about summary refs log tree commit diff
path: root/src/libstd/sys/unix/process.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/libstd/sys/unix/process.rs')
-rw-r--r--src/libstd/sys/unix/process.rs627
1 files changed, 0 insertions, 627 deletions
diff --git a/src/libstd/sys/unix/process.rs b/src/libstd/sys/unix/process.rs
deleted file mode 100644
index 8095325f83d..00000000000
--- a/src/libstd/sys/unix/process.rs
+++ /dev/null
@@ -1,627 +0,0 @@
-// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
-// file at the top-level directory of this distribution and at
-// http://rust-lang.org/COPYRIGHT.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-#![allow(deprecated)] // this module itself is essentially deprecated
-
-use prelude::v1::*;
-use self::Req::*;
-
-use collections::HashMap;
-use ffi::CString;
-use hash::Hash;
-use old_io::process::{ProcessExit, ExitStatus, ExitSignal};
-use old_io::{IoResult, EndOfFile};
-use libc::{self, pid_t, c_void, c_int};
-use io;
-use mem;
-use sys::os;
-use old_path::BytesContainer;
-use ptr;
-use sync::mpsc::{channel, Sender, Receiver};
-use sys::fs::FileDesc;
-use sys::{self, retry, c, wouldblock, set_nonblocking, ms_to_timeval};
-use sys_common::helper_thread::Helper;
-use sys_common::{AsInner, mkerr_libc, timeout};
-
-pub use sys_common::ProcessConfig;
-
-helper_init! { static HELPER: Helper<Req> }
-
-/// The unique id of the process (this should never be negative).
-pub struct Process {
-    pub pid: pid_t
-}
-
-enum Req {
-    NewChild(libc::pid_t, Sender<ProcessExit>, u64),
-}
-
-const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX";
-
-impl Process {
-    pub fn id(&self) -> pid_t {
-        self.pid
-    }
-
-    pub unsafe fn kill(&self, signal: isize) -> IoResult<()> {
-        Process::killpid(self.pid, signal)
-    }
-
-    pub unsafe fn killpid(pid: pid_t, signal: isize) -> IoResult<()> {
-        let r = libc::funcs::posix88::signal::kill(pid, signal as c_int);
-        mkerr_libc(r)
-    }
-
-    pub fn spawn<K, V, C, P>(cfg: &C, in_fd: Option<P>,
-                              out_fd: Option<P>, err_fd: Option<P>)
-                              -> IoResult<Process>
-        where C: ProcessConfig<K, V>, P: AsInner<FileDesc>,
-              K: BytesContainer + Eq + Hash, V: BytesContainer
-    {
-        use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp};
-
-        mod rustrt {
-            extern {
-                pub fn rust_unset_sigprocmask();
-            }
-        }
-
-        unsafe fn set_cloexec(fd: c_int) {
-            let ret = c::ioctl(fd, c::FIOCLEX);
-            assert_eq!(ret, 0);
-        }
-
-        #[cfg(all(target_os = "android", target_arch = "aarch64"))]
-        unsafe fn getdtablesize() -> c_int {
-            libc::sysconf(libc::consts::os::sysconf::_SC_OPEN_MAX) as c_int
-        }
-        #[cfg(not(all(target_os = "android", target_arch = "aarch64")))]
-        unsafe fn getdtablesize() -> c_int {
-            libc::funcs::bsd44::getdtablesize()
-        }
-
-        let dirp = cfg.cwd().map(|c| c.as_ptr()).unwrap_or(ptr::null());
-
-        // temporary until unboxed closures land
-        let cfg = unsafe {
-            mem::transmute::<&ProcessConfig<K,V>,&'static ProcessConfig<K,V>>(cfg)
-        };
-
-        with_envp(cfg.env(), move|envp: *const c_void| {
-            with_argv(cfg.program(), cfg.args(), move|argv: *const *const libc::c_char| unsafe {
-                let (input, mut output) = try!(sys::os::pipe());
-
-                // We may use this in the child, so perform allocations before the
-                // fork
-                let devnull = b"/dev/null\0";
-
-                set_cloexec(output.fd());
-
-                let pid = fork();
-                if pid < 0 {
-                    return Err(super::last_error())
-                } else if pid > 0 {
-                    #[inline]
-                    fn combine(arr: &[u8]) -> i32 {
-                        let a = arr[0] as u32;
-                        let b = arr[1] as u32;
-                        let c = arr[2] as u32;
-                        let d = arr[3] as u32;
-
-                        ((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
-                    }
-
-                    let p = Process{ pid: pid };
-                    drop(output);
-                    let mut bytes = [0; 8];
-                    return match input.read(&mut bytes) {
-                        Ok(8) => {
-                            assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
-                                "Validation on the CLOEXEC pipe failed: {:?}", bytes);
-                            let errno = combine(&bytes[0.. 4]);
-                            assert!(p.wait(0).is_ok(), "wait(0) should either return Ok or panic");
-                            Err(super::decode_error(errno))
-                        }
-                        Err(ref e) if e.kind == EndOfFile => Ok(p),
-                        Err(e) => {
-                            assert!(p.wait(0).is_ok(), "wait(0) should either return Ok or panic");
-                            panic!("the CLOEXEC pipe failed: {:?}", e)
-                        },
-                        Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
-                            assert!(p.wait(0).is_ok(), "wait(0) should either return Ok or panic");
-                            panic!("short read on the CLOEXEC pipe")
-                        }
-                    };
-                }
-
-                // And at this point we've reached a special time in the life of the
-                // child. The child must now be considered hamstrung and unable to
-                // do anything other than syscalls really. Consider the following
-                // scenario:
-                //
-                //      1. Thread A of process 1 grabs the malloc() mutex
-                //      2. Thread B of process 1 forks(), creating thread C
-                //      3. Thread C of process 2 then attempts to malloc()
-                //      4. The memory of process 2 is the same as the memory of
-                //         process 1, so the mutex is locked.
-                //
-                // This situation looks a lot like deadlock, right? It turns out
-                // that this is what pthread_atfork() takes care of, which is
-                // presumably implemented across platforms. The first thing that
-                // threads to *before* forking is to do things like grab the malloc
-                // mutex, and then after the fork they unlock it.
-                //
-                // Despite this information, libnative's spawn has been witnessed to
-                // deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
-                // all collected backtraces point at malloc/free traffic in the
-                // child spawned process.
-                //
-                // For this reason, the block of code below should contain 0
-                // invocations of either malloc of free (or their related friends).
-                //
-                // As an example of not having malloc/free traffic, we don't close
-                // this file descriptor by dropping the FileDesc (which contains an
-                // allocation). Instead we just close it manually. This will never
-                // have the drop glue anyway because this code never returns (the
-                // child will either exec() or invoke libc::exit)
-                let _ = libc::close(input.fd());
-
-                fn fail(output: &mut FileDesc) -> ! {
-                    let errno = sys::os::errno() as u32;
-                    let bytes = [
-                        (errno >> 24) as u8,
-                        (errno >> 16) as u8,
-                        (errno >>  8) as u8,
-                        (errno >>  0) as u8,
-                        CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
-                        CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
-                    ];
-                    // pipe I/O up to PIPE_BUF bytes should be atomic
-                    assert!(output.write(&bytes).is_ok());
-                    unsafe { libc::_exit(1) }
-                }
-
-                rustrt::rust_unset_sigprocmask();
-
-                // If a stdio file descriptor is set to be ignored (via a -1 file
-                // descriptor), then we don't actually close it, but rather open
-                // up /dev/null into that file descriptor. Otherwise, the first file
-                // descriptor opened up in the child would be numbered as one of the
-                // stdio file descriptors, which is likely to wreak havoc.
-                let setup = |src: Option<P>, dst: c_int| {
-                    let src = match src {
-                        None => {
-                            let flags = if dst == libc::STDIN_FILENO {
-                                libc::O_RDONLY
-                            } else {
-                                libc::O_RDWR
-                            };
-                            libc::open(devnull.as_ptr() as *const _, flags, 0)
-                        }
-                        Some(obj) => {
-                            let fd = obj.as_inner().fd();
-                            // Leak the memory and the file descriptor. We're in the
-                            // child now an all our resources are going to be
-                            // cleaned up very soon
-                            mem::forget(obj);
-                            fd
-                        }
-                    };
-                    src != -1 && retry(|| dup2(src, dst)) != -1
-                };
-
-                if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
-                if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
-                if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
-
-                // close all other fds
-                for fd in (3..getdtablesize()).rev() {
-                    if fd != output.fd() {
-                        let _ = close(fd as c_int);
-                    }
-                }
-
-                match cfg.gid() {
-                    Some(u) => {
-                        if libc::setgid(u as libc::gid_t) != 0 {
-                            fail(&mut output);
-                        }
-                    }
-                    None => {}
-                }
-                match cfg.uid() {
-                    Some(u) => {
-                        // When dropping privileges from root, the `setgroups` call
-                        // will remove any extraneous groups. If we don't call this,
-                        // then even though our uid has dropped, we may still have
-                        // groups that enable us to do super-user things. This will
-                        // fail if we aren't root, so don't bother checking the
-                        // return value, this is just done as an optimistic
-                        // privilege dropping function.
-                        extern {
-                            fn setgroups(ngroups: libc::c_int,
-                                         ptr: *const libc::c_void) -> libc::c_int;
-                        }
-                        let _ = setgroups(0, ptr::null());
-
-                        if libc::setuid(u as libc::uid_t) != 0 {
-                            fail(&mut output);
-                        }
-                    }
-                    None => {}
-                }
-                if cfg.detach() {
-                    // Don't check the error of setsid because it fails if we're the
-                    // process leader already. We just forked so it shouldn't return
-                    // error, but ignore it anyway.
-                    let _ = libc::setsid();
-                }
-                if !dirp.is_null() && chdir(dirp) == -1 {
-                    fail(&mut output);
-                }
-                if !envp.is_null() {
-                    *sys::os::environ() = envp as *const _;
-                }
-                let _ = execvp(*argv, argv as *mut _);
-                fail(&mut output);
-            })
-        })
-    }
-
-    pub fn wait(&self, deadline: u64) -> IoResult<ProcessExit> {
-        use cmp;
-        use sync::mpsc::TryRecvError;
-
-        static mut WRITE_FD: libc::c_int = 0;
-
-        let mut status = 0 as c_int;
-        if deadline == 0 {
-            return match retry(|| unsafe { c::waitpid(self.pid, &mut status, 0) }) {
-                -1 => panic!("unknown waitpid error: {:?}", super::last_error()),
-                _ => Ok(translate_status(status)),
-            }
-        }
-
-        // On unix, wait() and its friends have no timeout parameters, so there is
-        // no way to time out a thread in wait(). From some googling and some
-        // thinking, it appears that there are a few ways to handle timeouts in
-        // wait(), but the only real reasonable one for a multi-threaded program is
-        // to listen for SIGCHLD.
-        //
-        // With this in mind, the waiting mechanism with a timeout barely uses
-        // waitpid() at all. There are a few times that waitpid() is invoked with
-        // WNOHANG, but otherwise all the necessary blocking is done by waiting for
-        // a SIGCHLD to arrive (and that blocking has a timeout). Note, however,
-        // that waitpid() is still used to actually reap the child.
-        //
-        // Signal handling is super tricky in general, and this is no exception. Due
-        // to the async nature of SIGCHLD, we use the self-pipe trick to transmit
-        // data out of the signal handler to the rest of the application. The first
-        // idea would be to have each thread waiting with a timeout to read this
-        // output file descriptor, but a write() is akin to a signal(), not a
-        // broadcast(), so it would only wake up one thread, and possibly the wrong
-        // thread. Hence a helper thread is used.
-        //
-        // The helper thread here is responsible for farming requests for a
-        // waitpid() with a timeout, and then processing all of the wait requests.
-        // By guaranteeing that only this helper thread is reading half of the
-        // self-pipe, we're sure that we'll never lose a SIGCHLD. This helper thread
-        // is also responsible for select() to wait for incoming messages or
-        // incoming SIGCHLD messages, along with passing an appropriate timeout to
-        // select() to wake things up as necessary.
-        //
-        // The ordering of the following statements is also very purposeful. First,
-        // we must be guaranteed that the helper thread is booted and available to
-        // receive SIGCHLD signals, and then we must also ensure that we do a
-        // nonblocking waitpid() at least once before we go ask the sigchld helper.
-        // This prevents the race where the child exits, we boot the helper, and
-        // then we ask for the child's exit status (never seeing a sigchld).
-        //
-        // The actual communication between the helper thread and this thread is
-        // quite simple, just a channel moving data around.
-
-        HELPER.boot(register_sigchld, waitpid_helper);
-
-        match self.try_wait() {
-            Some(ret) => return Ok(ret),
-            None => {}
-        }
-
-        let (tx, rx) = channel();
-        HELPER.send(NewChild(self.pid, tx, deadline));
-        return match rx.recv() {
-            Ok(e) => Ok(e),
-            Err(..) => Err(timeout("wait timed out")),
-        };
-
-        // Register a new SIGCHLD handler, returning the reading half of the
-        // self-pipe plus the old handler registered (return value of sigaction).
-        //
-        // Be sure to set up the self-pipe first because as soon as we register a
-        // handler we're going to start receiving signals.
-        fn register_sigchld() -> (libc::c_int, c::sigaction) {
-            unsafe {
-                let mut pipes = [0; 2];
-                assert_eq!(libc::pipe(pipes.as_mut_ptr()), 0);
-                set_nonblocking(pipes[0], true);
-                set_nonblocking(pipes[1], true);
-                WRITE_FD = pipes[1];
-
-                let mut old: c::sigaction = mem::zeroed();
-                let mut new: c::sigaction = mem::zeroed();
-                new.sa_handler = sigchld_handler;
-                new.sa_flags = c::SA_NOCLDSTOP;
-                assert_eq!(c::sigaction(c::SIGCHLD, &new, &mut old), 0);
-                (pipes[0], old)
-            }
-        }
-
-        // Helper thread for processing SIGCHLD messages
-        fn waitpid_helper(input: libc::c_int,
-                          messages: Receiver<Req>,
-                          (read_fd, old): (libc::c_int, c::sigaction)) {
-            set_nonblocking(input, true);
-            let mut set: c::fd_set = unsafe { mem::zeroed() };
-            let mut tv: libc::timeval;
-            let mut active = Vec::<(libc::pid_t, Sender<ProcessExit>, u64)>::new();
-            let max = cmp::max(input, read_fd) + 1;
-
-            'outer: loop {
-                // Figure out the timeout of our syscall-to-happen. If we're waiting
-                // for some processes, then they'll have a timeout, otherwise we
-                // wait indefinitely for a message to arrive.
-                //
-                // FIXME: sure would be nice to not have to scan the entire array
-                let min = active.iter().map(|a| a.2).enumerate().min_by(|p| {
-                    p.1
-                });
-                let (p, idx) = match min {
-                    Some((idx, deadline)) => {
-                        let now = sys::timer::now();
-                        let ms = if now < deadline {deadline - now} else {0};
-                        tv = ms_to_timeval(ms);
-                        (&mut tv as *mut _, idx)
-                    }
-                    None => (ptr::null_mut(), -1),
-                };
-
-                // Wait for something to happen
-                c::fd_set(&mut set, input);
-                c::fd_set(&mut set, read_fd);
-                match unsafe { c::select(max, &mut set, ptr::null_mut(),
-                                         ptr::null_mut(), p) } {
-                    // interrupted, retry
-                    -1 if os::errno() == libc::EINTR as i32 => continue,
-
-                    // We read something, break out and process
-                    1 | 2 => {}
-
-                    // Timeout, the pending request is removed
-                    0 => {
-                        drop(active.remove(idx));
-                        continue
-                    }
-
-                    n => panic!("error in select {:?} ({:?})", os::errno(), n),
-                }
-
-                // Process any pending messages
-                if drain(input) {
-                    loop {
-                        match messages.try_recv() {
-                            Ok(NewChild(pid, tx, deadline)) => {
-                                active.push((pid, tx, deadline));
-                            }
-                            // Once we've been disconnected it means the main
-                            // thread is exiting (at_exit has run). We could
-                            // still have active waiter for other threads, so
-                            // we're just going to drop them all on the floor.
-                            // This means that they won't receive a "you're
-                            // done" message in which case they'll be considered
-                            // as timed out, but more generally errors will
-                            // start propagating.
-                            Err(TryRecvError::Disconnected) => {
-                                break 'outer;
-                            }
-                            Err(TryRecvError::Empty) => break,
-                        }
-                    }
-                }
-
-                // If a child exited (somehow received SIGCHLD), then poll all
-                // children to see if any of them exited.
-                //
-                // We also attempt to be responsible netizens when dealing with
-                // SIGCHLD by invoking any previous SIGCHLD handler instead of just
-                // ignoring any previous SIGCHLD handler. Note that we don't provide
-                // a 1:1 mapping of our handler invocations to the previous handler
-                // invocations because we drain the `read_fd` entirely. This is
-                // probably OK because the kernel is already allowed to coalesce
-                // simultaneous signals, we're just doing some extra coalescing.
-                //
-                // Another point of note is that this likely runs the signal handler
-                // on a different thread than the one that received the signal. I
-                // *think* this is ok at this time.
-                //
-                // The main reason for doing this is to allow stdtest to run native
-                // tests as well. Both libgreen and libnative are running around
-                // with process timeouts, but libgreen should get there first
-                // (currently libuv doesn't handle old signal handlers).
-                if drain(read_fd) {
-                    let i: usize = unsafe { mem::transmute(old.sa_handler) };
-                    if i != 0 {
-                        assert!(old.sa_flags & c::SA_SIGINFO == 0);
-                        (old.sa_handler)(c::SIGCHLD);
-                    }
-
-                    // FIXME: sure would be nice to not have to scan the entire
-                    //        array...
-                    active.retain(|&(pid, ref tx, _)| {
-                        let pr = Process { pid: pid };
-                        match pr.try_wait() {
-                            Some(msg) => { tx.send(msg).unwrap(); false }
-                            None => true,
-                        }
-                    });
-                }
-            }
-
-            // Once this helper thread is done, we re-register the old sigchld
-            // handler and close our intermediate file descriptors.
-            unsafe {
-                assert_eq!(c::sigaction(c::SIGCHLD, &old, ptr::null_mut()), 0);
-                let _ = libc::close(read_fd);
-                let _ = libc::close(WRITE_FD);
-                WRITE_FD = -1;
-            }
-        }
-
-        // Drain all pending data from the file descriptor, returning if any data
-        // could be drained. This requires that the file descriptor is in
-        // nonblocking mode.
-        fn drain(fd: libc::c_int) -> bool {
-            let mut ret = false;
-            loop {
-                let mut buf = [0u8; 1];
-                match unsafe {
-                    libc::read(fd, buf.as_mut_ptr() as *mut libc::c_void,
-                               buf.len() as libc::size_t)
-                } {
-                    n if n > 0 => { ret = true; }
-                    0 => return true,
-                    -1 if wouldblock() => return ret,
-                    n => panic!("bad read {} ({})",
-                                io::Error::last_os_error(), n),
-                }
-            }
-        }
-
-        // Signal handler for SIGCHLD signals, must be async-signal-safe!
-        //
-        // This function will write to the writing half of the "self pipe" to wake
-        // up the helper thread if it's waiting. Note that this write must be
-        // nonblocking because if it blocks and the reader is the thread we
-        // interrupted, then we'll deadlock.
-        //
-        // When writing, if the write returns EWOULDBLOCK then we choose to ignore
-        // it. At that point we're guaranteed that there's something in the pipe
-        // which will wake up the other end at some point, so we just allow this
-        // signal to be coalesced with the pending signals on the pipe.
-        extern fn sigchld_handler(_signum: libc::c_int) {
-            let msg = 1;
-            match unsafe {
-                libc::write(WRITE_FD, &msg as *const _ as *const libc::c_void, 1)
-            } {
-                1 => {}
-                -1 if wouldblock() => {} // see above comments
-                n => panic!("bad error on write fd: {:?} {:?}", n, os::errno()),
-            }
-        }
-    }
-
-    pub fn try_wait(&self) -> Option<ProcessExit> {
-        let mut status = 0 as c_int;
-        match retry(|| unsafe {
-            c::waitpid(self.pid, &mut status, c::WNOHANG)
-        }) {
-            n if n == self.pid => Some(translate_status(status)),
-            0 => None,
-            n => panic!("unknown waitpid error `{:?}`: {:?}", n,
-                       super::last_error()),
-        }
-    }
-}
-
-fn with_argv<T,F>(prog: &CString, args: &[CString],
-                  cb: F)
-                  -> T
-    where F : FnOnce(*const *const libc::c_char) -> T
-{
-    let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);
-
-    // Convert the CStrings into an array of pointers. Note: the
-    // lifetime of the various CStrings involved is guaranteed to be
-    // larger than the lifetime of our invocation of cb, but this is
-    // technically unsafe as the callback could leak these pointers
-    // out of our scope.
-    ptrs.push(prog.as_ptr());
-    ptrs.extend(args.iter().map(|tmp| tmp.as_ptr()));
-
-    // Add a terminating null pointer (required by libc).
-    ptrs.push(ptr::null());
-
-    cb(ptrs.as_ptr())
-}
-
-fn with_envp<K,V,T,F>(env: Option<&HashMap<K, V>>,
-                      cb: F)
-                      -> T
-    where F : FnOnce(*const c_void) -> T,
-          K : BytesContainer + Eq + Hash,
-          V : BytesContainer
-{
-    // On posixy systems we can pass a char** for envp, which is a
-    // null-terminated array of "k=v\0" strings. Since we must create
-    // these strings locally, yet expose a raw pointer to them, we
-    // create a temporary vector to own the CStrings that outlives the
-    // call to cb.
-    match env {
-        Some(env) => {
-            let mut tmps = Vec::with_capacity(env.len());
-
-            for pair in env {
-                let mut kv = Vec::new();
-                kv.push_all(pair.0.container_as_bytes());
-                kv.push('=' as u8);
-                kv.push_all(pair.1.container_as_bytes());
-                kv.push(0); // terminating null
-                tmps.push(kv);
-            }
-
-            // As with `with_argv`, this is unsafe, since cb could leak the pointers.
-            let mut ptrs: Vec<*const libc::c_char> =
-                tmps.iter()
-                    .map(|tmp| tmp.as_ptr() as *const libc::c_char)
-                    .collect();
-            ptrs.push(ptr::null());
-
-            cb(ptrs.as_ptr() as *const c_void)
-        }
-        _ => cb(ptr::null())
-    }
-}
-
-fn translate_status(status: c_int) -> ProcessExit {
-    #![allow(non_snake_case)]
-    #[cfg(any(target_os = "linux", target_os = "android"))]
-    mod imp {
-        pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 }
-        pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff }
-        pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f }
-    }
-
-    #[cfg(any(target_os = "macos",
-              target_os = "ios",
-              target_os = "freebsd",
-              target_os = "dragonfly",
-              target_os = "bitrig",
-              target_os = "openbsd"))]
-    mod imp {
-        pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 }
-        pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 }
-        pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 }
-    }
-
-    if imp::WIFEXITED(status) {
-        ExitStatus(imp::WEXITSTATUS(status) as isize)
-    } else {
-        ExitSignal(imp::WTERMSIG(status) as isize)
-    }
-}