diff options
Diffstat (limited to 'src/libstd/sys/unix/process.rs')
| -rw-r--r-- | src/libstd/sys/unix/process.rs | 587 |
1 files changed, 587 insertions, 0 deletions
diff --git a/src/libstd/sys/unix/process.rs b/src/libstd/sys/unix/process.rs new file mode 100644 index 00000000000..0965d98d9b0 --- /dev/null +++ b/src/libstd/sys/unix/process.rs @@ -0,0 +1,587 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use libc::{mod, pid_t, c_void, c_int}; +use c_str::CString; +use io::{mod, IoResult, IoError}; +use mem; +use os; +use ptr; +use prelude::*; +use io::process::{ProcessExit, ExitStatus, ExitSignal}; +use collections; +use path::BytesContainer; +use hash::Hash; + +use sys::{mod, retry, c, wouldblock, set_nonblocking, ms_to_timeval}; +use sys::fs::FileDesc; +use sys_common::helper_thread::Helper; +use sys_common::{AsFileDesc, mkerr_libc, timeout}; + +pub use sys_common::ProcessConfig; + +helper_init!(static HELPER: Helper<Req>) + +/// The unique id of the process (this should never be negative). +pub struct Process { + pub pid: pid_t +} + +enum Req { + NewChild(libc::pid_t, Sender<ProcessExit>, u64), +} + +impl Process { + pub fn id(&self) -> pid_t { + self.pid + } + + pub unsafe fn kill(&self, signal: int) -> IoResult<()> { + Process::killpid(self.pid, signal) + } + + pub unsafe fn killpid(pid: pid_t, signal: int) -> IoResult<()> { + let r = libc::funcs::posix88::signal::kill(pid, signal as c_int); + mkerr_libc(r) + } + + pub fn spawn<K, V, C, P>(cfg: &C, in_fd: Option<P>, + out_fd: Option<P>, err_fd: Option<P>) + -> IoResult<Process> + where C: ProcessConfig<K, V>, P: AsFileDesc, + K: BytesContainer + Eq + Hash, V: BytesContainer + { + use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp}; + use libc::funcs::bsd44::getdtablesize; + + mod rustrt { + extern { + pub fn rust_unset_sigprocmask(); + } + } + + #[cfg(target_os = "macos")] + unsafe fn set_environ(envp: *const c_void) { + extern { fn _NSGetEnviron() -> *mut *const c_void; } + + *_NSGetEnviron() = envp; + } + #[cfg(not(target_os = "macos"))] + unsafe fn set_environ(envp: *const c_void) { + extern { static mut environ: *const c_void; } + environ = envp; + } + + unsafe fn set_cloexec(fd: c_int) { + let ret = c::ioctl(fd, c::FIOCLEX); + assert_eq!(ret, 0); + } + + let dirp = cfg.cwd().map(|c| c.as_ptr()).unwrap_or(ptr::null()); + + // temporary until unboxed closures land + let cfg = unsafe { + mem::transmute::<&ProcessConfig<K,V>,&'static ProcessConfig<K,V>>(cfg) + }; + + with_envp(cfg.env(), proc(envp) { + with_argv(cfg.program(), cfg.args(), proc(argv) unsafe { + let (input, mut output) = try!(sys::os::pipe()); + + // We may use this in the child, so perform allocations before the + // fork + let devnull = "/dev/null".to_c_str(); + + set_cloexec(output.fd()); + + let pid = fork(); + if pid < 0 { + return Err(super::last_error()) + } else if pid > 0 { + drop(output); + let mut bytes = [0, ..4]; + return match input.read(bytes) { + Ok(4) => { + let errno = (bytes[0] as i32 << 24) | + (bytes[1] as i32 << 16) | + (bytes[2] as i32 << 8) | + (bytes[3] as i32 << 0); + Err(super::decode_error(errno)) + } + Err(..) => Ok(Process { pid: pid }), + Ok(..) => panic!("short read on the cloexec pipe"), + }; + } + + // And at this point we've reached a special time in the life of the + // child. The child must now be considered hamstrung and unable to + // do anything other than syscalls really. Consider the following + // scenario: + // + // 1. Thread A of process 1 grabs the malloc() mutex + // 2. Thread B of process 1 forks(), creating thread C + // 3. Thread C of process 2 then attempts to malloc() + // 4. The memory of process 2 is the same as the memory of + // process 1, so the mutex is locked. + // + // This situation looks a lot like deadlock, right? It turns out + // that this is what pthread_atfork() takes care of, which is + // presumably implemented across platforms. The first thing that + // threads to *before* forking is to do things like grab the malloc + // mutex, and then after the fork they unlock it. + // + // Despite this information, libnative's spawn has been witnessed to + // deadlock on both OSX and FreeBSD. I'm not entirely sure why, but + // all collected backtraces point at malloc/free traffic in the + // child spawned process. + // + // For this reason, the block of code below should contain 0 + // invocations of either malloc of free (or their related friends). + // + // As an example of not having malloc/free traffic, we don't close + // this file descriptor by dropping the FileDesc (which contains an + // allocation). Instead we just close it manually. This will never + // have the drop glue anyway because this code never returns (the + // child will either exec() or invoke libc::exit) + let _ = libc::close(input.fd()); + + fn fail(output: &mut FileDesc) -> ! { + let errno = sys::os::errno(); + let bytes = [ + (errno >> 24) as u8, + (errno >> 16) as u8, + (errno >> 8) as u8, + (errno >> 0) as u8, + ]; + assert!(output.write(bytes).is_ok()); + unsafe { libc::_exit(1) } + } + + rustrt::rust_unset_sigprocmask(); + + // If a stdio file descriptor is set to be ignored (via a -1 file + // descriptor), then we don't actually close it, but rather open + // up /dev/null into that file descriptor. Otherwise, the first file + // descriptor opened up in the child would be numbered as one of the + // stdio file descriptors, which is likely to wreak havoc. + let setup = |src: Option<P>, dst: c_int| { + let src = match src { + None => { + let flags = if dst == libc::STDIN_FILENO { + libc::O_RDONLY + } else { + libc::O_RDWR + }; + libc::open(devnull.as_ptr(), flags, 0) + } + Some(obj) => { + let fd = obj.as_fd().fd(); + // Leak the memory and the file descriptor. We're in the + // child now an all our resources are going to be + // cleaned up very soon + mem::forget(obj); + fd + } + }; + src != -1 && retry(|| dup2(src, dst)) != -1 + }; + + if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) } + if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) } + if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) } + + // close all other fds + for fd in range(3, getdtablesize()).rev() { + if fd != output.fd() { + let _ = close(fd as c_int); + } + } + + match cfg.gid() { + Some(u) => { + if libc::setgid(u as libc::gid_t) != 0 { + fail(&mut output); + } + } + None => {} + } + match cfg.uid() { + Some(u) => { + // When dropping privileges from root, the `setgroups` call + // will remove any extraneous groups. If we don't call this, + // then even though our uid has dropped, we may still have + // groups that enable us to do super-user things. This will + // fail if we aren't root, so don't bother checking the + // return value, this is just done as an optimistic + // privilege dropping function. + extern { + fn setgroups(ngroups: libc::c_int, + ptr: *const libc::c_void) -> libc::c_int; + } + let _ = setgroups(0, 0 as *const libc::c_void); + + if libc::setuid(u as libc::uid_t) != 0 { + fail(&mut output); + } + } + None => {} + } + if cfg.detach() { + // Don't check the error of setsid because it fails if we're the + // process leader already. We just forked so it shouldn't return + // error, but ignore it anyway. + let _ = libc::setsid(); + } + if !dirp.is_null() && chdir(dirp) == -1 { + fail(&mut output); + } + if !envp.is_null() { + set_environ(envp); + } + let _ = execvp(*argv, argv as *mut _); + fail(&mut output); + }) + }) + } + + pub fn wait(&self, deadline: u64) -> IoResult<ProcessExit> { + use std::cmp; + use std::comm; + + static mut WRITE_FD: libc::c_int = 0; + + let mut status = 0 as c_int; + if deadline == 0 { + return match retry(|| unsafe { c::waitpid(self.pid, &mut status, 0) }) { + -1 => panic!("unknown waitpid error: {}", super::last_error()), + _ => Ok(translate_status(status)), + } + } + + // On unix, wait() and its friends have no timeout parameters, so there is + // no way to time out a thread in wait(). From some googling and some + // thinking, it appears that there are a few ways to handle timeouts in + // wait(), but the only real reasonable one for a multi-threaded program is + // to listen for SIGCHLD. + // + // With this in mind, the waiting mechanism with a timeout barely uses + // waitpid() at all. There are a few times that waitpid() is invoked with + // WNOHANG, but otherwise all the necessary blocking is done by waiting for + // a SIGCHLD to arrive (and that blocking has a timeout). Note, however, + // that waitpid() is still used to actually reap the child. + // + // Signal handling is super tricky in general, and this is no exception. Due + // to the async nature of SIGCHLD, we use the self-pipe trick to transmit + // data out of the signal handler to the rest of the application. The first + // idea would be to have each thread waiting with a timeout to read this + // output file descriptor, but a write() is akin to a signal(), not a + // broadcast(), so it would only wake up one thread, and possibly the wrong + // thread. Hence a helper thread is used. + // + // The helper thread here is responsible for farming requests for a + // waitpid() with a timeout, and then processing all of the wait requests. + // By guaranteeing that only this helper thread is reading half of the + // self-pipe, we're sure that we'll never lose a SIGCHLD. This helper thread + // is also responsible for select() to wait for incoming messages or + // incoming SIGCHLD messages, along with passing an appropriate timeout to + // select() to wake things up as necessary. + // + // The ordering of the following statements is also very purposeful. First, + // we must be guaranteed that the helper thread is booted and available to + // receive SIGCHLD signals, and then we must also ensure that we do a + // nonblocking waitpid() at least once before we go ask the sigchld helper. + // This prevents the race where the child exits, we boot the helper, and + // then we ask for the child's exit status (never seeing a sigchld). + // + // The actual communication between the helper thread and this thread is + // quite simple, just a channel moving data around. + + unsafe { HELPER.boot(register_sigchld, waitpid_helper) } + + match self.try_wait() { + Some(ret) => return Ok(ret), + None => {} + } + + let (tx, rx) = channel(); + unsafe { HELPER.send(NewChild(self.pid, tx, deadline)); } + return match rx.recv_opt() { + Ok(e) => Ok(e), + Err(()) => Err(timeout("wait timed out")), + }; + + // Register a new SIGCHLD handler, returning the reading half of the + // self-pipe plus the old handler registered (return value of sigaction). + // + // Be sure to set up the self-pipe first because as soon as we register a + // handler we're going to start receiving signals. + fn register_sigchld() -> (libc::c_int, c::sigaction) { + unsafe { + let mut pipes = [0, ..2]; + assert_eq!(libc::pipe(pipes.as_mut_ptr()), 0); + set_nonblocking(pipes[0], true).ok().unwrap(); + set_nonblocking(pipes[1], true).ok().unwrap(); + WRITE_FD = pipes[1]; + + let mut old: c::sigaction = mem::zeroed(); + let mut new: c::sigaction = mem::zeroed(); + new.sa_handler = sigchld_handler; + new.sa_flags = c::SA_NOCLDSTOP; + assert_eq!(c::sigaction(c::SIGCHLD, &new, &mut old), 0); + (pipes[0], old) + } + } + + // Helper thread for processing SIGCHLD messages + fn waitpid_helper(input: libc::c_int, + messages: Receiver<Req>, + (read_fd, old): (libc::c_int, c::sigaction)) { + set_nonblocking(input, true).ok().unwrap(); + let mut set: c::fd_set = unsafe { mem::zeroed() }; + let mut tv: libc::timeval; + let mut active = Vec::<(libc::pid_t, Sender<ProcessExit>, u64)>::new(); + let max = cmp::max(input, read_fd) + 1; + + 'outer: loop { + // Figure out the timeout of our syscall-to-happen. If we're waiting + // for some processes, then they'll have a timeout, otherwise we + // wait indefinitely for a message to arrive. + // + // FIXME: sure would be nice to not have to scan the entire array + let min = active.iter().map(|a| *a.ref2()).enumerate().min_by(|p| { + p.val1() + }); + let (p, idx) = match min { + Some((idx, deadline)) => { + let now = sys::timer::now(); + let ms = if now < deadline {deadline - now} else {0}; + tv = ms_to_timeval(ms); + (&mut tv as *mut _, idx) + } + None => (ptr::null_mut(), -1), + }; + + // Wait for something to happen + c::fd_set(&mut set, input); + c::fd_set(&mut set, read_fd); + match unsafe { c::select(max, &mut set, ptr::null_mut(), + ptr::null_mut(), p) } { + // interrupted, retry + -1 if os::errno() == libc::EINTR as uint => continue, + + // We read something, break out and process + 1 | 2 => {} + + // Timeout, the pending request is removed + 0 => { + drop(active.remove(idx)); + continue + } + + n => panic!("error in select {} ({})", os::errno(), n), + } + + // Process any pending messages + if drain(input) { + loop { + match messages.try_recv() { + Ok(NewChild(pid, tx, deadline)) => { + active.push((pid, tx, deadline)); + } + Err(comm::Disconnected) => { + assert!(active.len() == 0); + break 'outer; + } + Err(comm::Empty) => break, + } + } + } + + // If a child exited (somehow received SIGCHLD), then poll all + // children to see if any of them exited. + // + // We also attempt to be responsible netizens when dealing with + // SIGCHLD by invoking any previous SIGCHLD handler instead of just + // ignoring any previous SIGCHLD handler. Note that we don't provide + // a 1:1 mapping of our handler invocations to the previous handler + // invocations because we drain the `read_fd` entirely. This is + // probably OK because the kernel is already allowed to coalesce + // simultaneous signals, we're just doing some extra coalescing. + // + // Another point of note is that this likely runs the signal handler + // on a different thread than the one that received the signal. I + // *think* this is ok at this time. + // + // The main reason for doing this is to allow stdtest to run native + // tests as well. Both libgreen and libnative are running around + // with process timeouts, but libgreen should get there first + // (currently libuv doesn't handle old signal handlers). + if drain(read_fd) { + let i: uint = unsafe { mem::transmute(old.sa_handler) }; + if i != 0 { + assert!(old.sa_flags & c::SA_SIGINFO == 0); + (old.sa_handler)(c::SIGCHLD); + } + + // FIXME: sure would be nice to not have to scan the entire + // array... + active.retain(|&(pid, ref tx, _)| { + let pr = Process { pid: pid }; + match pr.try_wait() { + Some(msg) => { tx.send(msg); false } + None => true, + } + }); + } + } + + // Once this helper thread is done, we re-register the old sigchld + // handler and close our intermediate file descriptors. + unsafe { + assert_eq!(c::sigaction(c::SIGCHLD, &old, ptr::null_mut()), 0); + let _ = libc::close(read_fd); + let _ = libc::close(WRITE_FD); + WRITE_FD = -1; + } + } + + // Drain all pending data from the file descriptor, returning if any data + // could be drained. This requires that the file descriptor is in + // nonblocking mode. + fn drain(fd: libc::c_int) -> bool { + let mut ret = false; + loop { + let mut buf = [0u8, ..1]; + match unsafe { + libc::read(fd, buf.as_mut_ptr() as *mut libc::c_void, + buf.len() as libc::size_t) + } { + n if n > 0 => { ret = true; } + 0 => return true, + -1 if wouldblock() => return ret, + n => panic!("bad read {} ({})", os::last_os_error(), n), + } + } + } + + // Signal handler for SIGCHLD signals, must be async-signal-safe! + // + // This function will write to the writing half of the "self pipe" to wake + // up the helper thread if it's waiting. Note that this write must be + // nonblocking because if it blocks and the reader is the thread we + // interrupted, then we'll deadlock. + // + // When writing, if the write returns EWOULDBLOCK then we choose to ignore + // it. At that point we're guaranteed that there's something in the pipe + // which will wake up the other end at some point, so we just allow this + // signal to be coalesced with the pending signals on the pipe. + extern fn sigchld_handler(_signum: libc::c_int) { + let msg = 1i; + match unsafe { + libc::write(WRITE_FD, &msg as *const _ as *const libc::c_void, 1) + } { + 1 => {} + -1 if wouldblock() => {} // see above comments + n => panic!("bad error on write fd: {} {}", n, os::errno()), + } + } + } + + pub fn try_wait(&self) -> Option<ProcessExit> { + let mut status = 0 as c_int; + match retry(|| unsafe { + c::waitpid(self.pid, &mut status, c::WNOHANG) + }) { + n if n == self.pid => Some(translate_status(status)), + 0 => None, + n => panic!("unknown waitpid error `{}`: {}", n, + super::last_error()), + } + } +} + +fn with_argv<T>(prog: &CString, args: &[CString], + cb: proc(*const *const libc::c_char) -> T) -> T { + let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1); + + // Convert the CStrings into an array of pointers. Note: the + // lifetime of the various CStrings involved is guaranteed to be + // larger than the lifetime of our invocation of cb, but this is + // technically unsafe as the callback could leak these pointers + // out of our scope. + ptrs.push(prog.as_ptr()); + ptrs.extend(args.iter().map(|tmp| tmp.as_ptr())); + + // Add a terminating null pointer (required by libc). + ptrs.push(ptr::null()); + + cb(ptrs.as_ptr()) +} + +fn with_envp<K, V, T>(env: Option<&collections::HashMap<K, V>>, + cb: proc(*const c_void) -> T) -> T + where K: BytesContainer + Eq + Hash, V: BytesContainer +{ + // On posixy systems we can pass a char** for envp, which is a + // null-terminated array of "k=v\0" strings. Since we must create + // these strings locally, yet expose a raw pointer to them, we + // create a temporary vector to own the CStrings that outlives the + // call to cb. + match env { + Some(env) => { + let mut tmps = Vec::with_capacity(env.len()); + + for pair in env.iter() { + let mut kv = Vec::new(); + kv.push_all(pair.ref0().container_as_bytes()); + kv.push('=' as u8); + kv.push_all(pair.ref1().container_as_bytes()); + kv.push(0); // terminating null + tmps.push(kv); + } + + // As with `with_argv`, this is unsafe, since cb could leak the pointers. + let mut ptrs: Vec<*const libc::c_char> = + tmps.iter() + .map(|tmp| tmp.as_ptr() as *const libc::c_char) + .collect(); + ptrs.push(ptr::null()); + + cb(ptrs.as_ptr() as *const c_void) + } + _ => cb(ptr::null()) + } +} + +fn translate_status(status: c_int) -> ProcessExit { + #![allow(non_snake_case)] + #[cfg(any(target_os = "linux", target_os = "android"))] + mod imp { + pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 } + pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff } + pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f } + } + + #[cfg(any(target_os = "macos", + target_os = "ios", + target_os = "freebsd", + target_os = "dragonfly"))] + mod imp { + pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 } + pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 } + pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 } + } + + if imp::WIFEXITED(status) { + ExitStatus(imp::WEXITSTATUS(status) as int) + } else { + ExitSignal(imp::WTERMSIG(status) as int) + } +} |
