about summary refs log tree commit diff
path: root/src/libstd/primitive_docs.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/libstd/primitive_docs.rs')
-rw-r--r--src/libstd/primitive_docs.rs420
1 files changed, 420 insertions, 0 deletions
diff --git a/src/libstd/primitive_docs.rs b/src/libstd/primitive_docs.rs
new file mode 100644
index 00000000000..066b2b576da
--- /dev/null
+++ b/src/libstd/primitive_docs.rs
@@ -0,0 +1,420 @@
+// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+#[doc(primitive = "bool")]
+//
+/// The boolean type.
+///
+mod prim_bool { }
+
+#[doc(primitive = "char")]
+//
+/// A Unicode scalar value.
+///
+/// A `char` represents a
+/// *[Unicode scalar
+/// value](http://www.unicode.org/glossary/#unicode_scalar_value)*, as it can
+/// contain any Unicode code point except high-surrogate and low-surrogate code
+/// points.
+///
+/// As such, only values in the ranges \[0x0,0xD7FF\] and \[0xE000,0x10FFFF\]
+/// (inclusive) are allowed. A `char` can always be safely cast to a `u32`;
+/// however the converse is not always true due to the above range limits
+/// and, as such, should be performed via the `from_u32` function.
+///
+/// *[See also the `std::char` module](char/index.html).*
+///
+mod prim_char { }
+
+#[doc(primitive = "unit")]
+//
+/// The `()` type, sometimes called "unit" or "nil".
+///
+/// The `()` type has exactly one value `()`, and is used when there
+/// is no other meaningful value that could be returned. `()` is most
+/// commonly seen implicitly: functions without a `-> ...` implicitly
+/// have return type `()`, that is, these are equivalent:
+///
+/// ```rust
+/// fn long() -> () {}
+///
+/// fn short() {}
+/// ```
+///
+/// The semicolon `;` can be used to discard the result of an
+/// expression at the end of a block, making the expression (and thus
+/// the block) evaluate to `()`. For example,
+///
+/// ```rust
+/// fn returns_i64() -> i64 {
+///     1i64
+/// }
+/// fn returns_unit() {
+///     1i64;
+/// }
+///
+/// let is_i64 = {
+///     returns_i64()
+/// };
+/// let is_unit = {
+///     returns_i64();
+/// };
+/// ```
+///
+mod prim_unit { }
+
+#[doc(primitive = "pointer")]
+//
+/// Raw, unsafe pointers, `*const T`, and `*mut T`.
+///
+/// Working with raw pointers in Rust is uncommon,
+/// typically limited to a few patterns.
+///
+/// Use the `null` function to create null pointers, and the `is_null` method
+/// of the `*const T` type  to check for null. The `*const T` type also defines
+/// the `offset` method, for pointer math.
+///
+/// # Common ways to create raw pointers
+///
+/// ## 1. Coerce a reference (`&T`) or mutable reference (`&mut T`).
+///
+/// ```
+/// let my_num: i32 = 10;
+/// let my_num_ptr: *const i32 = &my_num;
+/// let mut my_speed: i32 = 88;
+/// let my_speed_ptr: *mut i32 = &mut my_speed;
+/// ```
+///
+/// To get a pointer to a boxed value, dereference the box:
+///
+/// ```
+/// let my_num: Box<i32> = Box::new(10);
+/// let my_num_ptr: *const i32 = &*my_num;
+/// let mut my_speed: Box<i32> = Box::new(88);
+/// let my_speed_ptr: *mut i32 = &mut *my_speed;
+/// ```
+///
+/// This does not take ownership of the original allocation
+/// and requires no resource management later,
+/// but you must not use the pointer after its lifetime.
+///
+/// ## 2. Consume a box (`Box<T>`).
+///
+/// The `into_raw` function consumes a box and returns
+/// the raw pointer. It doesn't destroy `T` or deallocate any memory.
+///
+/// ```
+/// # #![feature(box_raw)]
+/// let my_speed: Box<i32> = Box::new(88);
+/// let my_speed: *mut i32 = Box::into_raw(my_speed);
+///
+/// // By taking ownership of the original `Box<T>` though
+/// // we are obligated to put it together later to be destroyed.
+/// unsafe {
+///     drop(Box::from_raw(my_speed));
+/// }
+/// ```
+///
+/// Note that here the call to `drop` is for clarity - it indicates
+/// that we are done with the given value and it should be destroyed.
+///
+/// ## 3. Get it from C.
+///
+/// ```
+/// # #![feature(libc)]
+/// extern crate libc;
+///
+/// use std::mem;
+///
+/// fn main() {
+///     unsafe {
+///         let my_num: *mut i32 = libc::malloc(mem::size_of::<i32>() as libc::size_t) as *mut i32;
+///         if my_num.is_null() {
+///             panic!("failed to allocate memory");
+///         }
+///         libc::free(my_num as *mut libc::c_void);
+///     }
+/// }
+/// ```
+///
+/// Usually you wouldn't literally use `malloc` and `free` from Rust,
+/// but C APIs hand out a lot of pointers generally, so are a common source
+/// of raw pointers in Rust.
+///
+/// *[See also the `std::ptr` module](ptr/index.html).*
+///
+mod prim_pointer { }
+
+#[doc(primitive = "array")]
+//
+/// A fixed-size array, denoted `[T; N]`, for the element type, `T`, and
+/// the non-negative compile time constant size, `N`.
+///
+/// Arrays values are created either with an explicit expression that lists
+/// each element: `[x, y, z]` or a repeat expression: `[x; N]`. The repeat
+/// expression requires that the element type is `Copy`.
+///
+/// The type `[T; N]` is `Copy` if `T: Copy`.
+///
+/// Arrays of sizes from 0 to 32 (inclusive) implement the following traits
+/// if the element type allows it:
+///
+/// - `Clone`
+/// - `Debug`
+/// - `IntoIterator` (implemented for `&[T; N]` and `&mut [T; N]`)
+/// - `PartialEq`, `PartialOrd`, `Ord`, `Eq`
+/// - `Hash`
+/// - `AsRef`, `AsMut`
+///
+/// Arrays dereference to [slices (`[T]`)][slice], so their methods can be called
+/// on arrays.
+///
+/// [slice]: primitive.slice.html
+///
+/// Rust does not currently support generics over the size of an array type.
+///
+/// # Examples
+///
+/// ```
+/// let mut array: [i32; 3] = [0; 3];
+///
+/// array[1] = 1;
+/// array[2] = 2;
+///
+/// assert_eq!([1, 2], &array[1..]);
+///
+/// // This loop prints: 0 1 2
+/// for x in &array {
+///     print!("{} ", x);
+/// }
+///
+/// ```
+///
+mod prim_array { }
+
+#[doc(primitive = "slice")]
+//
+/// A dynamically-sized view into a contiguous sequence, `[T]`.
+///
+/// Slices are a view into a block of memory represented as a pointer and a
+/// length.
+///
+/// ```
+/// // slicing a Vec
+/// let vec = vec![1, 2, 3];
+/// let int_slice = &vec[..];
+/// // coercing an array to a slice
+/// let str_slice: &[&str] = &["one", "two", "three"];
+/// ```
+///
+/// Slices are either mutable or shared. The shared slice type is `&[T]`,
+/// while the mutable slice type is `&mut [T]`, where `T` represents the element
+/// type. For example, you can mutate the block of memory that a mutable slice
+/// points to:
+///
+/// ```
+/// let x = &mut [1, 2, 3];
+/// x[1] = 7;
+/// assert_eq!(x, &[1, 7, 3]);
+/// ```
+///
+/// *[See also the `std::slice` module](slice/index.html).*
+///
+mod prim_slice { }
+
+#[doc(primitive = "str")]
+//
+/// Unicode string slices.
+///
+/// Rust's `str` type is one of the core primitive types of the language. `&str`
+/// is the borrowed string type. This type of string can only be created from
+/// other strings, unless it is a `&'static str` (see below). It is not possible
+/// to move out of borrowed strings because they are owned elsewhere.
+///
+/// # Examples
+///
+/// Here's some code that uses a `&str`:
+///
+/// ```
+/// let s = "Hello, world.";
+/// ```
+///
+/// This `&str` is a `&'static str`, which is the type of string literals.
+/// They're `'static` because literals are available for the entire lifetime of
+/// the program.
+///
+/// You can get a non-`'static` `&str` by taking a slice of a `String`:
+///
+/// ```
+/// let some_string = "Hello, world.".to_string();
+/// let s = &some_string;
+/// ```
+///
+/// # Representation
+///
+/// Rust's string type, `str`, is a sequence of Unicode scalar values encoded as
+/// a stream of UTF-8 bytes. All [strings](../../reference.html#literals) are
+/// guaranteed to be validly encoded UTF-8 sequences. Additionally, strings are
+/// not null-terminated and can thus contain null bytes.
+///
+/// The actual representation of `str`s have direct mappings to slices: `&str`
+/// is the same as `&[u8]`.
+///
+/// *[See also the `std::str` module](str/index.html).*
+///
+mod prim_str { }
+
+#[doc(primitive = "tuple")]
+//
+/// A finite heterogeneous sequence, `(T, U, ..)`.
+///
+/// To access the _N_-th element of a tuple one can use `N` itself
+/// as a field of the tuple.
+///
+/// Indexing starts from zero, so `0` returns first value, `1`
+/// returns second value, and so on. In general, a tuple with _S_
+/// elements provides aforementioned fields from `0` to `S-1`.
+///
+/// If every type inside a tuple implements one of the following
+/// traits, then a tuple itself also implements it.
+///
+/// * `Clone`
+/// * `PartialEq`
+/// * `Eq`
+/// * `PartialOrd`
+/// * `Ord`
+/// * `Debug`
+/// * `Default`
+/// * `Hash`
+///
+/// # Examples
+///
+/// Accessing elements of a tuple at specified indices:
+///
+/// ```
+/// let x = ("colorless",  "green", "ideas", "sleep", "furiously");
+/// assert_eq!(x.3, "sleep");
+///
+/// let v = (3, 3);
+/// let u = (1, -5);
+/// assert_eq!(v.0 * u.0 + v.1 * u.1, -12);
+/// ```
+///
+/// Using traits implemented for tuples:
+///
+/// ```
+/// let a = (1, 2);
+/// let b = (3, 4);
+/// assert!(a != b);
+///
+/// let c = b.clone();
+/// assert!(b == c);
+///
+/// let d : (u32, f32) = Default::default();
+/// assert_eq!(d, (0, 0.0f32));
+/// ```
+///
+mod prim_tuple { }
+
+#[doc(primitive = "f32")]
+/// The 32-bit floating point type.
+///
+/// *[See also the `std::f32` module](f32/index.html).*
+///
+mod prim_f32 { }
+
+#[doc(primitive = "f64")]
+//
+/// The 64-bit floating point type.
+///
+/// *[See also the `std::f64` module](f64/index.html).*
+///
+mod prim_f64 { }
+
+#[doc(primitive = "i8")]
+//
+/// The 8-bit signed integer type.
+///
+/// *[See also the `std::i8` module](i8/index.html).*
+///
+mod prim_i8 { }
+
+#[doc(primitive = "i16")]
+//
+/// The 16-bit signed integer type.
+///
+/// *[See also the `std::i16` module](i16/index.html).*
+///
+mod prim_i16 { }
+
+#[doc(primitive = "i32")]
+//
+/// The 32-bit signed integer type.
+///
+/// *[See also the `std::i32` module](i32/index.html).*
+///
+mod prim_i32 { }
+
+#[doc(primitive = "i64")]
+//
+/// The 64-bit signed integer type.
+///
+/// *[See also the `std::i64` module](i64/index.html).*
+///
+mod prim_i64 { }
+
+#[doc(primitive = "u8")]
+//
+/// The 8-bit unsigned integer type.
+///
+/// *[See also the `std::u8` module](u8/index.html).*
+///
+mod prim_u8 { }
+
+#[doc(primitive = "u16")]
+//
+/// The 16-bit unsigned integer type.
+///
+/// *[See also the `std::u16` module](u16/index.html).*
+///
+mod prim_u16 { }
+
+#[doc(primitive = "u32")]
+//
+/// The 32-bit unsigned integer type.
+///
+/// *[See also the `std::u32` module](u32/index.html).*
+///
+mod prim_u32 { }
+
+#[doc(primitive = "u64")]
+//
+/// The 64-bit unsigned integer type.
+///
+/// *[See also the `std::u64` module](u64/index.html).*
+///
+mod prim_u64 { }
+
+#[doc(primitive = "isize")]
+//
+/// The pointer-sized signed integer type.
+///
+/// *[See also the `std::isize` module](isize/index.html).*
+///
+mod prim_isize { }
+
+#[doc(primitive = "usize")]
+//
+/// The pointer-sized signed integer type.
+///
+/// *[See also the `std::usize` module](usize/index.html).*
+///
+mod prim_usize { }
+