diff options
Diffstat (limited to 'src/libstd/primitive_docs.rs')
| -rw-r--r-- | src/libstd/primitive_docs.rs | 1110 | 
1 files changed, 0 insertions, 1110 deletions
| diff --git a/src/libstd/primitive_docs.rs b/src/libstd/primitive_docs.rs deleted file mode 100644 index 86de509e80a..00000000000 --- a/src/libstd/primitive_docs.rs +++ /dev/null @@ -1,1110 +0,0 @@ -#[doc(primitive = "bool")] -#[doc(alias = "true")] -#[doc(alias = "false")] -// -/// The boolean type. -/// -/// The `bool` represents a value, which could only be either `true` or `false`. If you cast -/// a `bool` into an integer, `true` will be 1 and `false` will be 0. -/// -/// # Basic usage -/// -/// `bool` implements various traits, such as [`BitAnd`], [`BitOr`], [`Not`], etc., -/// which allow us to perform boolean operations using `&`, `|` and `!`. -/// -/// `if` always demands a `bool` value. [`assert!`], being an important macro in testing, -/// checks whether an expression returns `true`. -/// -/// ``` -/// let bool_val = true & false | false; -/// assert!(!bool_val); -/// ``` -/// -/// [`assert!`]: macro.assert.html -/// [`BitAnd`]: ops/trait.BitAnd.html -/// [`BitOr`]: ops/trait.BitOr.html -/// [`Not`]: ops/trait.Not.html -/// -/// # Examples -/// -/// A trivial example of the usage of `bool`, -/// -/// ``` -/// let praise_the_borrow_checker = true; -/// -/// // using the `if` conditional -/// if praise_the_borrow_checker { -/// println!("oh, yeah!"); -/// } else { -/// println!("what?!!"); -/// } -/// -/// // ... or, a match pattern -/// match praise_the_borrow_checker { -/// true => println!("keep praising!"), -/// false => println!("you should praise!"), -/// } -/// ``` -/// -/// Also, since `bool` implements the [`Copy`](marker/trait.Copy.html) trait, we don't -/// have to worry about the move semantics (just like the integer and float primitives). -/// -/// Now an example of `bool` cast to integer type: -/// -/// ``` -/// assert_eq!(true as i32, 1); -/// assert_eq!(false as i32, 0); -/// ``` -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_bool {} - -#[doc(primitive = "never")] -#[doc(alias = "!")] -// -/// The `!` type, also called "never". -/// -/// `!` represents the type of computations which never resolve to any value at all. For example, -/// the [`exit`] function `fn exit(code: i32) -> !` exits the process without ever returning, and -/// so returns `!`. -/// -/// `break`, `continue` and `return` expressions also have type `!`. For example we are allowed to -/// write: -/// -/// ``` -/// #![feature(never_type)] -/// # fn foo() -> u32 { -/// let x: ! = { -/// return 123 -/// }; -/// # } -/// ``` -/// -/// Although the `let` is pointless here, it illustrates the meaning of `!`. Since `x` is never -/// assigned a value (because `return` returns from the entire function), `x` can be given type -/// `!`. We could also replace `return 123` with a `panic!` or a never-ending `loop` and this code -/// would still be valid. -/// -/// A more realistic usage of `!` is in this code: -/// -/// ``` -/// # fn get_a_number() -> Option<u32> { None } -/// # loop { -/// let num: u32 = match get_a_number() { -/// Some(num) => num, -/// None => break, -/// }; -/// # } -/// ``` -/// -/// Both match arms must produce values of type [`u32`], but since `break` never produces a value -/// at all we know it can never produce a value which isn't a [`u32`]. This illustrates another -/// behaviour of the `!` type - expressions with type `!` will coerce into any other type. -/// -/// [`u32`]: primitive.str.html -/// [`exit`]: process/fn.exit.html -/// -/// # `!` and generics -/// -/// ## Infallible errors -/// -/// The main place you'll see `!` used explicitly is in generic code. Consider the [`FromStr`] -/// trait: -/// -/// ``` -/// trait FromStr: Sized { -/// type Err; -/// fn from_str(s: &str) -> Result<Self, Self::Err>; -/// } -/// ``` -/// -/// When implementing this trait for [`String`] we need to pick a type for [`Err`]. And since -/// converting a string into a string will never result in an error, the appropriate type is `!`. -/// (Currently the type actually used is an enum with no variants, though this is only because `!` -/// was added to Rust at a later date and it may change in the future.) With an [`Err`] type of -/// `!`, if we have to call [`String::from_str`] for some reason the result will be a -/// [`Result<String, !>`] which we can unpack like this: -/// -/// ```ignore (string-from-str-error-type-is-not-never-yet) -/// #[feature(exhaustive_patterns)] -/// // NOTE: this does not work today! -/// let Ok(s) = String::from_str("hello"); -/// ``` -/// -/// Since the [`Err`] variant contains a `!`, it can never occur. If the `exhaustive_patterns` -/// feature is present this means we can exhaustively match on [`Result<T, !>`] by just taking the -/// [`Ok`] variant. This illustrates another behaviour of `!` - it can be used to "delete" certain -/// enum variants from generic types like `Result`. -/// -/// ## Infinite loops -/// -/// While [`Result<T, !>`] is very useful for removing errors, `!` can also be used to remove -/// successes as well. If we think of [`Result<T, !>`] as "if this function returns, it has not -/// errored," we get a very intuitive idea of [`Result<!, E>`] as well: if the function returns, it -/// *has* errored. -/// -/// For example, consider the case of a simple web server, which can be simplified to: -/// -/// ```ignore (hypothetical-example) -/// loop { -/// let (client, request) = get_request().expect("disconnected"); -/// let response = request.process(); -/// response.send(client); -/// } -/// ``` -/// -/// Currently, this isn't ideal, because we simply panic whenever we fail to get a new connection. -/// Instead, we'd like to keep track of this error, like this: -/// -/// ```ignore (hypothetical-example) -/// loop { -/// match get_request() { -/// Err(err) => break err, -/// Ok((client, request)) => { -/// let response = request.process(); -/// response.send(client); -/// }, -/// } -/// } -/// ``` -/// -/// Now, when the server disconnects, we exit the loop with an error instead of panicking. While it -/// might be intuitive to simply return the error, we might want to wrap it in a [`Result<!, E>`] -/// instead: -/// -/// ```ignore (hypothetical-example) -/// fn server_loop() -> Result<!, ConnectionError> { -/// loop { -/// let (client, request) = get_request()?; -/// let response = request.process(); -/// response.send(client); -/// } -/// } -/// ``` -/// -/// Now, we can use `?` instead of `match`, and the return type makes a lot more sense: if the loop -/// ever stops, it means that an error occurred. We don't even have to wrap the loop in an `Ok` -/// because `!` coerces to `Result<!, ConnectionError>` automatically. -/// -/// [`String::from_str`]: str/trait.FromStr.html#tymethod.from_str -/// [`Result<String, !>`]: result/enum.Result.html -/// [`Result<T, !>`]: result/enum.Result.html -/// [`Result<!, E>`]: result/enum.Result.html -/// [`Ok`]: result/enum.Result.html#variant.Ok -/// [`String`]: string/struct.String.html -/// [`Err`]: result/enum.Result.html#variant.Err -/// [`FromStr`]: str/trait.FromStr.html -/// -/// # `!` and traits -/// -/// When writing your own traits, `!` should have an `impl` whenever there is an obvious `impl` -/// which doesn't `panic!`. As it turns out, most traits can have an `impl` for `!`. Take [`Debug`] -/// for example: -/// -/// ``` -/// #![feature(never_type)] -/// # use std::fmt; -/// # trait Debug { -/// # fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result; -/// # } -/// impl Debug for ! { -/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result { -/// *self -/// } -/// } -/// ``` -/// -/// Once again we're using `!`'s ability to coerce into any other type, in this case -/// [`fmt::Result`]. Since this method takes a `&!` as an argument we know that it can never be -/// called (because there is no value of type `!` for it to be called with). Writing `*self` -/// essentially tells the compiler "We know that this code can never be run, so just treat the -/// entire function body as having type [`fmt::Result`]". This pattern can be used a lot when -/// implementing traits for `!`. Generally, any trait which only has methods which take a `self` -/// parameter should have such an impl. -/// -/// On the other hand, one trait which would not be appropriate to implement is [`Default`]: -/// -/// ``` -/// trait Default { -/// fn default() -> Self; -/// } -/// ``` -/// -/// Since `!` has no values, it has no default value either. It's true that we could write an -/// `impl` for this which simply panics, but the same is true for any type (we could `impl -/// Default` for (eg.) [`File`] by just making [`default()`] panic.) -/// -/// [`fmt::Result`]: fmt/type.Result.html -/// [`File`]: fs/struct.File.html -/// [`Debug`]: fmt/trait.Debug.html -/// [`Default`]: default/trait.Default.html -/// [`default()`]: default/trait.Default.html#tymethod.default -/// -#[unstable(feature = "never_type", issue = "35121")] -mod prim_never {} - -#[doc(primitive = "char")] -// -/// A character type. -/// -/// The `char` type represents a single character. More specifically, since -/// 'character' isn't a well-defined concept in Unicode, `char` is a '[Unicode -/// scalar value]', which is similar to, but not the same as, a '[Unicode code -/// point]'. -/// -/// [Unicode scalar value]: http://www.unicode.org/glossary/#unicode_scalar_value -/// [Unicode code point]: http://www.unicode.org/glossary/#code_point -/// -/// This documentation describes a number of methods and trait implementations on the -/// `char` type. For technical reasons, there is additional, separate -/// documentation in [the `std::char` module](char/index.html) as well. -/// -/// # Representation -/// -/// `char` is always four bytes in size. This is a different representation than -/// a given character would have as part of a [`String`]. For example: -/// -/// ``` -/// let v = vec!['h', 'e', 'l', 'l', 'o']; -/// -/// // five elements times four bytes for each element -/// assert_eq!(20, v.len() * std::mem::size_of::<char>()); -/// -/// let s = String::from("hello"); -/// -/// // five elements times one byte per element -/// assert_eq!(5, s.len() * std::mem::size_of::<u8>()); -/// ``` -/// -/// [`String`]: string/struct.String.html -/// -/// As always, remember that a human intuition for 'character' may not map to -/// Unicode's definitions. For example, despite looking similar, the 'é' -/// character is one Unicode code point while 'é' is two Unicode code points: -/// -/// ``` -/// let mut chars = "é".chars(); -/// // U+00e9: 'latin small letter e with acute' -/// assert_eq!(Some('\u{00e9}'), chars.next()); -/// assert_eq!(None, chars.next()); -/// -/// let mut chars = "é".chars(); -/// // U+0065: 'latin small letter e' -/// assert_eq!(Some('\u{0065}'), chars.next()); -/// // U+0301: 'combining acute accent' -/// assert_eq!(Some('\u{0301}'), chars.next()); -/// assert_eq!(None, chars.next()); -/// ``` -/// -/// This means that the contents of the first string above _will_ fit into a -/// `char` while the contents of the second string _will not_. Trying to create -/// a `char` literal with the contents of the second string gives an error: -/// -/// ```text -/// error: character literal may only contain one codepoint: 'é' -/// let c = 'é'; -/// ^^^ -/// ``` -/// -/// Another implication of the 4-byte fixed size of a `char` is that -/// per-`char` processing can end up using a lot more memory: -/// -/// ``` -/// let s = String::from("love: ❤️"); -/// let v: Vec<char> = s.chars().collect(); -/// -/// assert_eq!(12, std::mem::size_of_val(&s[..])); -/// assert_eq!(32, std::mem::size_of_val(&v[..])); -/// ``` -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_char {} - -#[doc(primitive = "unit")] -// -/// The `()` type, also called "unit". -/// -/// The `()` type has exactly one value `()`, and is used when there -/// is no other meaningful value that could be returned. `()` is most -/// commonly seen implicitly: functions without a `-> ...` implicitly -/// have return type `()`, that is, these are equivalent: -/// -/// ```rust -/// fn long() -> () {} -/// -/// fn short() {} -/// ``` -/// -/// The semicolon `;` can be used to discard the result of an -/// expression at the end of a block, making the expression (and thus -/// the block) evaluate to `()`. For example, -/// -/// ```rust -/// fn returns_i64() -> i64 { -/// 1i64 -/// } -/// fn returns_unit() { -/// 1i64; -/// } -/// -/// let is_i64 = { -/// returns_i64() -/// }; -/// let is_unit = { -/// returns_i64(); -/// }; -/// ``` -/// -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_unit {} - -#[doc(primitive = "pointer")] -// -/// Raw, unsafe pointers, `*const T`, and `*mut T`. -/// -/// *[See also the `std::ptr` module](ptr/index.html).* -/// -/// Working with raw pointers in Rust is uncommon, typically limited to a few patterns. -/// Raw pointers can be unaligned or [`null`]. However, when a raw pointer is -/// dereferenced (using the `*` operator), it must be non-null and aligned. -/// -/// Storing through a raw pointer using `*ptr = data` calls `drop` on the old value, so -/// [`write`] must be used if the type has drop glue and memory is not already -/// initialized - otherwise `drop` would be called on the uninitialized memory. -/// -/// Use the [`null`] and [`null_mut`] functions to create null pointers, and the -/// [`is_null`] method of the `*const T` and `*mut T` types to check for null. -/// The `*const T` and `*mut T` types also define the [`offset`] method, for -/// pointer math. -/// -/// # Common ways to create raw pointers -/// -/// ## 1. Coerce a reference (`&T`) or mutable reference (`&mut T`). -/// -/// ``` -/// let my_num: i32 = 10; -/// let my_num_ptr: *const i32 = &my_num; -/// let mut my_speed: i32 = 88; -/// let my_speed_ptr: *mut i32 = &mut my_speed; -/// ``` -/// -/// To get a pointer to a boxed value, dereference the box: -/// -/// ``` -/// let my_num: Box<i32> = Box::new(10); -/// let my_num_ptr: *const i32 = &*my_num; -/// let mut my_speed: Box<i32> = Box::new(88); -/// let my_speed_ptr: *mut i32 = &mut *my_speed; -/// ``` -/// -/// This does not take ownership of the original allocation -/// and requires no resource management later, -/// but you must not use the pointer after its lifetime. -/// -/// ## 2. Consume a box (`Box<T>`). -/// -/// The [`into_raw`] function consumes a box and returns -/// the raw pointer. It doesn't destroy `T` or deallocate any memory. -/// -/// ``` -/// let my_speed: Box<i32> = Box::new(88); -/// let my_speed: *mut i32 = Box::into_raw(my_speed); -/// -/// // By taking ownership of the original `Box<T>` though -/// // we are obligated to put it together later to be destroyed. -/// unsafe { -/// drop(Box::from_raw(my_speed)); -/// } -/// ``` -/// -/// Note that here the call to [`drop`] is for clarity - it indicates -/// that we are done with the given value and it should be destroyed. -/// -/// ## 3. Get it from C. -/// -/// ``` -/// # #![feature(rustc_private)] -/// extern crate libc; -/// -/// use std::mem; -/// -/// unsafe { -/// let my_num: *mut i32 = libc::malloc(mem::size_of::<i32>()) as *mut i32; -/// if my_num.is_null() { -/// panic!("failed to allocate memory"); -/// } -/// libc::free(my_num as *mut libc::c_void); -/// } -/// ``` -/// -/// Usually you wouldn't literally use `malloc` and `free` from Rust, -/// but C APIs hand out a lot of pointers generally, so are a common source -/// of raw pointers in Rust. -/// -/// [`null`]: ../std/ptr/fn.null.html -/// [`null_mut`]: ../std/ptr/fn.null_mut.html -/// [`is_null`]: ../std/primitive.pointer.html#method.is_null -/// [`offset`]: ../std/primitive.pointer.html#method.offset -/// [`into_raw`]: ../std/boxed/struct.Box.html#method.into_raw -/// [`drop`]: ../std/mem/fn.drop.html -/// [`write`]: ../std/ptr/fn.write.html -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_pointer {} - -#[doc(primitive = "array")] -// -/// A fixed-size array, denoted `[T; N]`, for the element type, `T`, and the -/// non-negative compile-time constant size, `N`. -/// -/// There are two syntactic forms for creating an array: -/// -/// * A list with each element, i.e., `[x, y, z]`. -/// * A repeat expression `[x; N]`, which produces an array with `N` copies of `x`. -/// The type of `x` must be [`Copy`][copy]. -/// -/// Arrays of *any* size implement the following traits if the element type allows it: -/// -/// - [`Debug`][debug] -/// - [`IntoIterator`][intoiterator] (implemented for `&[T; N]` and `&mut [T; N]`) -/// - [`PartialEq`][partialeq], [`PartialOrd`][partialord], [`Eq`][eq], [`Ord`][ord] -/// - [`Hash`][hash] -/// - [`AsRef`][asref], [`AsMut`][asmut] -/// - [`Borrow`][borrow], [`BorrowMut`][borrowmut] -/// -/// Arrays of sizes from 0 to 32 (inclusive) implement [`Default`][default] trait -/// if the element type allows it. As a stopgap, trait implementations are -/// statically generated up to size 32. -/// -/// Arrays of *any* size are [`Copy`][copy] if the element type is [`Copy`][copy] -/// and [`Clone`][clone] if the element type is [`Clone`][clone]. This works -/// because [`Copy`][copy] and [`Clone`][clone] traits are specially known -/// to the compiler. -/// -/// Arrays coerce to [slices (`[T]`)][slice], so a slice method may be called on -/// an array. Indeed, this provides most of the API for working with arrays. -/// Slices have a dynamic size and do not coerce to arrays. -/// -/// You can move elements out of an array with a slice pattern. If you want -/// one element, see [`mem::replace`][replace]. -/// -/// # Examples -/// -/// ``` -/// let mut array: [i32; 3] = [0; 3]; -/// -/// array[1] = 1; -/// array[2] = 2; -/// -/// assert_eq!([1, 2], &array[1..]); -/// -/// // This loop prints: 0 1 2 -/// for x in &array { -/// print!("{} ", x); -/// } -/// ``` -/// -/// An array itself is not iterable: -/// -/// ```compile_fail,E0277 -/// let array: [i32; 3] = [0; 3]; -/// -/// for x in array { } -/// // error: the trait bound `[i32; 3]: std::iter::Iterator` is not satisfied -/// ``` -/// -/// The solution is to coerce the array to a slice by calling a slice method: -/// -/// ``` -/// # let array: [i32; 3] = [0; 3]; -/// for x in array.iter() { } -/// ``` -/// -/// You can also use the array reference's [`IntoIterator`] implementation: -/// -/// ``` -/// # let array: [i32; 3] = [0; 3]; -/// for x in &array { } -/// ``` -/// -/// You can use a slice pattern to move elements out of an array: -/// -/// ``` -/// fn move_away(_: String) { /* Do interesting things. */ } -/// -/// let [john, roa] = ["John".to_string(), "Roa".to_string()]; -/// move_away(john); -/// move_away(roa); -/// ``` -/// -/// [slice]: primitive.slice.html -/// [copy]: marker/trait.Copy.html -/// [clone]: clone/trait.Clone.html -/// [debug]: fmt/trait.Debug.html -/// [intoiterator]: iter/trait.IntoIterator.html -/// [partialeq]: cmp/trait.PartialEq.html -/// [partialord]: cmp/trait.PartialOrd.html -/// [eq]: cmp/trait.Eq.html -/// [ord]: cmp/trait.Ord.html -/// [hash]: hash/trait.Hash.html -/// [asref]: convert/trait.AsRef.html -/// [asmut]: convert/trait.AsMut.html -/// [borrow]: borrow/trait.Borrow.html -/// [borrowmut]: borrow/trait.BorrowMut.html -/// [default]: default/trait.Default.html -/// [replace]: mem/fn.replace.html -/// [`IntoIterator`]: iter/trait.IntoIterator.html -/// -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_array {} - -#[doc(primitive = "slice")] -#[doc(alias = "[")] -#[doc(alias = "]")] -#[doc(alias = "[]")] -/// A dynamically-sized view into a contiguous sequence, `[T]`. Contiguous here -/// means that elements are laid out so that every element is the same -/// distance from its neighbors. -/// -/// *[See also the `std::slice` module](slice/index.html).* -/// -/// Slices are a view into a block of memory represented as a pointer and a -/// length. -/// -/// ``` -/// // slicing a Vec -/// let vec = vec![1, 2, 3]; -/// let int_slice = &vec[..]; -/// // coercing an array to a slice -/// let str_slice: &[&str] = &["one", "two", "three"]; -/// ``` -/// -/// Slices are either mutable or shared. The shared slice type is `&[T]`, -/// while the mutable slice type is `&mut [T]`, where `T` represents the element -/// type. For example, you can mutate the block of memory that a mutable slice -/// points to: -/// -/// ``` -/// let mut x = [1, 2, 3]; -/// let x = &mut x[..]; // Take a full slice of `x`. -/// x[1] = 7; -/// assert_eq!(x, &[1, 7, 3]); -/// ``` -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_slice {} - -#[doc(primitive = "str")] -// -/// String slices. -/// -/// *[See also the `std::str` module](str/index.html).* -/// -/// The `str` type, also called a 'string slice', is the most primitive string -/// type. It is usually seen in its borrowed form, `&str`. It is also the type -/// of string literals, `&'static str`. -/// -/// String slices are always valid UTF-8. -/// -/// # Examples -/// -/// String literals are string slices: -/// -/// ``` -/// let hello = "Hello, world!"; -/// -/// // with an explicit type annotation -/// let hello: &'static str = "Hello, world!"; -/// ``` -/// -/// They are `'static` because they're stored directly in the final binary, and -/// so will be valid for the `'static` duration. -/// -/// # Representation -/// -/// A `&str` is made up of two components: a pointer to some bytes, and a -/// length. You can look at these with the [`as_ptr`] and [`len`] methods: -/// -/// ``` -/// use std::slice; -/// use std::str; -/// -/// let story = "Once upon a time..."; -/// -/// let ptr = story.as_ptr(); -/// let len = story.len(); -/// -/// // story has nineteen bytes -/// assert_eq!(19, len); -/// -/// // We can re-build a str out of ptr and len. This is all unsafe because -/// // we are responsible for making sure the two components are valid: -/// let s = unsafe { -/// // First, we build a &[u8]... -/// let slice = slice::from_raw_parts(ptr, len); -/// -/// // ... and then convert that slice into a string slice -/// str::from_utf8(slice) -/// }; -/// -/// assert_eq!(s, Ok(story)); -/// ``` -/// -/// [`as_ptr`]: #method.as_ptr -/// [`len`]: #method.len -/// -/// Note: This example shows the internals of `&str`. `unsafe` should not be -/// used to get a string slice under normal circumstances. Use `as_str` -/// instead. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_str {} - -#[doc(primitive = "tuple")] -#[doc(alias = "(")] -#[doc(alias = ")")] -#[doc(alias = "()")] -// -/// A finite heterogeneous sequence, `(T, U, ..)`. -/// -/// Let's cover each of those in turn: -/// -/// Tuples are *finite*. In other words, a tuple has a length. Here's a tuple -/// of length `3`: -/// -/// ``` -/// ("hello", 5, 'c'); -/// ``` -/// -/// 'Length' is also sometimes called 'arity' here; each tuple of a different -/// length is a different, distinct type. -/// -/// Tuples are *heterogeneous*. This means that each element of the tuple can -/// have a different type. In that tuple above, it has the type: -/// -/// ``` -/// # let _: -/// (&'static str, i32, char) -/// # = ("hello", 5, 'c'); -/// ``` -/// -/// Tuples are a *sequence*. This means that they can be accessed by position; -/// this is called 'tuple indexing', and it looks like this: -/// -/// ```rust -/// let tuple = ("hello", 5, 'c'); -/// -/// assert_eq!(tuple.0, "hello"); -/// assert_eq!(tuple.1, 5); -/// assert_eq!(tuple.2, 'c'); -/// ``` -/// -/// The sequential nature of the tuple applies to its implementations of various -/// traits. For example, in `PartialOrd` and `Ord`, the elements are compared -/// sequentially until the first non-equal set is found. -/// -/// For more about tuples, see [the book](../book/ch03-02-data-types.html#the-tuple-type). -/// -/// # Trait implementations -/// -/// If every type inside a tuple implements one of the following traits, then a -/// tuple itself also implements it. -/// -/// * [`Clone`] -/// * [`Copy`] -/// * [`PartialEq`] -/// * [`Eq`] -/// * [`PartialOrd`] -/// * [`Ord`] -/// * [`Debug`] -/// * [`Default`] -/// * [`Hash`] -/// -/// [`Clone`]: clone/trait.Clone.html -/// [`Copy`]: marker/trait.Copy.html -/// [`PartialEq`]: cmp/trait.PartialEq.html -/// [`Eq`]: cmp/trait.Eq.html -/// [`PartialOrd`]: cmp/trait.PartialOrd.html -/// [`Ord`]: cmp/trait.Ord.html -/// [`Debug`]: fmt/trait.Debug.html -/// [`Default`]: default/trait.Default.html -/// [`Hash`]: hash/trait.Hash.html -/// -/// Due to a temporary restriction in Rust's type system, these traits are only -/// implemented on tuples of arity 12 or less. In the future, this may change. -/// -/// # Examples -/// -/// Basic usage: -/// -/// ``` -/// let tuple = ("hello", 5, 'c'); -/// -/// assert_eq!(tuple.0, "hello"); -/// ``` -/// -/// Tuples are often used as a return type when you want to return more than -/// one value: -/// -/// ``` -/// fn calculate_point() -> (i32, i32) { -/// // Don't do a calculation, that's not the point of the example -/// (4, 5) -/// } -/// -/// let point = calculate_point(); -/// -/// assert_eq!(point.0, 4); -/// assert_eq!(point.1, 5); -/// -/// // Combining this with patterns can be nicer. -/// -/// let (x, y) = calculate_point(); -/// -/// assert_eq!(x, 4); -/// assert_eq!(y, 5); -/// ``` -/// -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_tuple {} - -#[doc(primitive = "f32")] -/// The 32-bit floating point type. -/// -/// *[See also the `std::f32::consts` module](f32/consts/index.html).* -/// -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_f32 {} - -#[doc(primitive = "f64")] -// -/// The 64-bit floating point type. -/// -/// *[See also the `std::f64::consts` module](f64/consts/index.html).* -/// -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_f64 {} - -#[doc(primitive = "i8")] -// -/// The 8-bit signed integer type. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_i8 {} - -#[doc(primitive = "i16")] -// -/// The 16-bit signed integer type. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_i16 {} - -#[doc(primitive = "i32")] -// -/// The 32-bit signed integer type. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_i32 {} - -#[doc(primitive = "i64")] -// -/// The 64-bit signed integer type. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_i64 {} - -#[doc(primitive = "i128")] -// -/// The 128-bit signed integer type. -#[stable(feature = "i128", since = "1.26.0")] -mod prim_i128 {} - -#[doc(primitive = "u8")] -// -/// The 8-bit unsigned integer type. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_u8 {} - -#[doc(primitive = "u16")] -// -/// The 16-bit unsigned integer type. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_u16 {} - -#[doc(primitive = "u32")] -// -/// The 32-bit unsigned integer type. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_u32 {} - -#[doc(primitive = "u64")] -// -/// The 64-bit unsigned integer type. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_u64 {} - -#[doc(primitive = "u128")] -// -/// The 128-bit unsigned integer type. -#[stable(feature = "i128", since = "1.26.0")] -mod prim_u128 {} - -#[doc(primitive = "isize")] -// -/// The pointer-sized signed integer type. -/// -/// The size of this primitive is how many bytes it takes to reference any -/// location in memory. For example, on a 32 bit target, this is 4 bytes -/// and on a 64 bit target, this is 8 bytes. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_isize {} - -#[doc(primitive = "usize")] -// -/// The pointer-sized unsigned integer type. -/// -/// The size of this primitive is how many bytes it takes to reference any -/// location in memory. For example, on a 32 bit target, this is 4 bytes -/// and on a 64 bit target, this is 8 bytes. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_usize {} - -#[doc(primitive = "reference")] -#[doc(alias = "&")] -// -/// References, both shared and mutable. -/// -/// A reference represents a borrow of some owned value. You can get one by using the `&` or `&mut` -/// operators on a value, or by using a `ref` or `ref mut` pattern. -/// -/// For those familiar with pointers, a reference is just a pointer that is assumed to be -/// aligned, not null, and pointing to memory containing a valid value of `T` - for example, -/// `&bool` can only point to an allocation containing the integer values `1` (`true`) or `0` -/// (`false`), but creating a `&bool` that points to an allocation containing -/// the value `3` causes undefined behaviour. -/// In fact, `Option<&T>` has the same memory representation as a -/// nullable but aligned pointer, and can be passed across FFI boundaries as such. -/// -/// In most cases, references can be used much like the original value. Field access, method -/// calling, and indexing work the same (save for mutability rules, of course). In addition, the -/// comparison operators transparently defer to the referent's implementation, allowing references -/// to be compared the same as owned values. -/// -/// References have a lifetime attached to them, which represents the scope for which the borrow is -/// valid. A lifetime is said to "outlive" another one if its representative scope is as long or -/// longer than the other. The `'static` lifetime is the longest lifetime, which represents the -/// total life of the program. For example, string literals have a `'static` lifetime because the -/// text data is embedded into the binary of the program, rather than in an allocation that needs -/// to be dynamically managed. -/// -/// `&mut T` references can be freely coerced into `&T` references with the same referent type, and -/// references with longer lifetimes can be freely coerced into references with shorter ones. -/// -/// Reference equality by address, instead of comparing the values pointed to, is accomplished via -/// implicit reference-pointer coercion and raw pointer equality via [`ptr::eq`], while -/// [`PartialEq`] compares values. -/// -/// [`ptr::eq`]: ptr/fn.eq.html -/// [`PartialEq`]: cmp/trait.PartialEq.html -/// -/// ``` -/// use std::ptr; -/// -/// let five = 5; -/// let other_five = 5; -/// let five_ref = &five; -/// let same_five_ref = &five; -/// let other_five_ref = &other_five; -/// -/// assert!(five_ref == same_five_ref); -/// assert!(five_ref == other_five_ref); -/// -/// assert!(ptr::eq(five_ref, same_five_ref)); -/// assert!(!ptr::eq(five_ref, other_five_ref)); -/// ``` -/// -/// For more information on how to use references, see [the book's section on "References and -/// Borrowing"][book-refs]. -/// -/// [book-refs]: ../book/ch04-02-references-and-borrowing.html -/// -/// # Trait implementations -/// -/// The following traits are implemented for all `&T`, regardless of the type of its referent: -/// -/// * [`Copy`] -/// * [`Clone`] \(Note that this will not defer to `T`'s `Clone` implementation if it exists!) -/// * [`Deref`] -/// * [`Borrow`] -/// * [`Pointer`] -/// -/// [`Copy`]: marker/trait.Copy.html -/// [`Clone`]: clone/trait.Clone.html -/// [`Deref`]: ops/trait.Deref.html -/// [`Borrow`]: borrow/trait.Borrow.html -/// [`Pointer`]: fmt/trait.Pointer.html -/// -/// `&mut T` references get all of the above except `Copy` and `Clone` (to prevent creating -/// multiple simultaneous mutable borrows), plus the following, regardless of the type of its -/// referent: -/// -/// * [`DerefMut`] -/// * [`BorrowMut`] -/// -/// [`DerefMut`]: ops/trait.DerefMut.html -/// [`BorrowMut`]: borrow/trait.BorrowMut.html -/// -/// The following traits are implemented on `&T` references if the underlying `T` also implements -/// that trait: -/// -/// * All the traits in [`std::fmt`] except [`Pointer`] and [`fmt::Write`] -/// * [`PartialOrd`] -/// * [`Ord`] -/// * [`PartialEq`] -/// * [`Eq`] -/// * [`AsRef`] -/// * [`Fn`] \(in addition, `&T` references get [`FnMut`] and [`FnOnce`] if `T: Fn`) -/// * [`Hash`] -/// * [`ToSocketAddrs`] -/// -/// [`std::fmt`]: fmt/index.html -/// [`fmt::Write`]: fmt/trait.Write.html -/// [`PartialOrd`]: cmp/trait.PartialOrd.html -/// [`Ord`]: cmp/trait.Ord.html -/// [`PartialEq`]: cmp/trait.PartialEq.html -/// [`Eq`]: cmp/trait.Eq.html -/// [`AsRef`]: convert/trait.AsRef.html -/// [`Fn`]: ops/trait.Fn.html -/// [`FnMut`]: ops/trait.FnMut.html -/// [`FnOnce`]: ops/trait.FnOnce.html -/// [`Hash`]: hash/trait.Hash.html -/// [`ToSocketAddrs`]: net/trait.ToSocketAddrs.html -/// -/// `&mut T` references get all of the above except `ToSocketAddrs`, plus the following, if `T` -/// implements that trait: -/// -/// * [`AsMut`] -/// * [`FnMut`] \(in addition, `&mut T` references get [`FnOnce`] if `T: FnMut`) -/// * [`fmt::Write`] -/// * [`Iterator`] -/// * [`DoubleEndedIterator`] -/// * [`ExactSizeIterator`] -/// * [`FusedIterator`] -/// * [`TrustedLen`] -/// * [`Send`] \(note that `&T` references only get `Send` if `T: Sync`) -/// * [`io::Write`] -/// * [`Read`] -/// * [`Seek`] -/// * [`BufRead`] -/// -/// [`AsMut`]: convert/trait.AsMut.html -/// [`Iterator`]: iter/trait.Iterator.html -/// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html -/// [`ExactSizeIterator`]: iter/trait.ExactSizeIterator.html -/// [`FusedIterator`]: iter/trait.FusedIterator.html -/// [`TrustedLen`]: iter/trait.TrustedLen.html -/// [`Send`]: marker/trait.Send.html -/// [`io::Write`]: io/trait.Write.html -/// [`Read`]: io/trait.Read.html -/// [`Seek`]: io/trait.Seek.html -/// [`BufRead`]: io/trait.BufRead.html -/// -/// Note that due to method call deref coercion, simply calling a trait method will act like they -/// work on references as well as they do on owned values! The implementations described here are -/// meant for generic contexts, where the final type `T` is a type parameter or otherwise not -/// locally known. -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_ref {} - -#[doc(primitive = "fn")] -// -/// Function pointers, like `fn(usize) -> bool`. -/// -/// *See also the traits [`Fn`], [`FnMut`], and [`FnOnce`].* -/// -/// [`Fn`]: ops/trait.Fn.html -/// [`FnMut`]: ops/trait.FnMut.html -/// [`FnOnce`]: ops/trait.FnOnce.html -/// -/// Function pointers are pointers that point to *code*, not data. They can be called -/// just like functions. Like references, function pointers are, among other things, assumed to -/// not be null, so if you want to pass a function pointer over FFI and be able to accommodate null -/// pointers, make your type `Option<fn()>` with your required signature. -/// -/// Plain function pointers are obtained by casting either plain functions, or closures that don't -/// capture an environment: -/// -/// ``` -/// fn add_one(x: usize) -> usize { -/// x + 1 -/// } -/// -/// let ptr: fn(usize) -> usize = add_one; -/// assert_eq!(ptr(5), 6); -/// -/// let clos: fn(usize) -> usize = |x| x + 5; -/// assert_eq!(clos(5), 10); -/// ``` -/// -/// In addition to varying based on their signature, function pointers come in two flavors: safe -/// and unsafe. Plain `fn()` function pointers can only point to safe functions, -/// while `unsafe fn()` function pointers can point to safe or unsafe functions. -/// -/// ``` -/// fn add_one(x: usize) -> usize { -/// x + 1 -/// } -/// -/// unsafe fn add_one_unsafely(x: usize) -> usize { -/// x + 1 -/// } -/// -/// let safe_ptr: fn(usize) -> usize = add_one; -/// -/// //ERROR: mismatched types: expected normal fn, found unsafe fn -/// //let bad_ptr: fn(usize) -> usize = add_one_unsafely; -/// -/// let unsafe_ptr: unsafe fn(usize) -> usize = add_one_unsafely; -/// let really_safe_ptr: unsafe fn(usize) -> usize = add_one; -/// ``` -/// -/// On top of that, function pointers can vary based on what ABI they use. This is achieved by -/// adding the `extern` keyword to the type name, followed by the ABI in question. For example, -/// `fn()` is different from `extern "C" fn()`, which itself is different from `extern "stdcall" -/// fn()`, and so on for the various ABIs that Rust supports. Non-`extern` functions have an ABI -/// of `"Rust"`, and `extern` functions without an explicit ABI have an ABI of `"C"`. For more -/// information, see [the nomicon's section on foreign calling conventions][nomicon-abi]. -/// -/// [nomicon-abi]: ../nomicon/ffi.html#foreign-calling-conventions -/// -/// Extern function declarations with the "C" or "cdecl" ABIs can also be *variadic*, allowing them -/// to be called with a variable number of arguments. Normal rust functions, even those with an -/// `extern "ABI"`, cannot be variadic. For more information, see [the nomicon's section on -/// variadic functions][nomicon-variadic]. -/// -/// [nomicon-variadic]: ../nomicon/ffi.html#variadic-functions -/// -/// These markers can be combined, so `unsafe extern "stdcall" fn()` is a valid type. -/// -/// Function pointers implement the following traits: -/// -/// * [`Clone`] -/// * [`PartialEq`] -/// * [`Eq`] -/// * [`PartialOrd`] -/// * [`Ord`] -/// * [`Hash`] -/// * [`Pointer`] -/// * [`Debug`] -/// -/// [`Clone`]: clone/trait.Clone.html -/// [`PartialEq`]: cmp/trait.PartialEq.html -/// [`Eq`]: cmp/trait.Eq.html -/// [`PartialOrd`]: cmp/trait.PartialOrd.html -/// [`Ord`]: cmp/trait.Ord.html -/// [`Hash`]: hash/trait.Hash.html -/// [`Pointer`]: fmt/trait.Pointer.html -/// [`Debug`]: fmt/trait.Debug.html -/// -/// Due to a temporary restriction in Rust's type system, these traits are only implemented on -/// functions that take 12 arguments or less, with the `"Rust"` and `"C"` ABIs. In the future, this -/// may change. -/// -/// In addition, function pointers of *any* signature, ABI, or safety are [`Copy`], and all *safe* -/// function pointers implement [`Fn`], [`FnMut`], and [`FnOnce`]. This works because these traits -/// are specially known to the compiler. -/// -/// [`Copy`]: marker/trait.Copy.html -#[stable(feature = "rust1", since = "1.0.0")] -mod prim_fn {} | 
