp(&self) -> float { - (*self as f64).exp() as float - } - - /// Returns 2 raised to the power of the number - #[inline] - fn exp2(&self) -> float { - (*self as f64).exp2() as float - } - - /// Returns the natural logarithm of the number - #[inline] - fn ln(&self) -> float { - (*self as f64).ln() as float - } - - /// Returns the logarithm of the number with respect to an arbitrary base - #[inline] - fn log(&self, base: &float) -> float { - (*self as f64).log(&(*base as f64)) as float - } - - /// Returns the base 2 logarithm of the number - #[inline] - fn log2(&self) -> float { - (*self as f64).log2() as float - } - - /// Returns the base 10 logarithm of the number - #[inline] - fn log10(&self) -> float { - (*self as f64).log10() as float - } -} - -impl Hyperbolic for float { - #[inline] - fn sinh(&self) -> float { - (*self as f64).sinh() as float - } - - #[inline] - fn cosh(&self) -> float { - (*self as f64).cosh() as float - } - - #[inline] - fn tanh(&self) -> float { - (*self as f64).tanh() as float - } - - /// - /// Inverse hyperbolic sine - /// - /// # Returns - /// - /// - on success, the inverse hyperbolic sine of `self` will be returned - /// - `self` if `self` is `0.0`, `-0.0`, `infinity`, or `neg_infinity` - /// - `NaN` if `self` is `NaN` - /// - #[inline] - fn asinh(&self) -> float { - (*self as f64).asinh() as float - } - - /// - /// Inverse hyperbolic cosine - /// - /// # Returns - /// - /// - on success, the inverse hyperbolic cosine of `self` will be returned - /// - `infinity` if `self` is `infinity` - /// - `NaN` if `self` is `NaN` or `self < 1.0` (including `neg_infinity`) - /// - #[inline] - fn acosh(&self) -> float { - (*self as f64).acosh() as float - } - - /// - /// Inverse hyperbolic tangent - /// - /// # Returns - /// - /// - on success, the inverse hyperbolic tangent of `self` will be returned - /// - `self` if `self` is `0.0` or `-0.0` - /// - `infinity` if `self` is `1.0` - /// - `neg_infinity` if `self` is `-1.0` - /// - `NaN` if the `self` is `NaN` or outside the domain of `-1.0 <= self <= 1.0` - /// (including `infinity` and `neg_infinity`) - /// - #[inline] - fn atanh(&self) -> float { - (*self as f64).atanh() as float - } -} - -impl Real for float { - /// Archimedes' constant - #[inline] - fn pi() -> float { 3.14159265358979323846264338327950288 } - - /// 2.0 * pi - #[inline] - fn two_pi() -> float { 6.28318530717958647692528676655900576 } - - /// pi / 2.0 - #[inline] - fn frac_pi_2() -> float { 1.57079632679489661923132169163975144 } - - /// pi / 3.0 - #[inline] - fn frac_pi_3() -> float { 1.04719755119659774615421446109316763 } - - /// pi / 4.0 - #[inline] - fn frac_pi_4() -> float { 0.785398163397448309615660845819875721 } - - /// pi / 6.0 - #[inline] - fn frac_pi_6() -> float { 0.52359877559829887307710723054658381 } - - /// pi / 8.0 - #[inline] - fn frac_pi_8() -> float { 0.39269908169872415480783042290993786 } - - /// 1.0 / pi - #[inline] - fn frac_1_pi() -> float { 0.318309886183790671537767526745028724 } - - /// 2.0 / pi - #[inline] - fn frac_2_pi() -> float { 0.636619772367581343075535053490057448 } - - /// 2 .0/ sqrt(pi) - #[inline] - fn frac_2_sqrtpi() -> float { 1.12837916709551257389615890312154517 } - - /// sqrt(2.0) - #[inline] - fn sqrt2() -> float { 1.41421356237309504880168872420969808 } - - /// 1.0 / sqrt(2.0) - #[inline] - fn frac_1_sqrt2() -> float { 0.707106781186547524400844362104849039 } - - /// Euler's number - #[inline] - fn e() -> float { 2.71828182845904523536028747135266250 } - - /// log2(e) - #[inline] - fn log2_e() -> float { 1.44269504088896340735992468100189214 } - - /// log10(e) - #[inline] - fn log10_e() -> float { 0.434294481903251827651128918916605082 } - - /// ln(2.0) - #[inline] - fn ln_2() -> float { 0.693147180559945309417232121458176568 } - - /// ln(10.0) - #[inline] - fn ln_10() -> float { 2.30258509299404568401799145468436421 } - - /// Converts to degrees, assuming the number is in radians - #[inline] - fn to_degrees(&self) -> float { (*self as f64).to_degrees() as float } - - /// Converts to radians, assuming the number is in degrees - #[inline] - fn to_radians(&self) -> float { (*self as f64).to_radians() as float } -} - -impl RealExt for float { - #[inline] - fn lgamma(&self) -> (int, float) { - let (sign, value) = (*self as f64).lgamma(); - (sign, value as float) - } - - #[inline] - fn tgamma(&self) -> float { (*self as f64).tgamma() as float } - - #[inline] - fn j0(&self) -> float { (*self as f64).j0() as float } - - #[inline] - fn j1(&self) -> float { (*self as f64).j1() as float } - - #[inline] - fn jn(&self, n: int) -> float { (*self as f64).jn(n) as float } - - #[inline] - fn y0(&self) -> float { (*self as f64).y0() as float } - - #[inline] - fn y1(&self) -> float { (*self as f64).y1() as float } - - #[inline] - fn yn(&self, n: int) -> float { (*self as f64).yn(n) as float } -} - -#[cfg(not(test))] -impl Add<float,float> for float { - #[inline] - fn add(&self, other: &float) -> float { *self + *other } -} - -#[cfg(not(test))] -impl Sub<float,float> for float { - #[inline] - fn sub(&self, other: &float) -> float { *self - *other } -} - -#[cfg(not(test))] -impl Mul<float,float> for float { - #[inline] - fn mul(&self, other: &float) -> float { *self * *other } -} - -#[cfg(not(test))] -impl Div<float,float> for float { - #[inline] - fn div(&self, other: &float) -> float { *self / *other } -} - -#[cfg(not(test))] -impl Rem<float,float> for float { - #[inline] - fn rem(&self, other: &float) -> float { *self % *other } -} -#[cfg(not(test))] -impl Neg<float> for float { - #[inline] - fn neg(&self) -> float { -*self } -} - -impl Signed for float { - /// Computes the absolute value. Returns `NaN` if the number is `NaN`. - #[inline] - fn abs(&self) -> float { (*self as f64).abs() as float } - - /// - /// The positive difference of two numbers. Returns `0.0` if the number is less than or - /// equal to `other`, otherwise the difference between`self` and `other` is returned. - /// - #[inline] - fn abs_sub(&self, other: &float) -> float { - (*self as f64).abs_sub(&(*other as f64)) as float - } - - /// - /// # Returns - /// - /// - `1.0` if the number is positive, `+0.0` or `infinity` - /// - `-1.0` if the number is negative, `-0.0` or `neg_infinity` - /// - `NaN` if the number is NaN - /// - #[inline] - fn signum(&self) -> float { - (*self as f64).signum() as float - } - - /// Returns `true` if the number is positive, including `+0.0` and `infinity` - #[inline] - fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == infinity } - - /// Returns `true` if the number is negative, including `-0.0` and `neg_infinity` - #[inline] - fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == neg_infinity } -} - -impl Bounded for float { - #[inline] - fn min_value() -> float { - let x: f64 = Bounded::min_value(); - x as float - } - - #[inline] - fn max_value() -> float { - let x: f64 = Bounded::max_value(); - x as float - } -} - -impl Primitive for float { - #[inline] - fn bits(_: Option<float>) -> uint { - let bits: uint = Primitive::bits(Some(0f64)); - bits - } - - #[inline] - fn bytes(_: Option<float>) -> uint { - let bytes: uint = Primitive::bytes(Some(0f64)); - bytes - } -} - -impl Float for float { - #[inline] - fn nan() -> float { - let value: f64 = Float::nan(); - value as float - } - - #[inline] - fn infinity() -> float { - let value: f64 = Float::infinity(); - value as float - } - - #[inline] - fn neg_infinity() -> float { - let value: f64 = Float::neg_infinity(); - value as float - } - - #[inline] - fn neg_zero() -> float { - let value: f64 = Float::neg_zero(); - value as float - } - - /// Returns `true` if the number is NaN - #[inline] - fn is_nan(&self) -> bool { (*self as f64).is_nan() } - - /// Returns `true` if the number is infinite - #[inline] - fn is_infinite(&self) -> bool { (*self as f64).is_infinite() } - - /// Returns `true` if the number is neither infinite or NaN - #[inline] - fn is_finite(&self) -> bool { (*self as f64).is_finite() } - - /// Returns `true` if the number is neither zero, infinite, subnormal or NaN - #[inline] - fn is_normal(&self) -> bool { (*self as f64).is_normal() } - - /// Returns the floating point category of the number. If only one property is going to - /// be tested, it is generally faster to use the specific predicate instead. - #[inline] - fn classify(&self) -> FPCategory { (*self as f64).classify() } - - #[inline] - fn mantissa_digits(_: Option<float>) -> uint { - Float::mantissa_digits(Some(0f64)) - } - - #[inline] - fn digits(_: Option<float>) -> uint { - Float::digits(Some(0f64)) - } - - #[inline] - fn epsilon() -> float { - let value: f64 = Float::epsilon(); - value as float - } - - #[inline] - fn min_exp(_: Option<float>) -> int { - Float::min_exp(Some(0f64)) - } - - #[inline] - fn max_exp(_: Option<float>) -> int { - Float::max_exp(Some(0f64)) - } - - #[inline] - fn min_10_exp(_: Option<float>) -> int { - Float::min_10_exp(Some(0f64)) - } - - #[inline] - fn max_10_exp(_: Option<float>) -> int { - Float::max_10_exp(Some(0f64)) - } - - /// Constructs a floating point number by multiplying `x` by 2 raised to the power of `exp` - #[inline] - fn ldexp(x: float, exp: int) -> float { - let value: f64 = Float::ldexp(x as f64, exp); - value as float - } - - /// - /// Breaks the number into a normalized fraction and a base-2 exponent, satisfying: - /// - /// - `self = x * pow(2, exp)` - /// - `0.5 <= abs(x) < 1.0` - /// - #[inline] - fn frexp(&self) -> (float, int) { - match (*self as f64).frexp() { - (x, exp) => (x as float, exp) - } - } - - /// - /// Returns the exponential of the number, minus `1`, in a way that is accurate - /// even if the number is close to zero - /// - #[inline] - fn exp_m1(&self) -> float { - (*self as f64).exp_m1() as float - } - - /// - /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately - /// than if the operations were performed separately - /// - #[inline] - fn ln_1p(&self) -> float { - (*self as f64).ln_1p() as float - } - - /// - /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This - /// produces a more accurate result with better performance than a separate multiplication - /// operation followed by an add. - /// - #[inline] - fn mul_add(&self, a: float, b: float) -> float { - (*self as f64).mul_add(a as f64, b as f64) as float - } - - /// Returns the next representable floating-point value in the direction of `other` - #[inline] - fn next_after(&self, other: float) -> float { - (*self as f64).next_after(other as f64) as float - } -} - -#[cfg(test)] -mod tests { - use prelude::*; - use super::*; - - use num::*; - use num; - use sys; - - #[test] - fn test_num() { - num::test_num(10f, 2f); - } - - #[test] - fn test_min() { - assert_eq!(1f.min(&2f), 1f); - assert_eq!(2f.min(&1f), 1f); - } - - #[test] - fn test_max() { - assert_eq!(1f.max(&2f), 2f); - assert_eq!(2f.max(&1f), 2f); - } - - #[test] - fn test_clamp() { - assert_eq!(1f.clamp(&2f, &4f), 2f); - assert_eq!(8f.clamp(&2f, &4f), 4f); - assert_eq!(3f.clamp(&2f, &4f), 3f); - let nan: float = Float::nan(); - assert!(3f.clamp(&nan, &4f).is_nan()); - assert!(3f.clamp(&2f, &nan).is_nan()); - assert!(nan.clamp(&2f, &4f).is_nan()); - } - - #[test] - fn test_floor() { - assert_approx_eq!(1.0f.floor(), 1.0f); - assert_approx_eq!(1.3f.floor(), 1.0f); - assert_approx_eq!(1.5f.floor(), 1.0f); - assert_approx_eq!(1.7f.floor(), 1.0f); - assert_approx_eq!(0.0f.floor(), 0.0f); - assert_approx_eq!((-0.0f).floor(), -0.0f); - assert_approx_eq!((-1.0f).floor(), -1.0f); - assert_approx_eq!((-1.3f).floor(), -2.0f); - assert_approx_eq!((-1.5f).floor(), -2.0f); - assert_approx_eq!((-1.7f).floor(), -2.0f); - } - - #[test] - fn test_ceil() { - assert_approx_eq!(1.0f.ceil(), 1.0f); - assert_approx_eq!(1.3f.ceil(), 2.0f); - assert_approx_eq!(1.5f.ceil(), 2.0f); - assert_approx_eq!(1.7f.ceil(), 2.0f); - assert_approx_eq!(0.0f.ceil(), 0.0f); - assert_approx_eq!((-0.0f).ceil(), -0.0f); - assert_approx_eq!((-1.0f).ceil(), -1.0f); - assert_approx_eq!((-1.3f).ceil(), -1.0f); - assert_approx_eq!((-1.5f).ceil(), -1.0f); - assert_approx_eq!((-1.7f).ceil(), -1.0f); - } - - #[test] - fn test_round() { - assert_approx_eq!(1.0f.round(), 1.0f); - assert_approx_eq!(1.3f.round(), 1.0f); - assert_approx_eq!(1.5f.round(), 2.0f); - assert_approx_eq!(1.7f.round(), 2.0f); - assert_approx_eq!(0.0f.round(), 0.0f); - assert_approx_eq!((-0.0f).round(), -0.0f); - assert_approx_eq!((-1.0f).round(), -1.0f); - assert_approx_eq!((-1.3f).round(), -1.0f); - assert_approx_eq!((-1.5f).round(), -2.0f); - assert_approx_eq!((-1.7f).round(), -2.0f); - } - - #[test] - fn test_trunc() { - assert_approx_eq!(1.0f.trunc(), 1.0f); - assert_approx_eq!(1.3f.trunc(), 1.0f); - assert_approx_eq!(1.5f.trunc(), 1.0f); - assert_approx_eq!(1.7f.trunc(), 1.0f); - assert_approx_eq!(0.0f.trunc(), 0.0f); - assert_approx_eq!((-0.0f).trunc(), -0.0f); - assert_approx_eq!((-1.0f).trunc(), -1.0f); - assert_approx_eq!((-1.3f).trunc(), -1.0f); - assert_approx_eq!((-1.5f).trunc(), -1.0f); - assert_approx_eq!((-1.7f).trunc(), -1.0f); - } - - #[test] - fn test_fract() { - assert_approx_eq!(1.0f.fract(), 0.0f); - assert_approx_eq!(1.3f.fract(), 0.3f); - assert_approx_eq!(1.5f.fract(), 0.5f); - assert_approx_eq!(1.7f.fract(), 0.7f); - assert_approx_eq!(0.0f.fract(), 0.0f); - assert_approx_eq!((-0.0f).fract(), -0.0f); - assert_approx_eq!((-1.0f).fract(), -0.0f); - assert_approx_eq!((-1.3f).fract(), -0.3f); - assert_approx_eq!((-1.5f).fract(), -0.5f); - assert_approx_eq!((-1.7f).fract(), -0.7f); - } - - #[test] - fn test_asinh() { - assert_eq!(0.0f.asinh(), 0.0f); - assert_eq!((-0.0f).asinh(), -0.0f); - - let inf: float = Float::infinity(); - let neg_inf: float = Float::neg_infinity(); - let nan: float = Float::nan(); - assert_eq!(inf.asinh(), inf); - assert_eq!(neg_inf.asinh(), neg_inf); - assert!(nan.asinh().is_nan()); - assert_approx_eq!(2.0f.asinh(), 1.443635475178810342493276740273105f); - assert_approx_eq!((-2.0f).asinh(), -1.443635475178810342493276740273105f); - } - - #[test] - fn test_acosh() { - assert_eq!(1.0f.acosh(), 0.0f); - assert!(0.999f.acosh().is_nan()); - - let inf: float = Float::infinity(); - let neg_inf: float = Float::neg_infinity(); - let nan: float = Float::nan(); - assert_eq!(inf.acosh(), inf); - assert!(neg_inf.acosh().is_nan()); - assert!(nan.acosh().is_nan()); - assert_approx_eq!(2.0f.acosh(), 1.31695789692481670862504634730796844f); - assert_approx_eq!(3.0f.acosh(), 1.76274717403908605046521864995958461f); - } - - #[test] - fn test_atanh() { - assert_eq!(0.0f.atanh(), 0.0f); - assert_eq!((-0.0f).atanh(), -0.0f); - - let inf: float = Float::infinity(); - let neg_inf: float = Float::neg_infinity(); - let inf64: f64 = Float::infinity(); - let neg_inf64: f64 = Float::neg_infinity(); - let nan: float = Float::nan(); - assert_eq!(1.0f.atanh(), inf); - assert_eq!((-1.0f).atanh(), neg_inf); - assert!(2f64.atanh().atanh().is_nan()); - assert!((-2f64).atanh().atanh().is_nan()); - assert!(inf64.atanh().is_nan()); - assert!(neg_inf64.atanh().is_nan()); - assert!(nan.atanh().is_nan()); - assert_approx_eq!(0.5f.atanh(), 0.54930614433405484569762261846126285f); - assert_approx_eq!((-0.5f).atanh(), -0.54930614433405484569762261846126285f); - } - - #[test] - fn test_real_consts() { - let pi: float = Real::pi(); - let two_pi: float = Real::two_pi(); - let frac_pi_2: float = Real::frac_pi_2(); - let frac_pi_3: float = Real::frac_pi_3(); - let frac_pi_4: float = Real::frac_pi_4(); - let frac_pi_6: float = Real::frac_pi_6(); - let frac_pi_8: float = Real::frac_pi_8(); - let frac_1_pi: float = Real::frac_1_pi(); - let frac_2_pi: float = Real::frac_2_pi(); - let frac_2_sqrtpi: float = Real::frac_2_sqrtpi(); - let sqrt2: float = Real::sqrt2(); - let frac_1_sqrt2: float = Real::frac_1_sqrt2(); - let e: float = Real::e(); - let log2_e: float = Real::log2_e(); - let log10_e: float = Real::log10_e(); - let ln_2: float = Real::ln_2(); - let ln_10: float = Real::ln_10(); - - assert_approx_eq!(two_pi, 2f * pi); - assert_approx_eq!(frac_pi_2, pi / 2f); - assert_approx_eq!(frac_pi_3, pi / 3f); - assert_approx_eq!(frac_pi_4, pi / 4f); - assert_approx_eq!(frac_pi_6, pi / 6f); - assert_approx_eq!(frac_pi_8, pi / 8f); - assert_approx_eq!(frac_1_pi, 1f / pi); - assert_approx_eq!(frac_2_pi, 2f / pi); - assert_approx_eq!(frac_2_sqrtpi, 2f / pi.sqrt()); - assert_approx_eq!(sqrt2, 2f.sqrt()); - assert_approx_eq!(frac_1_sqrt2, 1f / 2f.sqrt()); - assert_approx_eq!(log2_e, e.log2()); - assert_approx_eq!(log10_e, e.log10()); - assert_approx_eq!(ln_2, 2f.ln()); - assert_approx_eq!(ln_10, 10f.ln()); - } - - #[test] - fn test_abs() { - assert_eq!(infinity.abs(), infinity); - assert_eq!(1f.abs(), 1f); - assert_eq!(0f.abs(), 0f); - assert_eq!((-0f).abs(), 0f); - assert_eq!((-1f).abs(), 1f); - assert_eq!(neg_infinity.abs(), infinity); - assert_eq!((1f/neg_infinity).abs(), 0f); - assert!(NaN.abs().is_nan()); - } - - #[test] - fn test_abs_sub() { - assert_eq!((-1f).abs_sub(&1f), 0f); - assert_eq!(1f.abs_sub(&1f), 0f); - assert_eq!(1f.abs_sub(&0f), 1f); - assert_eq!(1f.abs_sub(&-1f), 2f); - assert_eq!(neg_infinity.abs_sub(&0f), 0f); - assert_eq!(infinity.abs_sub(&1f), infinity); - assert_eq!(0f.abs_sub(&neg_infinity), infinity); - assert_eq!(0f.abs_sub(&infinity), 0f); - } - - #[test] #[ignore(cfg(windows))] // FIXME #8663 - fn test_abs_sub_nowin() { - assert!(NaN.abs_sub(&-1f).is_nan()); - assert!(1f.abs_sub(&NaN).is_nan()); - } - - #[test] - fn test_signum() { - assert_eq!(infinity.signum(), 1f); - assert_eq!(1f.signum(), 1f); - assert_eq!(0f.signum(), 1f); - assert_eq!((-0f).signum(), -1f); - assert_eq!((-1f).signum(), -1f); - assert_eq!(neg_infinity.signum(), -1f); - assert_eq!((1f/neg_infinity).signum(), -1f); - assert!(NaN.signum().is_nan()); - } - - #[test] - fn test_is_positive() { - assert!(infinity.is_positive()); - assert!(1f.is_positive()); - assert!(0f.is_positive()); - assert!(!(-0f).is_positive()); - assert!(!(-1f).is_positive()); - assert!(!neg_infinity.is_positive()); - assert!(!(1f/neg_infinity).is_positive()); - assert!(!NaN.is_positive()); - } - - #[test] - fn test_is_negative() { - assert!(!infinity.is_negative()); - assert!(!1f.is_negative()); - assert!(!0f.is_negative()); - assert!((-0f).is_negative()); - assert!((-1f).is_negative()); - assert!(neg_infinity.is_negative()); - assert!((1f/neg_infinity).is_negative()); - assert!(!NaN.is_negative()); - } - - #[test] - fn test_approx_eq() { - assert!(1.0f.approx_eq(&1f)); - assert!(0.9999999f.approx_eq(&1f)); - assert!(1.000001f.approx_eq_eps(&1f, &1.0e-5)); - assert!(1.0000001f.approx_eq_eps(&1f, &1.0e-6)); - assert!(!1.0000001f.approx_eq_eps(&1f, &1.0e-7)); - } - - #[test] - fn test_primitive() { - let none: Option<float> = None; - assert_eq!(Primitive::bits(none), sys::size_of::<float>() * 8); - assert_eq!(Primitive::bytes(none), sys::size_of::<float>()); - } - - #[test] - fn test_is_normal() { - let nan: float = Float::nan(); - let inf: float = Float::infinity(); - let neg_inf: float = Float::neg_infinity(); - let zero: float = Zero::zero(); - let neg_zero: float = Float::neg_zero(); - assert!(!nan.is_normal()); - assert!(!inf.is_normal()); - assert!(!neg_inf.is_normal()); - assert!(!zero.is_normal()); - assert!(!neg_zero.is_normal()); - assert!(1f.is_normal()); - assert!(1e-307f.is_normal()); - assert!(!1e-308f.is_normal()); - } - - #[test] - fn test_classify() { - let nan: float = Float::nan(); - let inf: float = Float::infinity(); - let neg_inf: float = Float::neg_infinity(); - let zero: float = Zero::zero(); - let neg_zero: float = Float::neg_zero(); - assert_eq!(nan.classify(), FPNaN); - assert_eq!(inf.classify(), FPInfinite); - assert_eq!(neg_inf.classify(), FPInfinite); - assert_eq!(zero.classify(), FPZero); - assert_eq!(neg_zero.classify(), FPZero); - assert_eq!(1f.classify(), FPNormal); - assert_eq!(1e-307f.classify(), FPNormal); - assert_eq!(1e-308f.classify(), FPSubnormal); - } - - #[test] - fn test_ldexp() { - // We have to use from_str until base-2 exponents - // are supported in floating-point literals - let f1: float = from_str_hex("1p-123").unwrap(); - let f2: float = from_str_hex("1p-111").unwrap(); - assert_eq!(Float::ldexp(1f, -123), f1); - assert_eq!(Float::ldexp(1f, -111), f2); - - assert_eq!(Float::ldexp(0f, -123), 0f); - assert_eq!(Float::ldexp(-0f, -123), -0f); - - let inf: float = Float::infinity(); - let neg_inf: float = Float::neg_infinity(); - let nan: float = Float::nan(); - assert_eq!(Float::ldexp(inf, -123), inf); - assert_eq!(Float::ldexp(neg_inf, -123), neg_inf); - assert!(Float::ldexp(nan, -123).is_nan()); - } - - #[test] - fn test_frexp() { - // We have to use from_str until base-2 exponents - // are supported in floating-point literals - let f1: float = from_str_hex("1p-123").unwrap(); - let f2: float = from_str_hex("1p-111").unwrap(); - let (x1, exp1) = f1.frexp(); - let (x2, exp2) = f2.frexp(); - assert_eq!((x1, exp1), (0.5f, -122)); - assert_eq!((x2, exp2), (0.5f, -110)); - assert_eq!(Float::ldexp(x1, exp1), f1); - assert_eq!(Float::ldexp(x2, exp2), f2); - - assert_eq!(0f.frexp(), (0f, 0)); - assert_eq!((-0f).frexp(), (-0f, 0)); - } - - #[test] #[ignore(cfg(windows))] // FIXME #8755 - fn test_frexp_nowin() { - let inf: float = Float::infinity(); - let neg_inf: float = Float::neg_infinity(); - let nan: float = Float::nan(); - assert_eq!(match inf.frexp() { (x, _) => x }, inf); - assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf); - assert!(match nan.frexp() { (x, _) => x.is_nan() }) - } - - #[test] - pub fn test_to_str_exact_do_decimal() { - let s = to_str_exact(5.0, 4u); - assert_eq!(s, ~"5.0000"); - } - - #[test] - pub fn test_from_str() { - assert_eq!(from_str::<float>("3"), Some(3.)); - assert_eq!(from_str::<float>("3.14"), Some(3.14)); - assert_eq!(from_str::<float>("+3.14"), Some(3.14)); - assert_eq!(from_str::<float>("-3.14"), Some(-3.14)); - assert_eq!(from_str::<float>("2.5E10"), Some(25000000000.)); - assert_eq!(from_str::<float>("2.5e10"), Some(25000000000.)); - assert_eq!(from_str::<float>("25000000000.E-10"), Some(2.5)); - assert_eq!(from_str::<float>("."), Some(0.)); - assert_eq!(from_str::<float>(".e1"), Some(0.)); - assert_eq!(from_str::<float>(".e-1"), Some(0.)); - assert_eq!(from_str::<float>("5."), Some(5.)); - assert_eq!(from_str::<float>(".5"), Some(0.5)); - assert_eq!(from_str::<float>("0.5"), Some(0.5)); - assert_eq!(from_str::<float>("-.5"), Some(-0.5)); - assert_eq!(from_str::<float>("-5"), Some(-5.)); - assert_eq!(from_str::<float>("inf"), Some(infinity)); - assert_eq!(from_str::<float>("+inf"), Some(infinity)); - assert_eq!(from_str::<float>("-inf"), Some(neg_infinity)); - // note: NaN != NaN, hence this slightly complex test - match from_str::<float>("NaN") { - Some(f) => assert!(f.is_nan()), - None => fail2!() - } - // note: -0 == 0, hence these slightly more complex tests - match from_str::<float>("-0") { - Some(v) if v.is_zero() => assert!(v.is_negative()), - _ => fail2!() - } - match from_str::<float>("0") { - Some(v) if v.is_zero() => assert!(v.is_positive()), - _ => fail2!() - } - - assert!(from_str::<float>("").is_none()); - assert!(from_str::<float>("x").is_none()); - assert!(from_str::<float>(" ").is_none()); - assert!(from_str::<float>(" ").is_none()); - assert!(from_str::<float>("e").is_none()); - assert!(from_str::<float>("E").is_none()); - assert!(from_str::<float>("E1").is_none()); - assert!(from_str::<float>("1e1e1").is_none()); - assert!(from_str::<float>("1e1.1").is_none()); - assert!(from_str::<float>("1e1-1").is_none()); - } - - #[test] - pub fn test_from_str_hex() { - assert_eq!(from_str_hex("a4"), Some(164.)); - assert_eq!(from_str_hex("a4.fe"), Some(164.9921875)); - assert_eq!(from_str_hex("-a4.fe"), Some(-164.9921875)); - assert_eq!(from_str_hex("+a4.fe"), Some(164.9921875)); - assert_eq!(from_str_hex("ff0P4"), Some(0xff00 as float)); - assert_eq!(from_str_hex("ff0p4"), Some(0xff00 as float)); - assert_eq!(from_str_hex("ff0p-4"), Some(0xff as float)); - assert_eq!(from_str_hex("."), Some(0.)); - assert_eq!(from_str_hex(".p1"), Some(0.)); - assert_eq!(from_str_hex(".p-1"), Some(0.)); - assert_eq!(from_str_hex("f."), Some(15.)); - assert_eq!(from_str_hex(".f"), Some(0.9375)); - assert_eq!(from_str_hex("0.f"), Some(0.9375)); - assert_eq!(from_str_hex("-.f"), Some(-0.9375)); - assert_eq!(from_str_hex("-f"), Some(-15.)); - assert_eq!(from_str_hex("inf"), Some(infinity)); - assert_eq!(from_str_hex("+inf"), Some(infinity)); - assert_eq!(from_str_hex("-inf"), Some(neg_infinity)); - // note: NaN != NaN, hence this slightly complex test - match from_str_hex("NaN") { - Some(f) => assert!(f.is_nan()), - None => fail2!() - } - // note: -0 == 0, hence these slightly more complex tests - match from_str_hex("-0") { - Some(v) if v.is_zero() => assert!(v.is_negative()), - _ => fail2!() - } - match from_str_hex("0") { - Some(v) if v.is_zero() => assert!(v.is_positive()), - _ => fail2!() - } - assert_eq!(from_str_hex("e"), Some(14.)); - assert_eq!(from_str_hex("E"), Some(14.)); - assert_eq!(from_str_hex("E1"), Some(225.)); - assert_eq!(from_str_hex("1e1e1"), Some(123361.)); - assert_eq!(from_str_hex("1e1.1"), Some(481.0625)); - - assert!(from_str_hex("").is_none()); - assert!(from_str_hex("x").is_none()); - assert!(from_str_hex(" ").is_none()); - assert!(from_str_hex(" ").is_none()); - assert!(from_str_hex("p").is_none()); - assert!(from_str_hex("P").is_none()); - assert!(from_str_hex("P1").is_none()); - assert!(from_str_hex("1p1p1").is_none()); - assert!(from_str_hex("1p1.1").is_none()); - assert!(from_str_hex("1p1-1").is_none()); - } - - #[test] - pub fn test_to_str_hex() { - assert_eq!(to_str_hex(164.), ~"a4"); - assert_eq!(to_str_hex(164.9921875), ~"a4.fe"); - assert_eq!(to_str_hex(-164.9921875), ~"-a4.fe"); - assert_eq!(to_str_hex(0xff00 as float), ~"ff00"); - assert_eq!(to_str_hex(-(0xff00 as float)), ~"-ff00"); - assert_eq!(to_str_hex(0.), ~"0"); - assert_eq!(to_str_hex(15.), ~"f"); - assert_eq!(to_str_hex(-15.), ~"-f"); - assert_eq!(to_str_hex(0.9375), ~"0.f"); - assert_eq!(to_str_hex(-0.9375), ~"-0.f"); - assert_eq!(to_str_hex(infinity), ~"inf"); - assert_eq!(to_str_hex(neg_infinity), ~"-inf"); - assert_eq!(to_str_hex(NaN), ~"NaN"); - assert_eq!(to_str_hex(0.), ~"0"); - assert_eq!(to_str_hex(-0.), ~"-0"); - } - - #[test] - pub fn test_to_str_radix() { - assert_eq!(36.0f.to_str_radix(36u), ~"10"); - assert_eq!(8.125f.to_str_radix(2u), ~"1000.001"); - } - - #[test] - pub fn test_from_str_radix() { - assert_eq!(from_str_radix("10", 36u), Some(36.)); - assert_eq!(from_str_radix("1000.001", 2u), Some(8.125)); - } - - #[test] - pub fn test_to_str_inf() { - assert_eq!(to_str_digits(infinity, 10u), ~"inf"); - assert_eq!(to_str_digits(-infinity, 10u), ~"-inf"); - } -} |
