about summary refs log tree commit diff
path: root/src/libstd/primitive_docs.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/libstd/primitive_docs.rs')
-rw-r--r--src/libstd/primitive_docs.rs1110
1 files changed, 0 insertions, 1110 deletions
diff --git a/src/libstd/primitive_docs.rs b/src/libstd/primitive_docs.rs
deleted file mode 100644
index 86de509e80a..00000000000
--- a/src/libstd/primitive_docs.rs
+++ /dev/null
@@ -1,1110 +0,0 @@
-#[doc(primitive = "bool")]
-#[doc(alias = "true")]
-#[doc(alias = "false")]
-//
-/// The boolean type.
-///
-/// The `bool` represents a value, which could only be either `true` or `false`. If you cast
-/// a `bool` into an integer, `true` will be 1 and `false` will be 0.
-///
-/// # Basic usage
-///
-/// `bool` implements various traits, such as [`BitAnd`], [`BitOr`], [`Not`], etc.,
-/// which allow us to perform boolean operations using `&`, `|` and `!`.
-///
-/// `if` always demands a `bool` value. [`assert!`], being an important macro in testing,
-/// checks whether an expression returns `true`.
-///
-/// ```
-/// let bool_val = true & false | false;
-/// assert!(!bool_val);
-/// ```
-///
-/// [`assert!`]: macro.assert.html
-/// [`BitAnd`]: ops/trait.BitAnd.html
-/// [`BitOr`]: ops/trait.BitOr.html
-/// [`Not`]: ops/trait.Not.html
-///
-/// # Examples
-///
-/// A trivial example of the usage of `bool`,
-///
-/// ```
-/// let praise_the_borrow_checker = true;
-///
-/// // using the `if` conditional
-/// if praise_the_borrow_checker {
-///     println!("oh, yeah!");
-/// } else {
-///     println!("what?!!");
-/// }
-///
-/// // ... or, a match pattern
-/// match praise_the_borrow_checker {
-///     true => println!("keep praising!"),
-///     false => println!("you should praise!"),
-/// }
-/// ```
-///
-/// Also, since `bool` implements the [`Copy`](marker/trait.Copy.html) trait, we don't
-/// have to worry about the move semantics (just like the integer and float primitives).
-///
-/// Now an example of `bool` cast to integer type:
-///
-/// ```
-/// assert_eq!(true as i32, 1);
-/// assert_eq!(false as i32, 0);
-/// ```
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_bool {}
-
-#[doc(primitive = "never")]
-#[doc(alias = "!")]
-//
-/// The `!` type, also called "never".
-///
-/// `!` represents the type of computations which never resolve to any value at all. For example,
-/// the [`exit`] function `fn exit(code: i32) -> !` exits the process without ever returning, and
-/// so returns `!`.
-///
-/// `break`, `continue` and `return` expressions also have type `!`. For example we are allowed to
-/// write:
-///
-/// ```
-/// #![feature(never_type)]
-/// # fn foo() -> u32 {
-/// let x: ! = {
-///     return 123
-/// };
-/// # }
-/// ```
-///
-/// Although the `let` is pointless here, it illustrates the meaning of `!`. Since `x` is never
-/// assigned a value (because `return` returns from the entire function), `x` can be given type
-/// `!`. We could also replace `return 123` with a `panic!` or a never-ending `loop` and this code
-/// would still be valid.
-///
-/// A more realistic usage of `!` is in this code:
-///
-/// ```
-/// # fn get_a_number() -> Option<u32> { None }
-/// # loop {
-/// let num: u32 = match get_a_number() {
-///     Some(num) => num,
-///     None => break,
-/// };
-/// # }
-/// ```
-///
-/// Both match arms must produce values of type [`u32`], but since `break` never produces a value
-/// at all we know it can never produce a value which isn't a [`u32`]. This illustrates another
-/// behaviour of the `!` type - expressions with type `!` will coerce into any other type.
-///
-/// [`u32`]: primitive.str.html
-/// [`exit`]: process/fn.exit.html
-///
-/// # `!` and generics
-///
-/// ## Infallible errors
-///
-/// The main place you'll see `!` used explicitly is in generic code. Consider the [`FromStr`]
-/// trait:
-///
-/// ```
-/// trait FromStr: Sized {
-///     type Err;
-///     fn from_str(s: &str) -> Result<Self, Self::Err>;
-/// }
-/// ```
-///
-/// When implementing this trait for [`String`] we need to pick a type for [`Err`]. And since
-/// converting a string into a string will never result in an error, the appropriate type is `!`.
-/// (Currently the type actually used is an enum with no variants, though this is only because `!`
-/// was added to Rust at a later date and it may change in the future.) With an [`Err`] type of
-/// `!`, if we have to call [`String::from_str`] for some reason the result will be a
-/// [`Result<String, !>`] which we can unpack like this:
-///
-/// ```ignore (string-from-str-error-type-is-not-never-yet)
-/// #[feature(exhaustive_patterns)]
-/// // NOTE: this does not work today!
-/// let Ok(s) = String::from_str("hello");
-/// ```
-///
-/// Since the [`Err`] variant contains a `!`, it can never occur. If the `exhaustive_patterns`
-/// feature is present this means we can exhaustively match on [`Result<T, !>`] by just taking the
-/// [`Ok`] variant. This illustrates another behaviour of `!` - it can be used to "delete" certain
-/// enum variants from generic types like `Result`.
-///
-/// ## Infinite loops
-///
-/// While [`Result<T, !>`] is very useful for removing errors, `!` can also be used to remove
-/// successes as well. If we think of [`Result<T, !>`] as "if this function returns, it has not
-/// errored," we get a very intuitive idea of [`Result<!, E>`] as well: if the function returns, it
-/// *has* errored.
-///
-/// For example, consider the case of a simple web server, which can be simplified to:
-///
-/// ```ignore (hypothetical-example)
-/// loop {
-///     let (client, request) = get_request().expect("disconnected");
-///     let response = request.process();
-///     response.send(client);
-/// }
-/// ```
-///
-/// Currently, this isn't ideal, because we simply panic whenever we fail to get a new connection.
-/// Instead, we'd like to keep track of this error, like this:
-///
-/// ```ignore (hypothetical-example)
-/// loop {
-///     match get_request() {
-///         Err(err) => break err,
-///         Ok((client, request)) => {
-///             let response = request.process();
-///             response.send(client);
-///         },
-///     }
-/// }
-/// ```
-///
-/// Now, when the server disconnects, we exit the loop with an error instead of panicking. While it
-/// might be intuitive to simply return the error, we might want to wrap it in a [`Result<!, E>`]
-/// instead:
-///
-/// ```ignore (hypothetical-example)
-/// fn server_loop() -> Result<!, ConnectionError> {
-///     loop {
-///         let (client, request) = get_request()?;
-///         let response = request.process();
-///         response.send(client);
-///     }
-/// }
-/// ```
-///
-/// Now, we can use `?` instead of `match`, and the return type makes a lot more sense: if the loop
-/// ever stops, it means that an error occurred. We don't even have to wrap the loop in an `Ok`
-/// because `!` coerces to `Result<!, ConnectionError>` automatically.
-///
-/// [`String::from_str`]: str/trait.FromStr.html#tymethod.from_str
-/// [`Result<String, !>`]: result/enum.Result.html
-/// [`Result<T, !>`]: result/enum.Result.html
-/// [`Result<!, E>`]: result/enum.Result.html
-/// [`Ok`]: result/enum.Result.html#variant.Ok
-/// [`String`]: string/struct.String.html
-/// [`Err`]: result/enum.Result.html#variant.Err
-/// [`FromStr`]: str/trait.FromStr.html
-///
-/// # `!` and traits
-///
-/// When writing your own traits, `!` should have an `impl` whenever there is an obvious `impl`
-/// which doesn't `panic!`. As it turns out, most traits can have an `impl` for `!`. Take [`Debug`]
-/// for example:
-///
-/// ```
-/// #![feature(never_type)]
-/// # use std::fmt;
-/// # trait Debug {
-/// # fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result;
-/// # }
-/// impl Debug for ! {
-///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
-///         *self
-///     }
-/// }
-/// ```
-///
-/// Once again we're using `!`'s ability to coerce into any other type, in this case
-/// [`fmt::Result`]. Since this method takes a `&!` as an argument we know that it can never be
-/// called (because there is no value of type `!` for it to be called with). Writing `*self`
-/// essentially tells the compiler "We know that this code can never be run, so just treat the
-/// entire function body as having type [`fmt::Result`]". This pattern can be used a lot when
-/// implementing traits for `!`. Generally, any trait which only has methods which take a `self`
-/// parameter should have such an impl.
-///
-/// On the other hand, one trait which would not be appropriate to implement is [`Default`]:
-///
-/// ```
-/// trait Default {
-///     fn default() -> Self;
-/// }
-/// ```
-///
-/// Since `!` has no values, it has no default value either. It's true that we could write an
-/// `impl` for this which simply panics, but the same is true for any type (we could `impl
-/// Default` for (eg.) [`File`] by just making [`default()`] panic.)
-///
-/// [`fmt::Result`]: fmt/type.Result.html
-/// [`File`]: fs/struct.File.html
-/// [`Debug`]: fmt/trait.Debug.html
-/// [`Default`]: default/trait.Default.html
-/// [`default()`]: default/trait.Default.html#tymethod.default
-///
-#[unstable(feature = "never_type", issue = "35121")]
-mod prim_never {}
-
-#[doc(primitive = "char")]
-//
-/// A character type.
-///
-/// The `char` type represents a single character. More specifically, since
-/// 'character' isn't a well-defined concept in Unicode, `char` is a '[Unicode
-/// scalar value]', which is similar to, but not the same as, a '[Unicode code
-/// point]'.
-///
-/// [Unicode scalar value]: http://www.unicode.org/glossary/#unicode_scalar_value
-/// [Unicode code point]: http://www.unicode.org/glossary/#code_point
-///
-/// This documentation describes a number of methods and trait implementations on the
-/// `char` type. For technical reasons, there is additional, separate
-/// documentation in [the `std::char` module](char/index.html) as well.
-///
-/// # Representation
-///
-/// `char` is always four bytes in size. This is a different representation than
-/// a given character would have as part of a [`String`]. For example:
-///
-/// ```
-/// let v = vec!['h', 'e', 'l', 'l', 'o'];
-///
-/// // five elements times four bytes for each element
-/// assert_eq!(20, v.len() * std::mem::size_of::<char>());
-///
-/// let s = String::from("hello");
-///
-/// // five elements times one byte per element
-/// assert_eq!(5, s.len() * std::mem::size_of::<u8>());
-/// ```
-///
-/// [`String`]: string/struct.String.html
-///
-/// As always, remember that a human intuition for 'character' may not map to
-/// Unicode's definitions. For example, despite looking similar, the 'é'
-/// character is one Unicode code point while 'é' is two Unicode code points:
-///
-/// ```
-/// let mut chars = "é".chars();
-/// // U+00e9: 'latin small letter e with acute'
-/// assert_eq!(Some('\u{00e9}'), chars.next());
-/// assert_eq!(None, chars.next());
-///
-/// let mut chars = "é".chars();
-/// // U+0065: 'latin small letter e'
-/// assert_eq!(Some('\u{0065}'), chars.next());
-/// // U+0301: 'combining acute accent'
-/// assert_eq!(Some('\u{0301}'), chars.next());
-/// assert_eq!(None, chars.next());
-/// ```
-///
-/// This means that the contents of the first string above _will_ fit into a
-/// `char` while the contents of the second string _will not_. Trying to create
-/// a `char` literal with the contents of the second string gives an error:
-///
-/// ```text
-/// error: character literal may only contain one codepoint: 'é'
-/// let c = 'é';
-///         ^^^
-/// ```
-///
-/// Another implication of the 4-byte fixed size of a `char` is that
-/// per-`char` processing can end up using a lot more memory:
-///
-/// ```
-/// let s = String::from("love: ❤️");
-/// let v: Vec<char> = s.chars().collect();
-///
-/// assert_eq!(12, std::mem::size_of_val(&s[..]));
-/// assert_eq!(32, std::mem::size_of_val(&v[..]));
-/// ```
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_char {}
-
-#[doc(primitive = "unit")]
-//
-/// The `()` type, also called "unit".
-///
-/// The `()` type has exactly one value `()`, and is used when there
-/// is no other meaningful value that could be returned. `()` is most
-/// commonly seen implicitly: functions without a `-> ...` implicitly
-/// have return type `()`, that is, these are equivalent:
-///
-/// ```rust
-/// fn long() -> () {}
-///
-/// fn short() {}
-/// ```
-///
-/// The semicolon `;` can be used to discard the result of an
-/// expression at the end of a block, making the expression (and thus
-/// the block) evaluate to `()`. For example,
-///
-/// ```rust
-/// fn returns_i64() -> i64 {
-///     1i64
-/// }
-/// fn returns_unit() {
-///     1i64;
-/// }
-///
-/// let is_i64 = {
-///     returns_i64()
-/// };
-/// let is_unit = {
-///     returns_i64();
-/// };
-/// ```
-///
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_unit {}
-
-#[doc(primitive = "pointer")]
-//
-/// Raw, unsafe pointers, `*const T`, and `*mut T`.
-///
-/// *[See also the `std::ptr` module](ptr/index.html).*
-///
-/// Working with raw pointers in Rust is uncommon, typically limited to a few patterns.
-/// Raw pointers can be unaligned or [`null`]. However, when a raw pointer is
-/// dereferenced (using the `*` operator), it must be non-null and aligned.
-///
-/// Storing through a raw pointer using `*ptr = data` calls `drop` on the old value, so
-/// [`write`] must be used if the type has drop glue and memory is not already
-/// initialized - otherwise `drop` would be called on the uninitialized memory.
-///
-/// Use the [`null`] and [`null_mut`] functions to create null pointers, and the
-/// [`is_null`] method of the `*const T` and `*mut T` types to check for null.
-/// The `*const T` and `*mut T` types also define the [`offset`] method, for
-/// pointer math.
-///
-/// # Common ways to create raw pointers
-///
-/// ## 1. Coerce a reference (`&T`) or mutable reference (`&mut T`).
-///
-/// ```
-/// let my_num: i32 = 10;
-/// let my_num_ptr: *const i32 = &my_num;
-/// let mut my_speed: i32 = 88;
-/// let my_speed_ptr: *mut i32 = &mut my_speed;
-/// ```
-///
-/// To get a pointer to a boxed value, dereference the box:
-///
-/// ```
-/// let my_num: Box<i32> = Box::new(10);
-/// let my_num_ptr: *const i32 = &*my_num;
-/// let mut my_speed: Box<i32> = Box::new(88);
-/// let my_speed_ptr: *mut i32 = &mut *my_speed;
-/// ```
-///
-/// This does not take ownership of the original allocation
-/// and requires no resource management later,
-/// but you must not use the pointer after its lifetime.
-///
-/// ## 2. Consume a box (`Box<T>`).
-///
-/// The [`into_raw`] function consumes a box and returns
-/// the raw pointer. It doesn't destroy `T` or deallocate any memory.
-///
-/// ```
-/// let my_speed: Box<i32> = Box::new(88);
-/// let my_speed: *mut i32 = Box::into_raw(my_speed);
-///
-/// // By taking ownership of the original `Box<T>` though
-/// // we are obligated to put it together later to be destroyed.
-/// unsafe {
-///     drop(Box::from_raw(my_speed));
-/// }
-/// ```
-///
-/// Note that here the call to [`drop`] is for clarity - it indicates
-/// that we are done with the given value and it should be destroyed.
-///
-/// ## 3. Get it from C.
-///
-/// ```
-/// # #![feature(rustc_private)]
-/// extern crate libc;
-///
-/// use std::mem;
-///
-/// unsafe {
-///     let my_num: *mut i32 = libc::malloc(mem::size_of::<i32>()) as *mut i32;
-///     if my_num.is_null() {
-///         panic!("failed to allocate memory");
-///     }
-///     libc::free(my_num as *mut libc::c_void);
-/// }
-/// ```
-///
-/// Usually you wouldn't literally use `malloc` and `free` from Rust,
-/// but C APIs hand out a lot of pointers generally, so are a common source
-/// of raw pointers in Rust.
-///
-/// [`null`]: ../std/ptr/fn.null.html
-/// [`null_mut`]: ../std/ptr/fn.null_mut.html
-/// [`is_null`]: ../std/primitive.pointer.html#method.is_null
-/// [`offset`]: ../std/primitive.pointer.html#method.offset
-/// [`into_raw`]: ../std/boxed/struct.Box.html#method.into_raw
-/// [`drop`]: ../std/mem/fn.drop.html
-/// [`write`]: ../std/ptr/fn.write.html
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_pointer {}
-
-#[doc(primitive = "array")]
-//
-/// A fixed-size array, denoted `[T; N]`, for the element type, `T`, and the
-/// non-negative compile-time constant size, `N`.
-///
-/// There are two syntactic forms for creating an array:
-///
-/// * A list with each element, i.e., `[x, y, z]`.
-/// * A repeat expression `[x; N]`, which produces an array with `N` copies of `x`.
-///   The type of `x` must be [`Copy`][copy].
-///
-/// Arrays of *any* size implement the following traits if the element type allows it:
-///
-/// - [`Debug`][debug]
-/// - [`IntoIterator`][intoiterator] (implemented for `&[T; N]` and `&mut [T; N]`)
-/// - [`PartialEq`][partialeq], [`PartialOrd`][partialord], [`Eq`][eq], [`Ord`][ord]
-/// - [`Hash`][hash]
-/// - [`AsRef`][asref], [`AsMut`][asmut]
-/// - [`Borrow`][borrow], [`BorrowMut`][borrowmut]
-///
-/// Arrays of sizes from 0 to 32 (inclusive) implement [`Default`][default] trait
-/// if the element type allows it. As a stopgap, trait implementations are
-/// statically generated up to size 32.
-///
-/// Arrays of *any* size are [`Copy`][copy] if the element type is [`Copy`][copy]
-/// and [`Clone`][clone] if the element type is [`Clone`][clone]. This works
-/// because [`Copy`][copy] and [`Clone`][clone] traits are specially known
-/// to the compiler.
-///
-/// Arrays coerce to [slices (`[T]`)][slice], so a slice method may be called on
-/// an array. Indeed, this provides most of the API for working with arrays.
-/// Slices have a dynamic size and do not coerce to arrays.
-///
-/// You can move elements out of an array with a slice pattern. If you want
-/// one element, see [`mem::replace`][replace].
-///
-/// # Examples
-///
-/// ```
-/// let mut array: [i32; 3] = [0; 3];
-///
-/// array[1] = 1;
-/// array[2] = 2;
-///
-/// assert_eq!([1, 2], &array[1..]);
-///
-/// // This loop prints: 0 1 2
-/// for x in &array {
-///     print!("{} ", x);
-/// }
-/// ```
-///
-/// An array itself is not iterable:
-///
-/// ```compile_fail,E0277
-/// let array: [i32; 3] = [0; 3];
-///
-/// for x in array { }
-/// // error: the trait bound `[i32; 3]: std::iter::Iterator` is not satisfied
-/// ```
-///
-/// The solution is to coerce the array to a slice by calling a slice method:
-///
-/// ```
-/// # let array: [i32; 3] = [0; 3];
-/// for x in array.iter() { }
-/// ```
-///
-/// You can also use the array reference's [`IntoIterator`] implementation:
-///
-/// ```
-/// # let array: [i32; 3] = [0; 3];
-/// for x in &array { }
-/// ```
-///
-/// You can use a slice pattern to move elements out of an array:
-///
-/// ```
-/// fn move_away(_: String) { /* Do interesting things. */ }
-///
-/// let [john, roa] = ["John".to_string(), "Roa".to_string()];
-/// move_away(john);
-/// move_away(roa);
-/// ```
-///
-/// [slice]: primitive.slice.html
-/// [copy]: marker/trait.Copy.html
-/// [clone]: clone/trait.Clone.html
-/// [debug]: fmt/trait.Debug.html
-/// [intoiterator]: iter/trait.IntoIterator.html
-/// [partialeq]: cmp/trait.PartialEq.html
-/// [partialord]: cmp/trait.PartialOrd.html
-/// [eq]: cmp/trait.Eq.html
-/// [ord]: cmp/trait.Ord.html
-/// [hash]: hash/trait.Hash.html
-/// [asref]: convert/trait.AsRef.html
-/// [asmut]: convert/trait.AsMut.html
-/// [borrow]: borrow/trait.Borrow.html
-/// [borrowmut]: borrow/trait.BorrowMut.html
-/// [default]: default/trait.Default.html
-/// [replace]: mem/fn.replace.html
-/// [`IntoIterator`]: iter/trait.IntoIterator.html
-///
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_array {}
-
-#[doc(primitive = "slice")]
-#[doc(alias = "[")]
-#[doc(alias = "]")]
-#[doc(alias = "[]")]
-/// A dynamically-sized view into a contiguous sequence, `[T]`. Contiguous here
-/// means that elements are laid out so that every element is the same
-/// distance from its neighbors.
-///
-/// *[See also the `std::slice` module](slice/index.html).*
-///
-/// Slices are a view into a block of memory represented as a pointer and a
-/// length.
-///
-/// ```
-/// // slicing a Vec
-/// let vec = vec![1, 2, 3];
-/// let int_slice = &vec[..];
-/// // coercing an array to a slice
-/// let str_slice: &[&str] = &["one", "two", "three"];
-/// ```
-///
-/// Slices are either mutable or shared. The shared slice type is `&[T]`,
-/// while the mutable slice type is `&mut [T]`, where `T` represents the element
-/// type. For example, you can mutate the block of memory that a mutable slice
-/// points to:
-///
-/// ```
-/// let mut x = [1, 2, 3];
-/// let x = &mut x[..]; // Take a full slice of `x`.
-/// x[1] = 7;
-/// assert_eq!(x, &[1, 7, 3]);
-/// ```
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_slice {}
-
-#[doc(primitive = "str")]
-//
-/// String slices.
-///
-/// *[See also the `std::str` module](str/index.html).*
-///
-/// The `str` type, also called a 'string slice', is the most primitive string
-/// type. It is usually seen in its borrowed form, `&str`. It is also the type
-/// of string literals, `&'static str`.
-///
-/// String slices are always valid UTF-8.
-///
-/// # Examples
-///
-/// String literals are string slices:
-///
-/// ```
-/// let hello = "Hello, world!";
-///
-/// // with an explicit type annotation
-/// let hello: &'static str = "Hello, world!";
-/// ```
-///
-/// They are `'static` because they're stored directly in the final binary, and
-/// so will be valid for the `'static` duration.
-///
-/// # Representation
-///
-/// A `&str` is made up of two components: a pointer to some bytes, and a
-/// length. You can look at these with the [`as_ptr`] and [`len`] methods:
-///
-/// ```
-/// use std::slice;
-/// use std::str;
-///
-/// let story = "Once upon a time...";
-///
-/// let ptr = story.as_ptr();
-/// let len = story.len();
-///
-/// // story has nineteen bytes
-/// assert_eq!(19, len);
-///
-/// // We can re-build a str out of ptr and len. This is all unsafe because
-/// // we are responsible for making sure the two components are valid:
-/// let s = unsafe {
-///     // First, we build a &[u8]...
-///     let slice = slice::from_raw_parts(ptr, len);
-///
-///     // ... and then convert that slice into a string slice
-///     str::from_utf8(slice)
-/// };
-///
-/// assert_eq!(s, Ok(story));
-/// ```
-///
-/// [`as_ptr`]: #method.as_ptr
-/// [`len`]: #method.len
-///
-/// Note: This example shows the internals of `&str`. `unsafe` should not be
-/// used to get a string slice under normal circumstances. Use `as_str`
-/// instead.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_str {}
-
-#[doc(primitive = "tuple")]
-#[doc(alias = "(")]
-#[doc(alias = ")")]
-#[doc(alias = "()")]
-//
-/// A finite heterogeneous sequence, `(T, U, ..)`.
-///
-/// Let's cover each of those in turn:
-///
-/// Tuples are *finite*. In other words, a tuple has a length. Here's a tuple
-/// of length `3`:
-///
-/// ```
-/// ("hello", 5, 'c');
-/// ```
-///
-/// 'Length' is also sometimes called 'arity' here; each tuple of a different
-/// length is a different, distinct type.
-///
-/// Tuples are *heterogeneous*. This means that each element of the tuple can
-/// have a different type. In that tuple above, it has the type:
-///
-/// ```
-/// # let _:
-/// (&'static str, i32, char)
-/// # = ("hello", 5, 'c');
-/// ```
-///
-/// Tuples are a *sequence*. This means that they can be accessed by position;
-/// this is called 'tuple indexing', and it looks like this:
-///
-/// ```rust
-/// let tuple = ("hello", 5, 'c');
-///
-/// assert_eq!(tuple.0, "hello");
-/// assert_eq!(tuple.1, 5);
-/// assert_eq!(tuple.2, 'c');
-/// ```
-///
-/// The sequential nature of the tuple applies to its implementations of various
-/// traits.  For example, in `PartialOrd` and `Ord`, the elements are compared
-/// sequentially until the first non-equal set is found.
-///
-/// For more about tuples, see [the book](../book/ch03-02-data-types.html#the-tuple-type).
-///
-/// # Trait implementations
-///
-/// If every type inside a tuple implements one of the following traits, then a
-/// tuple itself also implements it.
-///
-/// * [`Clone`]
-/// * [`Copy`]
-/// * [`PartialEq`]
-/// * [`Eq`]
-/// * [`PartialOrd`]
-/// * [`Ord`]
-/// * [`Debug`]
-/// * [`Default`]
-/// * [`Hash`]
-///
-/// [`Clone`]: clone/trait.Clone.html
-/// [`Copy`]: marker/trait.Copy.html
-/// [`PartialEq`]: cmp/trait.PartialEq.html
-/// [`Eq`]: cmp/trait.Eq.html
-/// [`PartialOrd`]: cmp/trait.PartialOrd.html
-/// [`Ord`]: cmp/trait.Ord.html
-/// [`Debug`]: fmt/trait.Debug.html
-/// [`Default`]: default/trait.Default.html
-/// [`Hash`]: hash/trait.Hash.html
-///
-/// Due to a temporary restriction in Rust's type system, these traits are only
-/// implemented on tuples of arity 12 or less. In the future, this may change.
-///
-/// # Examples
-///
-/// Basic usage:
-///
-/// ```
-/// let tuple = ("hello", 5, 'c');
-///
-/// assert_eq!(tuple.0, "hello");
-/// ```
-///
-/// Tuples are often used as a return type when you want to return more than
-/// one value:
-///
-/// ```
-/// fn calculate_point() -> (i32, i32) {
-///     // Don't do a calculation, that's not the point of the example
-///     (4, 5)
-/// }
-///
-/// let point = calculate_point();
-///
-/// assert_eq!(point.0, 4);
-/// assert_eq!(point.1, 5);
-///
-/// // Combining this with patterns can be nicer.
-///
-/// let (x, y) = calculate_point();
-///
-/// assert_eq!(x, 4);
-/// assert_eq!(y, 5);
-/// ```
-///
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_tuple {}
-
-#[doc(primitive = "f32")]
-/// The 32-bit floating point type.
-///
-/// *[See also the `std::f32::consts` module](f32/consts/index.html).*
-///
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_f32 {}
-
-#[doc(primitive = "f64")]
-//
-/// The 64-bit floating point type.
-///
-/// *[See also the `std::f64::consts` module](f64/consts/index.html).*
-///
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_f64 {}
-
-#[doc(primitive = "i8")]
-//
-/// The 8-bit signed integer type.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_i8 {}
-
-#[doc(primitive = "i16")]
-//
-/// The 16-bit signed integer type.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_i16 {}
-
-#[doc(primitive = "i32")]
-//
-/// The 32-bit signed integer type.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_i32 {}
-
-#[doc(primitive = "i64")]
-//
-/// The 64-bit signed integer type.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_i64 {}
-
-#[doc(primitive = "i128")]
-//
-/// The 128-bit signed integer type.
-#[stable(feature = "i128", since = "1.26.0")]
-mod prim_i128 {}
-
-#[doc(primitive = "u8")]
-//
-/// The 8-bit unsigned integer type.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_u8 {}
-
-#[doc(primitive = "u16")]
-//
-/// The 16-bit unsigned integer type.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_u16 {}
-
-#[doc(primitive = "u32")]
-//
-/// The 32-bit unsigned integer type.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_u32 {}
-
-#[doc(primitive = "u64")]
-//
-/// The 64-bit unsigned integer type.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_u64 {}
-
-#[doc(primitive = "u128")]
-//
-/// The 128-bit unsigned integer type.
-#[stable(feature = "i128", since = "1.26.0")]
-mod prim_u128 {}
-
-#[doc(primitive = "isize")]
-//
-/// The pointer-sized signed integer type.
-///
-/// The size of this primitive is how many bytes it takes to reference any
-/// location in memory. For example, on a 32 bit target, this is 4 bytes
-/// and on a 64 bit target, this is 8 bytes.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_isize {}
-
-#[doc(primitive = "usize")]
-//
-/// The pointer-sized unsigned integer type.
-///
-/// The size of this primitive is how many bytes it takes to reference any
-/// location in memory. For example, on a 32 bit target, this is 4 bytes
-/// and on a 64 bit target, this is 8 bytes.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_usize {}
-
-#[doc(primitive = "reference")]
-#[doc(alias = "&")]
-//
-/// References, both shared and mutable.
-///
-/// A reference represents a borrow of some owned value. You can get one by using the `&` or `&mut`
-/// operators on a value, or by using a `ref` or `ref mut` pattern.
-///
-/// For those familiar with pointers, a reference is just a pointer that is assumed to be
-/// aligned, not null, and pointing to memory containing a valid value of `T` - for example,
-/// `&bool` can only point to an allocation containing the integer values `1` (`true`) or `0`
-/// (`false`), but creating a `&bool` that points to an allocation containing
-/// the value `3` causes undefined behaviour.
-/// In fact, `Option<&T>` has the same memory representation as a
-/// nullable but aligned pointer, and can be passed across FFI boundaries as such.
-///
-/// In most cases, references can be used much like the original value. Field access, method
-/// calling, and indexing work the same (save for mutability rules, of course). In addition, the
-/// comparison operators transparently defer to the referent's implementation, allowing references
-/// to be compared the same as owned values.
-///
-/// References have a lifetime attached to them, which represents the scope for which the borrow is
-/// valid. A lifetime is said to "outlive" another one if its representative scope is as long or
-/// longer than the other. The `'static` lifetime is the longest lifetime, which represents the
-/// total life of the program. For example, string literals have a `'static` lifetime because the
-/// text data is embedded into the binary of the program, rather than in an allocation that needs
-/// to be dynamically managed.
-///
-/// `&mut T` references can be freely coerced into `&T` references with the same referent type, and
-/// references with longer lifetimes can be freely coerced into references with shorter ones.
-///
-/// Reference equality by address, instead of comparing the values pointed to, is accomplished via
-/// implicit reference-pointer coercion and raw pointer equality via [`ptr::eq`], while
-/// [`PartialEq`] compares values.
-///
-/// [`ptr::eq`]: ptr/fn.eq.html
-/// [`PartialEq`]: cmp/trait.PartialEq.html
-///
-/// ```
-/// use std::ptr;
-///
-/// let five = 5;
-/// let other_five = 5;
-/// let five_ref = &five;
-/// let same_five_ref = &five;
-/// let other_five_ref = &other_five;
-///
-/// assert!(five_ref == same_five_ref);
-/// assert!(five_ref == other_five_ref);
-///
-/// assert!(ptr::eq(five_ref, same_five_ref));
-/// assert!(!ptr::eq(five_ref, other_five_ref));
-/// ```
-///
-/// For more information on how to use references, see [the book's section on "References and
-/// Borrowing"][book-refs].
-///
-/// [book-refs]: ../book/ch04-02-references-and-borrowing.html
-///
-/// # Trait implementations
-///
-/// The following traits are implemented for all `&T`, regardless of the type of its referent:
-///
-/// * [`Copy`]
-/// * [`Clone`] \(Note that this will not defer to `T`'s `Clone` implementation if it exists!)
-/// * [`Deref`]
-/// * [`Borrow`]
-/// * [`Pointer`]
-///
-/// [`Copy`]: marker/trait.Copy.html
-/// [`Clone`]: clone/trait.Clone.html
-/// [`Deref`]: ops/trait.Deref.html
-/// [`Borrow`]: borrow/trait.Borrow.html
-/// [`Pointer`]: fmt/trait.Pointer.html
-///
-/// `&mut T` references get all of the above except `Copy` and `Clone` (to prevent creating
-/// multiple simultaneous mutable borrows), plus the following, regardless of the type of its
-/// referent:
-///
-/// * [`DerefMut`]
-/// * [`BorrowMut`]
-///
-/// [`DerefMut`]: ops/trait.DerefMut.html
-/// [`BorrowMut`]: borrow/trait.BorrowMut.html
-///
-/// The following traits are implemented on `&T` references if the underlying `T` also implements
-/// that trait:
-///
-/// * All the traits in [`std::fmt`] except [`Pointer`] and [`fmt::Write`]
-/// * [`PartialOrd`]
-/// * [`Ord`]
-/// * [`PartialEq`]
-/// * [`Eq`]
-/// * [`AsRef`]
-/// * [`Fn`] \(in addition, `&T` references get [`FnMut`] and [`FnOnce`] if `T: Fn`)
-/// * [`Hash`]
-/// * [`ToSocketAddrs`]
-///
-/// [`std::fmt`]: fmt/index.html
-/// [`fmt::Write`]: fmt/trait.Write.html
-/// [`PartialOrd`]: cmp/trait.PartialOrd.html
-/// [`Ord`]: cmp/trait.Ord.html
-/// [`PartialEq`]: cmp/trait.PartialEq.html
-/// [`Eq`]: cmp/trait.Eq.html
-/// [`AsRef`]: convert/trait.AsRef.html
-/// [`Fn`]: ops/trait.Fn.html
-/// [`FnMut`]: ops/trait.FnMut.html
-/// [`FnOnce`]: ops/trait.FnOnce.html
-/// [`Hash`]: hash/trait.Hash.html
-/// [`ToSocketAddrs`]: net/trait.ToSocketAddrs.html
-///
-/// `&mut T` references get all of the above except `ToSocketAddrs`, plus the following, if `T`
-/// implements that trait:
-///
-/// * [`AsMut`]
-/// * [`FnMut`] \(in addition, `&mut T` references get [`FnOnce`] if `T: FnMut`)
-/// * [`fmt::Write`]
-/// * [`Iterator`]
-/// * [`DoubleEndedIterator`]
-/// * [`ExactSizeIterator`]
-/// * [`FusedIterator`]
-/// * [`TrustedLen`]
-/// * [`Send`] \(note that `&T` references only get `Send` if `T: Sync`)
-/// * [`io::Write`]
-/// * [`Read`]
-/// * [`Seek`]
-/// * [`BufRead`]
-///
-/// [`AsMut`]: convert/trait.AsMut.html
-/// [`Iterator`]: iter/trait.Iterator.html
-/// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
-/// [`ExactSizeIterator`]: iter/trait.ExactSizeIterator.html
-/// [`FusedIterator`]: iter/trait.FusedIterator.html
-/// [`TrustedLen`]: iter/trait.TrustedLen.html
-/// [`Send`]: marker/trait.Send.html
-/// [`io::Write`]: io/trait.Write.html
-/// [`Read`]: io/trait.Read.html
-/// [`Seek`]: io/trait.Seek.html
-/// [`BufRead`]: io/trait.BufRead.html
-///
-/// Note that due to method call deref coercion, simply calling a trait method will act like they
-/// work on references as well as they do on owned values! The implementations described here are
-/// meant for generic contexts, where the final type `T` is a type parameter or otherwise not
-/// locally known.
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_ref {}
-
-#[doc(primitive = "fn")]
-//
-/// Function pointers, like `fn(usize) -> bool`.
-///
-/// *See also the traits [`Fn`], [`FnMut`], and [`FnOnce`].*
-///
-/// [`Fn`]: ops/trait.Fn.html
-/// [`FnMut`]: ops/trait.FnMut.html
-/// [`FnOnce`]: ops/trait.FnOnce.html
-///
-/// Function pointers are pointers that point to *code*, not data. They can be called
-/// just like functions. Like references, function pointers are, among other things, assumed to
-/// not be null, so if you want to pass a function pointer over FFI and be able to accommodate null
-/// pointers, make your type `Option<fn()>` with your required signature.
-///
-/// Plain function pointers are obtained by casting either plain functions, or closures that don't
-/// capture an environment:
-///
-/// ```
-/// fn add_one(x: usize) -> usize {
-///     x + 1
-/// }
-///
-/// let ptr: fn(usize) -> usize = add_one;
-/// assert_eq!(ptr(5), 6);
-///
-/// let clos: fn(usize) -> usize = |x| x + 5;
-/// assert_eq!(clos(5), 10);
-/// ```
-///
-/// In addition to varying based on their signature, function pointers come in two flavors: safe
-/// and unsafe. Plain `fn()` function pointers can only point to safe functions,
-/// while `unsafe fn()` function pointers can point to safe or unsafe functions.
-///
-/// ```
-/// fn add_one(x: usize) -> usize {
-///     x + 1
-/// }
-///
-/// unsafe fn add_one_unsafely(x: usize) -> usize {
-///     x + 1
-/// }
-///
-/// let safe_ptr: fn(usize) -> usize = add_one;
-///
-/// //ERROR: mismatched types: expected normal fn, found unsafe fn
-/// //let bad_ptr: fn(usize) -> usize = add_one_unsafely;
-///
-/// let unsafe_ptr: unsafe fn(usize) -> usize = add_one_unsafely;
-/// let really_safe_ptr: unsafe fn(usize) -> usize = add_one;
-/// ```
-///
-/// On top of that, function pointers can vary based on what ABI they use. This is achieved by
-/// adding the `extern` keyword to the type name, followed by the ABI in question. For example,
-/// `fn()` is different from `extern "C" fn()`, which itself is different from `extern "stdcall"
-/// fn()`, and so on for the various ABIs that Rust supports. Non-`extern` functions have an ABI
-/// of `"Rust"`, and `extern` functions without an explicit ABI have an ABI of `"C"`. For more
-/// information, see [the nomicon's section on foreign calling conventions][nomicon-abi].
-///
-/// [nomicon-abi]: ../nomicon/ffi.html#foreign-calling-conventions
-///
-/// Extern function declarations with the "C" or "cdecl" ABIs can also be *variadic*, allowing them
-/// to be called with a variable number of arguments. Normal rust functions, even those with an
-/// `extern "ABI"`, cannot be variadic. For more information, see [the nomicon's section on
-/// variadic functions][nomicon-variadic].
-///
-/// [nomicon-variadic]: ../nomicon/ffi.html#variadic-functions
-///
-/// These markers can be combined, so `unsafe extern "stdcall" fn()` is a valid type.
-///
-/// Function pointers implement the following traits:
-///
-/// * [`Clone`]
-/// * [`PartialEq`]
-/// * [`Eq`]
-/// * [`PartialOrd`]
-/// * [`Ord`]
-/// * [`Hash`]
-/// * [`Pointer`]
-/// * [`Debug`]
-///
-/// [`Clone`]: clone/trait.Clone.html
-/// [`PartialEq`]: cmp/trait.PartialEq.html
-/// [`Eq`]: cmp/trait.Eq.html
-/// [`PartialOrd`]: cmp/trait.PartialOrd.html
-/// [`Ord`]: cmp/trait.Ord.html
-/// [`Hash`]: hash/trait.Hash.html
-/// [`Pointer`]: fmt/trait.Pointer.html
-/// [`Debug`]: fmt/trait.Debug.html
-///
-/// Due to a temporary restriction in Rust's type system, these traits are only implemented on
-/// functions that take 12 arguments or less, with the `"Rust"` and `"C"` ABIs. In the future, this
-/// may change.
-///
-/// In addition, function pointers of *any* signature, ABI, or safety are [`Copy`], and all *safe*
-/// function pointers implement [`Fn`], [`FnMut`], and [`FnOnce`]. This works because these traits
-/// are specially known to the compiler.
-///
-/// [`Copy`]: marker/trait.Copy.html
-#[stable(feature = "rust1", since = "1.0.0")]
-mod prim_fn {}