about summary refs log tree commit diff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/libcore/num/f32.rs24
-rw-r--r--src/libcore/num/f64.rs23
-rw-r--r--src/libcore/num/mod.rs93
-rw-r--r--src/libstd/num/f32.rs138
-rw-r--r--src/libstd/num/f64.rs143
-rw-r--r--src/libstd/num/mod.rs218
-rw-r--r--src/libstd/num/uint_macros.rs2
-rw-r--r--src/libtest/lib.rs2
-rw-r--r--src/libtest/stats.rs8
-rw-r--r--src/test/bench/noise.rs2
10 files changed, 570 insertions, 83 deletions
diff --git a/src/libcore/num/f32.rs b/src/libcore/num/f32.rs
index aab28ae9c47..f8a85e788e9 100644
--- a/src/libcore/num/f32.rs
+++ b/src/libcore/num/f32.rs
@@ -22,12 +22,12 @@ use num::Float;
 use num::FpCategory as Fp;
 use option::Option;
 
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const RADIX: uint = 2u;
 
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const MANTISSA_DIGITS: uint = 24u;
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const DIGITS: uint = 6u;
 
 #[stable]
@@ -43,14 +43,14 @@ pub const MIN_POS_VALUE: f32 = 1.17549435e-38_f32;
 #[stable]
 pub const MAX_VALUE: f32 = 3.40282347e+38_f32;
 
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const MIN_EXP: int = -125;
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const MAX_EXP: int = 128;
 
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const MIN_10_EXP: int = -37;
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const MAX_10_EXP: int = 38;
 
 #[stable]
@@ -177,33 +177,43 @@ impl Float for f32 {
     }
 
     #[inline]
+    #[deprecated]
     fn mantissa_digits(_: Option<f32>) -> uint { MANTISSA_DIGITS }
 
     #[inline]
+    #[deprecated]
     fn digits(_: Option<f32>) -> uint { DIGITS }
 
     #[inline]
+    #[deprecated]
     fn epsilon() -> f32 { EPSILON }
 
     #[inline]
+    #[deprecated]
     fn min_exp(_: Option<f32>) -> int { MIN_EXP }
 
     #[inline]
+    #[deprecated]
     fn max_exp(_: Option<f32>) -> int { MAX_EXP }
 
     #[inline]
+    #[deprecated]
     fn min_10_exp(_: Option<f32>) -> int { MIN_10_EXP }
 
     #[inline]
+    #[deprecated]
     fn max_10_exp(_: Option<f32>) -> int { MAX_10_EXP }
 
     #[inline]
+    #[deprecated]
     fn min_value() -> f32 { MIN_VALUE }
 
     #[inline]
+    #[deprecated]
     fn min_pos_value(_: Option<f32>) -> f32 { MIN_POS_VALUE }
 
     #[inline]
+    #[deprecated]
     fn max_value() -> f32 { MAX_VALUE }
 
     /// Returns the mantissa, exponent and sign as integers.
diff --git a/src/libcore/num/f64.rs b/src/libcore/num/f64.rs
index d6d9c3446e9..840428179cd 100644
--- a/src/libcore/num/f64.rs
+++ b/src/libcore/num/f64.rs
@@ -26,12 +26,11 @@ use option::Option;
 // constants are implemented in favour of referencing the respective
 // members of `Bounded` and `Float`.
 
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const RADIX: uint = 2u;
 
-#[stable]
 pub const MANTISSA_DIGITS: uint = 53u;
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const DIGITS: uint = 15u;
 
 #[stable]
@@ -47,14 +46,14 @@ pub const MIN_POS_VALUE: f64 = 2.2250738585072014e-308_f64;
 #[stable]
 pub const MAX_VALUE: f64 = 1.7976931348623157e+308_f64;
 
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const MIN_EXP: int = -1021;
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const MAX_EXP: int = 1024;
 
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const MIN_10_EXP: int = -307;
-#[stable]
+#[unstable = "pending integer conventions"]
 pub const MAX_10_EXP: int = 308;
 
 #[stable]
@@ -185,33 +184,43 @@ impl Float for f64 {
     }
 
     #[inline]
+    #[deprecated]
     fn mantissa_digits(_: Option<f64>) -> uint { MANTISSA_DIGITS }
 
     #[inline]
+    #[deprecated]
     fn digits(_: Option<f64>) -> uint { DIGITS }
 
     #[inline]
+    #[deprecated]
     fn epsilon() -> f64 { EPSILON }
 
     #[inline]
+    #[deprecated]
     fn min_exp(_: Option<f64>) -> int { MIN_EXP }
 
     #[inline]
+    #[deprecated]
     fn max_exp(_: Option<f64>) -> int { MAX_EXP }
 
     #[inline]
+    #[deprecated]
     fn min_10_exp(_: Option<f64>) -> int { MIN_10_EXP }
 
     #[inline]
+    #[deprecated]
     fn max_10_exp(_: Option<f64>) -> int { MAX_10_EXP }
 
     #[inline]
+    #[deprecated]
     fn min_value() -> f64 { MIN_VALUE }
 
     #[inline]
+    #[deprecated]
     fn min_pos_value(_: Option<f64>) -> f64 { MIN_POS_VALUE }
 
     #[inline]
+    #[deprecated]
     fn max_value() -> f64 { MAX_VALUE }
 
     /// Returns the mantissa, exponent and sign as integers.
diff --git a/src/libcore/num/mod.rs b/src/libcore/num/mod.rs
index 426c858d408..192d6063f6b 100644
--- a/src/libcore/num/mod.rs
+++ b/src/libcore/num/mod.rs
@@ -30,7 +30,7 @@ use option::Option::{Some, None};
 use str::{FromStr, StrExt};
 
 /// A built-in signed or unsigned integer.
-#[unstable = "recently settled as part of numerics reform"]
+#[stable]
 pub trait Int
     : Copy + Clone
     + NumCast
@@ -50,18 +50,22 @@ pub trait Int
 {
     /// Returns the `0` value of this integer type.
     // FIXME (#5527): Should be an associated constant
+    #[unstable = "unsure about its place in the world"]
     fn zero() -> Self;
 
     /// Returns the `1` value of this integer type.
     // FIXME (#5527): Should be an associated constant
+    #[unstable = "unsure about its place in the world"]
     fn one() -> Self;
 
     /// Returns the smallest value that can be represented by this integer type.
     // FIXME (#5527): Should be and associated constant
+    #[unstable = "unsure about its place in the world"]
     fn min_value() -> Self;
 
     /// Returns the largest value that can be represented by this integer type.
     // FIXME (#5527): Should be and associated constant
+    #[unstable = "unsure about its place in the world"]
     fn max_value() -> Self;
 
     /// Returns the number of ones in the binary representation of `self`.
@@ -75,6 +79,7 @@ pub trait Int
     ///
     /// assert_eq!(n.count_ones(), 3);
     /// ```
+    #[unstable = "pending integer conventions"]
     fn count_ones(self) -> uint;
 
     /// Returns the number of zeros in the binary representation of `self`.
@@ -88,6 +93,7 @@ pub trait Int
     ///
     /// assert_eq!(n.count_zeros(), 5);
     /// ```
+    #[unstable = "pending integer conventions"]
     #[inline]
     fn count_zeros(self) -> uint {
         (!self).count_ones()
@@ -105,6 +111,7 @@ pub trait Int
     ///
     /// assert_eq!(n.leading_zeros(), 10);
     /// ```
+    #[unstable = "pending integer conventions"]
     fn leading_zeros(self) -> uint;
 
     /// Returns the number of trailing zeros in the binary representation
@@ -119,6 +126,7 @@ pub trait Int
     ///
     /// assert_eq!(n.trailing_zeros(), 3);
     /// ```
+    #[unstable = "pending integer conventions"]
     fn trailing_zeros(self) -> uint;
 
     /// Shifts the bits to the left by a specified amount amount, `n`, wrapping
@@ -134,6 +142,7 @@ pub trait Int
     ///
     /// assert_eq!(n.rotate_left(12), m);
     /// ```
+    #[unstable = "pending integer conventions"]
     fn rotate_left(self, n: uint) -> Self;
 
     /// Shifts the bits to the right by a specified amount amount, `n`, wrapping
@@ -149,6 +158,7 @@ pub trait Int
     ///
     /// assert_eq!(n.rotate_right(12), m);
     /// ```
+    #[unstable = "pending integer conventions"]
     fn rotate_right(self, n: uint) -> Self;
 
     /// Reverses the byte order of the integer.
@@ -163,6 +173,7 @@ pub trait Int
     ///
     /// assert_eq!(n.swap_bytes(), m);
     /// ```
+    #[stable]
     fn swap_bytes(self) -> Self;
 
     /// Convert an integer from big endian to the target's endianness.
@@ -182,6 +193,7 @@ pub trait Int
     ///     assert_eq!(Int::from_be(n), n.swap_bytes())
     /// }
     /// ```
+    #[stable]
     #[inline]
     fn from_be(x: Self) -> Self {
         if cfg!(target_endian = "big") { x } else { x.swap_bytes() }
@@ -204,6 +216,7 @@ pub trait Int
     ///     assert_eq!(Int::from_le(n), n.swap_bytes())
     /// }
     /// ```
+    #[stable]
     #[inline]
     fn from_le(x: Self) -> Self {
         if cfg!(target_endian = "little") { x } else { x.swap_bytes() }
@@ -226,6 +239,7 @@ pub trait Int
     ///     assert_eq!(n.to_be(), n.swap_bytes())
     /// }
     /// ```
+    #[stable]
     #[inline]
     fn to_be(self) -> Self { // or not to be?
         if cfg!(target_endian = "big") { self } else { self.swap_bytes() }
@@ -248,6 +262,7 @@ pub trait Int
     ///     assert_eq!(n.to_le(), n.swap_bytes())
     /// }
     /// ```
+    #[stable]
     #[inline]
     fn to_le(self) -> Self {
         if cfg!(target_endian = "little") { self } else { self.swap_bytes() }
@@ -264,6 +279,7 @@ pub trait Int
     /// assert_eq!(5u16.checked_add(65530), Some(65535));
     /// assert_eq!(6u16.checked_add(65530), None);
     /// ```
+    #[stable]
     fn checked_add(self, other: Self) -> Option<Self>;
 
     /// Checked integer subtraction. Computes `self - other`, returning `None`
@@ -277,6 +293,7 @@ pub trait Int
     /// assert_eq!((-127i8).checked_sub(1), Some(-128));
     /// assert_eq!((-128i8).checked_sub(1), None);
     /// ```
+    #[stable]
     fn checked_sub(self, other: Self) -> Option<Self>;
 
     /// Checked integer multiplication. Computes `self * other`, returning
@@ -290,6 +307,7 @@ pub trait Int
     /// assert_eq!(5u8.checked_mul(51), Some(255));
     /// assert_eq!(5u8.checked_mul(52), None);
     /// ```
+    #[stable]
     fn checked_mul(self, other: Self) -> Option<Self>;
 
     /// Checked integer division. Computes `self / other`, returning `None` if
@@ -304,11 +322,12 @@ pub trait Int
     /// assert_eq!((-128i8).checked_div(-1), None);
     /// assert_eq!((1i8).checked_div(0), None);
     /// ```
-    #[inline]
+    #[stable]
     fn checked_div(self, other: Self) -> Option<Self>;
 
     /// Saturating integer addition. Computes `self + other`, saturating at
     /// the numeric bounds instead of overflowing.
+    #[stable]
     #[inline]
     fn saturating_add(self, other: Self) -> Self {
         match self.checked_add(other) {
@@ -320,6 +339,7 @@ pub trait Int
 
     /// Saturating integer subtraction. Computes `self - other`, saturating at
     /// the numeric bounds instead of overflowing.
+    #[stable]
     #[inline]
     fn saturating_sub(self, other: Self) -> Self {
         match self.checked_sub(other) {
@@ -338,6 +358,7 @@ pub trait Int
     ///
     /// assert_eq!(2i.pow(4), 16);
     /// ```
+    #[unstable = "pending integer conventions"]
     #[inline]
     fn pow(self, mut exp: uint) -> Self {
         let mut base = self;
@@ -369,7 +390,7 @@ macro_rules! uint_impl {
      $add_with_overflow:path,
      $sub_with_overflow:path,
      $mul_with_overflow:path) => {
-        #[unstable = "trait is unstable"]
+        #[stable]
         impl Int for $T {
             #[inline]
             fn zero() -> $T { 0 }
@@ -500,7 +521,7 @@ macro_rules! int_impl {
      $add_with_overflow:path,
      $sub_with_overflow:path,
      $mul_with_overflow:path) => {
-        #[unstable = "trait is unstable"]
+        #[stable]
         impl Int for $T {
             #[inline]
             fn zero() -> $T { 0 }
@@ -593,13 +614,14 @@ int_impl! { int = i64, u64, 64,
     intrinsics::i64_mul_with_overflow }
 
 /// A built-in two's complement integer.
-#[unstable = "recently settled as part of numerics reform"]
+#[stable]
 pub trait SignedInt
     : Int
     + Neg<Output=Self>
 {
     /// Computes the absolute value of `self`. `Int::min_value()` will be
     /// returned if the number is `Int::min_value()`.
+    #[unstable = "overflow in debug builds?"]
     fn abs(self) -> Self;
 
     /// Returns a number representing sign of `self`.
@@ -607,19 +629,23 @@ pub trait SignedInt
     /// - `0` if the number is zero
     /// - `1` if the number is positive
     /// - `-1` if the number is negative
+    #[stable]
     fn signum(self) -> Self;
 
     /// Returns `true` if `self` is positive and `false` if the number
     /// is zero or negative.
+    #[stable]
     fn is_positive(self) -> bool;
 
     /// Returns `true` if `self` is negative and `false` if the number
     /// is zero or positive.
+    #[stable]
     fn is_negative(self) -> bool;
 }
 
 macro_rules! signed_int_impl {
     ($T:ty) => {
+        #[stable]
         impl SignedInt for $T {
             #[inline]
             fn abs(self) -> $T {
@@ -651,9 +677,10 @@ signed_int_impl! { i64 }
 signed_int_impl! { int }
 
 /// A built-in unsigned integer.
-#[unstable = "recently settled as part of numerics reform"]
+#[stable]
 pub trait UnsignedInt: Int {
     /// Returns `true` iff `self == 2^k` for some `k`.
+    #[stable]
     #[inline]
     fn is_power_of_two(self) -> bool {
         (self - Int::one()) & self == Int::zero() && !(self == Int::zero())
@@ -661,6 +688,7 @@ pub trait UnsignedInt: Int {
 
     /// Returns the smallest power of two greater than or equal to `self`.
     /// Unspecified behavior on overflow.
+    #[stable]
     #[inline]
     fn next_power_of_two(self) -> Self {
         let bits = size_of::<Self>() * 8;
@@ -671,6 +699,7 @@ pub trait UnsignedInt: Int {
     /// Returns the smallest power of two greater than or equal to `n`. If the
     /// next power of two is greater than the type's maximum value, `None` is
     /// returned, otherwise the power of two is wrapped in `Some`.
+    #[stable]
     fn checked_next_power_of_two(self) -> Option<Self> {
         let npot = self.next_power_of_two();
         if npot >= self {
@@ -681,19 +710,19 @@ pub trait UnsignedInt: Int {
     }
 }
 
-#[unstable = "trait is unstable"]
+#[stable]
 impl UnsignedInt for uint {}
 
-#[unstable = "trait is unstable"]
+#[stable]
 impl UnsignedInt for u8 {}
 
-#[unstable = "trait is unstable"]
+#[stable]
 impl UnsignedInt for u16 {}
 
-#[unstable = "trait is unstable"]
+#[stable]
 impl UnsignedInt for u32 {}
 
-#[unstable = "trait is unstable"]
+#[stable]
 impl UnsignedInt for u64 {}
 
 /// A generic trait for converting a value to a number.
@@ -910,12 +939,12 @@ impl_to_primitive_uint! { u32 }
 impl_to_primitive_uint! { u64 }
 
 macro_rules! impl_to_primitive_float_to_float {
-    ($SrcT:ty, $DstT:ty, $slf:expr) => (
+    ($SrcT:ident, $DstT:ident, $slf:expr) => (
         if size_of::<$SrcT>() <= size_of::<$DstT>() {
             Some($slf as $DstT)
         } else {
             let n = $slf as f64;
-            let max_value: $SrcT = Float::max_value();
+            let max_value: $SrcT = ::$SrcT::MAX_VALUE;
             if -max_value as f64 <= n && n <= max_value as f64 {
                 Some($slf as $DstT)
             } else {
@@ -926,7 +955,7 @@ macro_rules! impl_to_primitive_float_to_float {
 }
 
 macro_rules! impl_to_primitive_float {
-    ($T:ty) => (
+    ($T:ident) => (
         impl ToPrimitive for $T {
             #[inline]
             fn to_int(&self) -> Option<int> { Some(*self as int) }
@@ -1222,7 +1251,7 @@ pub enum FpCategory {
 //
 // FIXME(#8888): Several of these functions have a parameter named
 //               `unused_self`. Removing it requires #8888 to be fixed.
-#[unstable = "recently settled as part of numerics reform"]
+#[unstable = "distribution of methods between core/std is unclear"]
 pub trait Float
     : Copy + Clone
     + NumCast
@@ -1248,41 +1277,51 @@ pub trait Float
     /// Returns the `1` value.
     fn one() -> Self;
 
-    /// Returns true if this value is NaN and false otherwise.
-    fn is_nan(self) -> bool;
-    /// Returns true if this value is positive infinity or negative infinity and
-    /// false otherwise.
-    fn is_infinite(self) -> bool;
-    /// Returns true if this number is neither infinite nor NaN.
-    fn is_finite(self) -> bool;
-    /// Returns true if this number is neither zero, infinite, denormal, or NaN.
-    fn is_normal(self) -> bool;
-    /// Returns the category that this number falls into.
-    fn classify(self) -> FpCategory;
-
     // FIXME (#5527): These should be associated constants
 
     /// Returns the number of binary digits of mantissa that this type supports.
+    #[deprecated = "use `std::f32::MANTISSA_DIGITS` or `std::f64::MANTISSA_DIGITS` as appropriate"]
     fn mantissa_digits(unused_self: Option<Self>) -> uint;
     /// Returns the number of base-10 digits of precision that this type supports.
+    #[deprecated = "use `std::f32::DIGITS` or `std::f64::DIGITS` as appropriate"]
     fn digits(unused_self: Option<Self>) -> uint;
     /// Returns the difference between 1.0 and the smallest representable number larger than 1.0.
+    #[deprecated = "use `std::f32::EPSILON` or `std::f64::EPSILON` as appropriate"]
     fn epsilon() -> Self;
     /// Returns the minimum binary exponent that this type can represent.
+    #[deprecated = "use `std::f32::MIN_EXP` or `std::f64::MIN_EXP` as appropriate"]
     fn min_exp(unused_self: Option<Self>) -> int;
     /// Returns the maximum binary exponent that this type can represent.
+    #[deprecated = "use `std::f32::MAX_EXP` or `std::f64::MAX_EXP` as appropriate"]
     fn max_exp(unused_self: Option<Self>) -> int;
     /// Returns the minimum base-10 exponent that this type can represent.
+    #[deprecated = "use `std::f32::MIN_10_EXP` or `std::f64::MIN_10_EXP` as appropriate"]
     fn min_10_exp(unused_self: Option<Self>) -> int;
     /// Returns the maximum base-10 exponent that this type can represent.
+    #[deprecated = "use `std::f32::MAX_10_EXP` or `std::f64::MAX_10_EXP` as appropriate"]
     fn max_10_exp(unused_self: Option<Self>) -> int;
     /// Returns the smallest finite value that this type can represent.
+    #[deprecated = "use `std::f32::MIN_VALUE` or `std::f64::MIN_VALUE` as appropriate"]
     fn min_value() -> Self;
     /// Returns the smallest normalized positive number that this type can represent.
+    #[deprecated = "use `std::f32::MIN_POS_VALUE` or `std::f64::MIN_POS_VALUE` as appropriate"]
     fn min_pos_value(unused_self: Option<Self>) -> Self;
     /// Returns the largest finite value that this type can represent.
+    #[deprecated = "use `std::f32::MAX_VALUE` or `std::f64::MAX_VALUE` as appropriate"]
     fn max_value() -> Self;
 
+    /// Returns true if this value is NaN and false otherwise.
+    fn is_nan(self) -> bool;
+    /// Returns true if this value is positive infinity or negative infinity and
+    /// false otherwise.
+    fn is_infinite(self) -> bool;
+    /// Returns true if this number is neither infinite nor NaN.
+    fn is_finite(self) -> bool;
+    /// Returns true if this number is neither zero, infinite, denormal, or NaN.
+    fn is_normal(self) -> bool;
+    /// Returns the category that this number falls into.
+    fn classify(self) -> FpCategory;
+
     /// Returns the mantissa, exponent and sign as integers, respectively.
     fn integer_decode(self) -> (u64, i16, i8);
 
diff --git a/src/libstd/num/f32.rs b/src/libstd/num/f32.rs
index f2a0419e391..0a1c17fab47 100644
--- a/src/libstd/num/f32.rs
+++ b/src/libstd/num/f32.rs
@@ -19,12 +19,14 @@ use prelude::v1::*;
 
 use intrinsics;
 use libc::c_int;
-use num::{Float, FloatMath};
+use num::{Float, FpCategory};
 use num::strconv;
 use num::strconv::ExponentFormat::{ExpNone, ExpDec};
 use num::strconv::SignificantDigits::{DigAll, DigMax, DigExact};
 use num::strconv::SignFormat::SignNeg;
 
+use core::num;
+
 pub use core::f32::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON, MIN_VALUE};
 pub use core::f32::{MIN_POS_VALUE, MAX_VALUE, MIN_EXP, MAX_EXP, MIN_10_EXP};
 pub use core::f32::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY};
@@ -71,8 +73,120 @@ mod cmath {
     }
 }
 
-#[unstable = "trait is unstable"]
-impl FloatMath for f32 {
+#[stable]
+impl Float for f32 {
+    #[inline]
+    fn nan() -> f32 { num::Float::nan() }
+    #[inline]
+    fn infinity() -> f32 { num::Float::infinity() }
+    #[inline]
+    fn neg_infinity() -> f32 { num::Float::neg_infinity() }
+    #[inline]
+    fn zero() -> f32 { num::Float::zero() }
+    #[inline]
+    fn neg_zero() -> f32 { num::Float::neg_zero() }
+    #[inline]
+    fn one() -> f32 { num::Float::one() }
+
+    #[allow(deprecated)]
+    #[inline]
+    fn mantissa_digits(unused_self: Option<f32>) -> uint {
+        num::Float::mantissa_digits(unused_self)
+    }
+    #[allow(deprecated)]
+    #[inline]
+    fn digits(unused_self: Option<f32>) -> uint { num::Float::digits(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn epsilon() -> f32 { num::Float::epsilon() }
+    #[allow(deprecated)]
+    #[inline]
+    fn min_exp(unused_self: Option<f32>) -> int { num::Float::min_exp(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn max_exp(unused_self: Option<f32>) -> int { num::Float::max_exp(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn min_10_exp(unused_self: Option<f32>) -> int { num::Float::min_10_exp(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn max_10_exp(unused_self: Option<f32>) -> int { num::Float::max_10_exp(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn min_value() -> f32 { num::Float::min_value() }
+    #[allow(deprecated)]
+    #[inline]
+    fn min_pos_value(unused_self: Option<f32>) -> f32 { num::Float::min_pos_value(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn max_value() -> f32 { num::Float::max_value() }
+
+    #[inline]
+    fn is_nan(self) -> bool { num::Float::is_nan(self) }
+    #[inline]
+    fn is_infinite(self) -> bool { num::Float::is_infinite(self) }
+    #[inline]
+    fn is_finite(self) -> bool { num::Float::is_finite(self) }
+    #[inline]
+    fn is_normal(self) -> bool { num::Float::is_normal(self) }
+    #[inline]
+    fn classify(self) -> FpCategory { num::Float::classify(self) }
+
+    #[inline]
+    fn integer_decode(self) -> (u64, i16, i8) { num::Float::integer_decode(self) }
+
+    #[inline]
+    fn floor(self) -> f32 { num::Float::floor(self) }
+    #[inline]
+    fn ceil(self) -> f32 { num::Float::ceil(self) }
+    #[inline]
+    fn round(self) -> f32 { num::Float::round(self) }
+    #[inline]
+    fn trunc(self) -> f32 { num::Float::trunc(self) }
+    #[inline]
+    fn fract(self) -> f32 { num::Float::fract(self) }
+
+    #[inline]
+    fn abs(self) -> f32 { num::Float::abs(self) }
+    #[inline]
+    fn signum(self) -> f32 { num::Float::signum(self) }
+    #[inline]
+    fn is_positive(self) -> bool { num::Float::is_positive(self) }
+    #[inline]
+    fn is_negative(self) -> bool { num::Float::is_negative(self) }
+
+    #[inline]
+    fn mul_add(self, a: f32, b: f32) -> f32 { num::Float::mul_add(self, a, b) }
+    #[inline]
+    fn recip(self) -> f32 { num::Float::recip(self) }
+
+    #[inline]
+    fn powi(self, n: i32) -> f32 { num::Float::powi(self, n) }
+    #[inline]
+    fn powf(self, n: f32) -> f32 { num::Float::powf(self, n) }
+
+    #[inline]
+    fn sqrt(self) -> f32 { num::Float::sqrt(self) }
+    #[inline]
+    fn rsqrt(self) -> f32 { num::Float::rsqrt(self) }
+
+    #[inline]
+    fn exp(self) -> f32 { num::Float::exp(self) }
+    #[inline]
+    fn exp2(self) -> f32 { num::Float::exp(self) }
+    #[inline]
+    fn ln(self) -> f32 { num::Float::ln(self) }
+    #[inline]
+    fn log(self, base: f32) -> f32 { num::Float::log(self, base) }
+    #[inline]
+    fn log2(self) -> f32 { num::Float::log2(self) }
+    #[inline]
+    fn log10(self) -> f32 { num::Float::log10(self) }
+    #[inline]
+    fn to_degrees(self) -> f32 { num::Float::to_degrees(self) }
+    #[inline]
+    fn to_radians(self) -> f32 { num::Float::to_radians(self) }
+
     /// Constructs a floating point number by multiplying `x` by 2 raised to the
     /// power of `exp`
     #[inline]
@@ -639,18 +753,18 @@ mod tests {
         // are supported in floating-point literals
         let f1: f32 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
         let f2: f32 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
-        assert_eq!(FloatMath::ldexp(1f32, -123), f1);
-        assert_eq!(FloatMath::ldexp(1f32, -111), f2);
+        assert_eq!(Float::ldexp(1f32, -123), f1);
+        assert_eq!(Float::ldexp(1f32, -111), f2);
 
-        assert_eq!(FloatMath::ldexp(0f32, -123), 0f32);
-        assert_eq!(FloatMath::ldexp(-0f32, -123), -0f32);
+        assert_eq!(Float::ldexp(0f32, -123), 0f32);
+        assert_eq!(Float::ldexp(-0f32, -123), -0f32);
 
         let inf: f32 = Float::infinity();
         let neg_inf: f32 = Float::neg_infinity();
         let nan: f32 = Float::nan();
-        assert_eq!(FloatMath::ldexp(inf, -123), inf);
-        assert_eq!(FloatMath::ldexp(neg_inf, -123), neg_inf);
-        assert!(FloatMath::ldexp(nan, -123).is_nan());
+        assert_eq!(Float::ldexp(inf, -123), inf);
+        assert_eq!(Float::ldexp(neg_inf, -123), neg_inf);
+        assert!(Float::ldexp(nan, -123).is_nan());
     }
 
     #[test]
@@ -663,8 +777,8 @@ mod tests {
         let (x2, exp2) = f2.frexp();
         assert_eq!((x1, exp1), (0.5f32, -122));
         assert_eq!((x2, exp2), (0.5f32, -110));
-        assert_eq!(FloatMath::ldexp(x1, exp1), f1);
-        assert_eq!(FloatMath::ldexp(x2, exp2), f2);
+        assert_eq!(Float::ldexp(x1, exp1), f1);
+        assert_eq!(Float::ldexp(x2, exp2), f2);
 
         assert_eq!(0f32.frexp(), (0f32, 0));
         assert_eq!((-0f32).frexp(), (-0f32, 0));
diff --git a/src/libstd/num/f64.rs b/src/libstd/num/f64.rs
index 105a8a23bd1..2806154a016 100644
--- a/src/libstd/num/f64.rs
+++ b/src/libstd/num/f64.rs
@@ -18,12 +18,14 @@ use prelude::v1::*;
 
 use intrinsics;
 use libc::c_int;
-use num::{Float, FloatMath};
+use num::{Float, FpCategory};
 use num::strconv;
 use num::strconv::ExponentFormat::{ExpNone, ExpDec};
 use num::strconv::SignificantDigits::{DigAll, DigMax, DigExact};
 use num::strconv::SignFormat::SignNeg;
 
+use core::num;
+
 pub use core::f64::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON, MIN_VALUE};
 pub use core::f64::{MIN_POS_VALUE, MAX_VALUE, MIN_EXP, MAX_EXP, MIN_10_EXP};
 pub use core::f64::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY};
@@ -79,10 +81,123 @@ mod cmath {
     }
 }
 
-#[unstable = "trait is unstable"]
-impl FloatMath for f64 {
-    /// Constructs a floating point number by multiplying `x` by 2 raised to the
-    /// power of `exp`
+#[stable]
+impl Float for f64 {
+    // inlined methods from `num::Float`
+    #[inline]
+    fn nan() -> f64 { num::Float::nan() }
+    #[inline]
+    fn infinity() -> f64 { num::Float::infinity() }
+    #[inline]
+    fn neg_infinity() -> f64 { num::Float::neg_infinity() }
+    #[inline]
+    fn zero() -> f64 { num::Float::zero() }
+    #[inline]
+    fn neg_zero() -> f64 { num::Float::neg_zero() }
+    #[inline]
+    fn one() -> f64 { num::Float::one() }
+
+
+    #[allow(deprecated)]
+    #[inline]
+    fn mantissa_digits(unused_self: Option<f64>) -> uint {
+        num::Float::mantissa_digits(unused_self)
+    }
+    #[allow(deprecated)]
+    #[inline]
+    fn digits(unused_self: Option<f64>) -> uint { num::Float::digits(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn epsilon() -> f64 { num::Float::epsilon() }
+    #[allow(deprecated)]
+    #[inline]
+    fn min_exp(unused_self: Option<f64>) -> int { num::Float::min_exp(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn max_exp(unused_self: Option<f64>) -> int { num::Float::max_exp(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn min_10_exp(unused_self: Option<f64>) -> int { num::Float::min_10_exp(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn max_10_exp(unused_self: Option<f64>) -> int { num::Float::max_10_exp(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn min_value() -> f64 { num::Float::min_value() }
+    #[allow(deprecated)]
+    #[inline]
+    fn min_pos_value(unused_self: Option<f64>) -> f64 { num::Float::min_pos_value(unused_self) }
+    #[allow(deprecated)]
+    #[inline]
+    fn max_value() -> f64 { num::Float::max_value() }
+
+    #[inline]
+    fn is_nan(self) -> bool { num::Float::is_nan(self) }
+    #[inline]
+    fn is_infinite(self) -> bool { num::Float::is_infinite(self) }
+    #[inline]
+    fn is_finite(self) -> bool { num::Float::is_finite(self) }
+    #[inline]
+    fn is_normal(self) -> bool { num::Float::is_normal(self) }
+    #[inline]
+    fn classify(self) -> FpCategory { num::Float::classify(self) }
+
+    #[inline]
+    fn integer_decode(self) -> (u64, i16, i8) { num::Float::integer_decode(self) }
+
+    #[inline]
+    fn floor(self) -> f64 { num::Float::floor(self) }
+    #[inline]
+    fn ceil(self) -> f64 { num::Float::ceil(self) }
+    #[inline]
+    fn round(self) -> f64 { num::Float::round(self) }
+    #[inline]
+    fn trunc(self) -> f64 { num::Float::trunc(self) }
+    #[inline]
+    fn fract(self) -> f64 { num::Float::fract(self) }
+
+    #[inline]
+    fn abs(self) -> f64 { num::Float::abs(self) }
+    #[inline]
+    fn signum(self) -> f64 { num::Float::signum(self) }
+    #[inline]
+    fn is_positive(self) -> bool { num::Float::is_positive(self) }
+    #[inline]
+    fn is_negative(self) -> bool { num::Float::is_negative(self) }
+
+    #[inline]
+    fn mul_add(self, a: f64, b: f64) -> f64 { num::Float::mul_add(self, a, b) }
+    #[inline]
+    fn recip(self) -> f64 { num::Float::recip(self) }
+
+    #[inline]
+    fn powi(self, n: i32) -> f64 { num::Float::powi(self, n) }
+    #[inline]
+    fn powf(self, n: f64) -> f64 { num::Float::powf(self, n) }
+
+    #[inline]
+    fn sqrt(self) -> f64 { num::Float::sqrt(self) }
+    #[inline]
+    fn rsqrt(self) -> f64 { num::Float::rsqrt(self) }
+
+    #[inline]
+    fn exp(self) -> f64 { num::Float::exp(self) }
+    #[inline]
+    fn exp2(self) -> f64 { num::Float::exp(self) }
+    #[inline]
+    fn ln(self) -> f64 { num::Float::ln(self) }
+    #[inline]
+    fn log(self, base: f64) -> f64 { num::Float::log(self, base) }
+    #[inline]
+    fn log2(self) -> f64 { num::Float::log2(self) }
+    #[inline]
+    fn log10(self) -> f64 { num::Float::log10(self) }
+
+    #[inline]
+    fn to_degrees(self) -> f64 { num::Float::to_degrees(self) }
+    #[inline]
+    fn to_radians(self) -> f64 { num::Float::to_radians(self) }
+
     #[inline]
     fn ldexp(x: f64, exp: int) -> f64 {
         unsafe { cmath::ldexp(x, exp as c_int) }
@@ -640,18 +755,18 @@ mod tests {
         // are supported in floating-point literals
         let f1: f64 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
         let f2: f64 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
-        assert_eq!(FloatMath::ldexp(1f64, -123), f1);
-        assert_eq!(FloatMath::ldexp(1f64, -111), f2);
+        assert_eq!(Float::ldexp(1f64, -123), f1);
+        assert_eq!(Float::ldexp(1f64, -111), f2);
 
-        assert_eq!(FloatMath::ldexp(0f64, -123), 0f64);
-        assert_eq!(FloatMath::ldexp(-0f64, -123), -0f64);
+        assert_eq!(Float::ldexp(0f64, -123), 0f64);
+        assert_eq!(Float::ldexp(-0f64, -123), -0f64);
 
         let inf: f64 = Float::infinity();
         let neg_inf: f64 = Float::neg_infinity();
         let nan: f64 = Float::nan();
-        assert_eq!(FloatMath::ldexp(inf, -123), inf);
-        assert_eq!(FloatMath::ldexp(neg_inf, -123), neg_inf);
-        assert!(FloatMath::ldexp(nan, -123).is_nan());
+        assert_eq!(Float::ldexp(inf, -123), inf);
+        assert_eq!(Float::ldexp(neg_inf, -123), neg_inf);
+        assert!(Float::ldexp(nan, -123).is_nan());
     }
 
     #[test]
@@ -664,8 +779,8 @@ mod tests {
         let (x2, exp2) = f2.frexp();
         assert_eq!((x1, exp1), (0.5f64, -122));
         assert_eq!((x2, exp2), (0.5f64, -110));
-        assert_eq!(FloatMath::ldexp(x1, exp1), f1);
-        assert_eq!(FloatMath::ldexp(x2, exp2), f2);
+        assert_eq!(Float::ldexp(x1, exp1), f1);
+        assert_eq!(Float::ldexp(x2, exp2), f2);
 
         assert_eq!(0f64.frexp(), (0f64, 0));
         assert_eq!((-0f64).frexp(), (-0f64, 0));
diff --git a/src/libstd/num/mod.rs b/src/libstd/num/mod.rs
index c126eb1d6cf..e3402984ae5 100644
--- a/src/libstd/num/mod.rs
+++ b/src/libstd/num/mod.rs
@@ -16,10 +16,12 @@
 #![stable]
 #![allow(missing_docs)]
 
-#[cfg(test)] use cmp::PartialEq;
 #[cfg(test)] use fmt::Show;
-#[cfg(test)] use ops::{Add, Sub, Mul, Div, Rem};
-#[cfg(test)] use kinds::Copy;
+use ops::{Add, Sub, Mul, Div, Rem, Neg};
+
+use kinds::Copy;
+use clone::Clone;
+use cmp::{PartialOrd, PartialEq};
 
 pub use core::num::{Int, SignedInt, UnsignedInt};
 pub use core::num::{cast, FromPrimitive, NumCast, ToPrimitive};
@@ -27,16 +29,195 @@ pub use core::num::{from_int, from_i8, from_i16, from_i32, from_i64};
 pub use core::num::{from_uint, from_u8, from_u16, from_u32, from_u64};
 pub use core::num::{from_f32, from_f64};
 pub use core::num::{FromStrRadix, from_str_radix};
-pub use core::num::{FpCategory, Float};
+pub use core::num::{FpCategory};
+
+use option::Option;
 
 #[experimental = "may be removed or relocated"]
 pub mod strconv;
 
 /// Mathematical operations on primitive floating point numbers.
-#[unstable = "may be altered to inline the Float trait"]
-pub trait FloatMath: Float {
+#[stable]
+pub trait Float
+    : Copy + Clone
+    + NumCast
+    + PartialOrd
+    + PartialEq
+    + Neg<Output=Self>
+    + Add<Output=Self>
+    + Sub<Output=Self>
+    + Mul<Output=Self>
+    + Div<Output=Self>
+    + Rem<Output=Self>
+{
+    // inlined methods from `num::Float`
+    /// Returns the NaN value.
+    #[unstable = "unsure about its place in the world"]
+    fn nan() -> Self;
+    /// Returns the infinite value.
+    #[unstable = "unsure about its place in the world"]
+    fn infinity() -> Self;
+    /// Returns the negative infinite value.
+    #[unstable = "unsure about its place in the world"]
+    fn neg_infinity() -> Self;
+    /// Returns the `0` value.
+    #[unstable = "unsure about its place in the world"]
+    fn zero() -> Self;
+    /// Returns -0.0.
+    #[unstable = "unsure about its place in the world"]
+    fn neg_zero() -> Self;
+    /// Returns the `1` value.
+    #[unstable = "unsure about its place in the world"]
+    fn one() -> Self;
+
+    // FIXME (#5527): These should be associated constants
+
+    /// Returns the number of binary digits of mantissa that this type supports.
+    #[deprecated = "use `std::f32::MANTISSA_DIGITS` or `std::f64::MANTISSA_DIGITS` as appropriate"]
+    fn mantissa_digits(unused_self: Option<Self>) -> uint;
+    /// Returns the number of base-10 digits of precision that this type supports.
+    #[deprecated = "use `std::f32::DIGITS` or `std::f64::DIGITS` as appropriate"]
+    fn digits(unused_self: Option<Self>) -> uint;
+    /// Returns the difference between 1.0 and the smallest representable number larger than 1.0.
+    #[deprecated = "use `std::f32::EPSILON` or `std::f64::EPSILON` as appropriate"]
+    fn epsilon() -> Self;
+    /// Returns the minimum binary exponent that this type can represent.
+    #[deprecated = "use `std::f32::MIN_EXP` or `std::f64::MIN_EXP` as appropriate"]
+    fn min_exp(unused_self: Option<Self>) -> int;
+    /// Returns the maximum binary exponent that this type can represent.
+    #[deprecated = "use `std::f32::MAX_EXP` or `std::f64::MAX_EXP` as appropriate"]
+    fn max_exp(unused_self: Option<Self>) -> int;
+    /// Returns the minimum base-10 exponent that this type can represent.
+    #[deprecated = "use `std::f32::MIN_10_EXP` or `std::f64::MIN_10_EXP` as appropriate"]
+    fn min_10_exp(unused_self: Option<Self>) -> int;
+    /// Returns the maximum base-10 exponent that this type can represent.
+    #[deprecated = "use `std::f32::MAX_10_EXP` or `std::f64::MAX_10_EXP` as appropriate"]
+    fn max_10_exp(unused_self: Option<Self>) -> int;
+
+    /// Returns the smallest finite value that this type can represent.
+    #[unstable = "unsure about its place in the world"]
+    fn min_value() -> Self;
+    /// Returns the smallest normalized positive number that this type can represent.
+    #[unstable = "unsure about its place in the world"]
+    fn min_pos_value(unused_self: Option<Self>) -> Self;
+    /// Returns the largest finite value that this type can represent.
+    #[unstable = "unsure about its place in the world"]
+    fn max_value() -> Self;
+
+    /// Returns true if this value is NaN and false otherwise.
+    #[unstable = "position is undecided"]
+    fn is_nan(self) -> bool;
+    /// Returns true if this value is positive infinity or negative infinity and
+    /// false otherwise.
+    #[unstable = "position is undecided"]
+    fn is_infinite(self) -> bool;
+    /// Returns true if this number is neither infinite nor NaN.
+    #[unstable = "position is undecided"]
+    fn is_finite(self) -> bool;
+    /// Returns true if this number is neither zero, infinite, denormal, or NaN.
+    #[unstable = "position is undecided"]
+    fn is_normal(self) -> bool;
+    /// Returns the category that this number falls into.
+    #[stable]
+    fn classify(self) -> FpCategory;
+
+    /// Returns the mantissa, exponent and sign as integers, respectively.
+    #[unstable = "signature is undecided"]
+    fn integer_decode(self) -> (u64, i16, i8);
+
+    /// Return the largest integer less than or equal to a number.
+    #[stable]
+    fn floor(self) -> Self;
+    /// Return the smallest integer greater than or equal to a number.
+    #[stable]
+    fn ceil(self) -> Self;
+    /// Return the nearest integer to a number. Round half-way cases away from
+    /// `0.0`.
+    #[stable]
+    fn round(self) -> Self;
+    /// Return the integer part of a number.
+    #[stable]
+    fn trunc(self) -> Self;
+    /// Return the fractional part of a number.
+    #[stable]
+    fn fract(self) -> Self;
+
+    /// Computes the absolute value of `self`. Returns `Float::nan()` if the
+    /// number is `Float::nan()`.
+    #[stable]
+    fn abs(self) -> Self;
+    /// Returns a number that represents the sign of `self`.
+    ///
+    /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
+    /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
+    /// - `Float::nan()` if the number is `Float::nan()`
+    #[stable]
+    fn signum(self) -> Self;
+    /// Returns `true` if `self` is positive, including `+0.0` and
+    /// `Float::infinity()`.
+    #[stable]
+    fn is_positive(self) -> bool;
+    /// Returns `true` if `self` is negative, including `-0.0` and
+    /// `Float::neg_infinity()`.
+    #[stable]
+    fn is_negative(self) -> bool;
+
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error. This produces a more accurate result with better performance than
+    /// a separate multiplication operation followed by an add.
+    #[unstable = "unsure about its place in the world"]
+    fn mul_add(self, a: Self, b: Self) -> Self;
+    /// Take the reciprocal (inverse) of a number, `1/x`.
+    #[unstable = "unsure about its place in the world"]
+    fn recip(self) -> Self;
+
+    /// Raise a number to an integer power.
+    ///
+    /// Using this function is generally faster than using `powf`
+    #[stable]
+    fn powi(self, n: i32) -> Self;
+    /// Raise a number to a floating point power.
+    #[stable]
+    fn powf(self, n: Self) -> Self;
+
+    /// Take the square root of a number.
+    ///
+    /// Returns NaN if `self` is a negative number.
+    #[stable]
+    fn sqrt(self) -> Self;
+    /// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
+    #[unstable = "unsure about its place in the world"]
+    fn rsqrt(self) -> Self;
+
+    /// Returns `e^(self)`, (the exponential function).
+    #[stable]
+    fn exp(self) -> Self;
+    /// Returns 2 raised to the power of the number, `2^(self)`.
+    #[stable]
+    fn exp2(self) -> Self;
+    /// Returns the natural logarithm of the number.
+    #[stable]
+    fn ln(self) -> Self;
+    /// Returns the logarithm of the number with respect to an arbitrary base.
+    #[stable]
+    fn log(self, base: Self) -> Self;
+    /// Returns the base 2 logarithm of the number.
+    #[stable]
+    fn log2(self) -> Self;
+    /// Returns the base 10 logarithm of the number.
+    #[stable]
+    fn log10(self) -> Self;
+
+    /// Convert radians to degrees.
+    #[unstable = "desirability is unclear"]
+    fn to_degrees(self) -> Self;
+    /// Convert degrees to radians.
+    #[unstable = "desirability is unclear"]
+    fn to_radians(self) -> Self;
+
     /// Constructs a floating point number created by multiplying `x` by 2
     /// raised to the power of `exp`.
+    #[unstable = "pending integer conventions"]
     fn ldexp(x: Self, exp: int) -> Self;
     /// Breaks the number into a normalized fraction and a base-2 exponent,
     /// satisfying:
@@ -44,76 +225,97 @@ pub trait FloatMath: Float {
     ///  * `self = x * pow(2, exp)`
     ///
     ///  * `0.5 <= abs(x) < 1.0`
+    #[unstable = "pending integer conventions"]
     fn frexp(self) -> (Self, int);
 
     /// Returns the next representable floating-point value in the direction of
     /// `other`.
+    #[unstable = "unsure about its place in the world"]
     fn next_after(self, other: Self) -> Self;
 
     /// Returns the maximum of the two numbers.
+    #[stable]
     fn max(self, other: Self) -> Self;
     /// Returns the minimum of the two numbers.
+    #[stable]
     fn min(self, other: Self) -> Self;
 
     /// The positive difference of two numbers. Returns `0.0` if the number is
     /// less than or equal to `other`, otherwise the difference between`self`
     /// and `other` is returned.
+    #[unstable = "may be renamed"]
     fn abs_sub(self, other: Self) -> Self;
 
     /// Take the cubic root of a number.
+    #[unstable = "may be renamed"]
     fn cbrt(self) -> Self;
     /// Calculate the length of the hypotenuse of a right-angle triangle given
     /// legs of length `x` and `y`.
+    #[unstable = "unsure about its place in the world"]
     fn hypot(self, other: Self) -> Self;
 
     /// Computes the sine of a number (in radians).
+    #[stable]
     fn sin(self) -> Self;
     /// Computes the cosine of a number (in radians).
+    #[stable]
     fn cos(self) -> Self;
     /// Computes the tangent of a number (in radians).
+    #[stable]
     fn tan(self) -> Self;
 
     /// Computes the arcsine of a number. Return value is in radians in
     /// the range [-pi/2, pi/2] or NaN if the number is outside the range
     /// [-1, 1].
+    #[stable]
     fn asin(self) -> Self;
     /// Computes the arccosine of a number. Return value is in radians in
     /// the range [0, pi] or NaN if the number is outside the range
     /// [-1, 1].
+    #[stable]
     fn acos(self) -> Self;
     /// Computes the arctangent of a number. Return value is in radians in the
     /// range [-pi/2, pi/2];
+    #[stable]
     fn atan(self) -> Self;
     /// Computes the four quadrant arctangent of a number, `y`, and another
     /// number `x`. Return value is in radians in the range [-pi, pi].
+    #[stable]
     fn atan2(self, other: Self) -> Self;
     /// Simultaneously computes the sine and cosine of the number, `x`. Returns
     /// `(sin(x), cos(x))`.
+    #[stable]
     fn sin_cos(self) -> (Self, Self);
 
     /// Returns the exponential of the number, minus 1, in a way that is
     /// accurate even if the number is close to zero.
+    #[unstable = "may be renamed"]
     fn exp_m1(self) -> Self;
     /// Returns the natural logarithm of the number plus 1 (`ln(1+n)`) more
     /// accurately than if the operations were performed separately.
+    #[unstable = "may be renamed"]
     fn ln_1p(self) -> Self;
 
     /// Hyperbolic sine function.
+    #[stable]
     fn sinh(self) -> Self;
     /// Hyperbolic cosine function.
+    #[stable]
     fn cosh(self) -> Self;
     /// Hyperbolic tangent function.
+    #[stable]
     fn tanh(self) -> Self;
     /// Inverse hyperbolic sine function.
+    #[stable]
     fn asinh(self) -> Self;
     /// Inverse hyperbolic cosine function.
+    #[stable]
     fn acosh(self) -> Self;
     /// Inverse hyperbolic tangent function.
+    #[stable]
     fn atanh(self) -> Self;
 }
 
-// DEPRECATED
-
 /// Helper function for testing numeric operations
 #[cfg(test)]
 pub fn test_num<T>(ten: T, two: T) where
diff --git a/src/libstd/num/uint_macros.rs b/src/libstd/num/uint_macros.rs
index 08ea1b024c9..4ce15491a0e 100644
--- a/src/libstd/num/uint_macros.rs
+++ b/src/libstd/num/uint_macros.rs
@@ -14,8 +14,6 @@
 
 macro_rules! uint_module { ($T:ty) => (
 
-// String conversion functions and impl num -> str
-
 #[cfg(test)]
 mod tests {
     use prelude::v1::*;
diff --git a/src/libtest/lib.rs b/src/libtest/lib.rs
index 0419d85d391..c417fd94e22 100644
--- a/src/libtest/lib.rs
+++ b/src/libtest/lib.rs
@@ -69,7 +69,7 @@ use std::io::stdio::StdWriter;
 use std::io::{File, ChanReader, ChanWriter};
 use std::io;
 use std::iter::repeat;
-use std::num::{Float, FloatMath, Int};
+use std::num::{Float, Int};
 use std::os;
 use std::str::FromStr;
 use std::sync::mpsc::{channel, Sender};
diff --git a/src/libtest/stats.rs b/src/libtest/stats.rs
index 8daabf61010..bdc05a50301 100644
--- a/src/libtest/stats.rs
+++ b/src/libtest/stats.rs
@@ -17,7 +17,7 @@ use std::fmt::Show;
 use std::hash::Hash;
 use std::io;
 use std::mem;
-use std::num::{Float, FloatMath, FromPrimitive};
+use std::num::{Float, FromPrimitive};
 
 fn local_cmp<T:Float>(x: T, y: T) -> Ordering {
     // arbitrarily decide that NaNs are larger than everything.
@@ -39,7 +39,7 @@ fn local_sort<T: Float>(v: &mut [T]) {
 }
 
 /// Trait that provides simple descriptive statistics on a univariate set of numeric samples.
-pub trait Stats <T: FloatMath + FromPrimitive> {
+pub trait Stats <T: Float + FromPrimitive> {
 
     /// Sum of the samples.
     ///
@@ -144,7 +144,7 @@ pub struct Summary<T> {
     pub iqr: T,
 }
 
-impl<T: FloatMath + FromPrimitive> Summary<T> {
+impl<T: Float + FromPrimitive> Summary<T> {
     /// Construct a new summary of a sample set.
     pub fn new(samples: &[T]) -> Summary<T> {
         Summary {
@@ -164,7 +164,7 @@ impl<T: FloatMath + FromPrimitive> Summary<T> {
     }
 }
 
-impl<T: FloatMath + FromPrimitive> Stats<T> for [T] {
+impl<T: Float + FromPrimitive> Stats<T> for [T] {
     // FIXME #11059 handle NaN, inf and overflow
     fn sum(&self) -> T {
         let mut partials = vec![];
diff --git a/src/test/bench/noise.rs b/src/test/bench/noise.rs
index 75cf864ce49..3c7efb0336a 100644
--- a/src/test/bench/noise.rs
+++ b/src/test/bench/noise.rs
@@ -13,7 +13,7 @@
 // ignore-lexer-test FIXME #15679
 
 use std::f32::consts::PI;
-use std::num::{Float, FloatMath};
+use std::num::Float;
 use std::rand::{Rng, StdRng};
 
 struct Vec2 {