| Age | Commit message (Collapse) | Author | Lines | 
|---|
|  | As discovered by Mara in #110897, our TLS implementation is a total mess. In the past months, I have simplified the actual macros and their expansions, but the majority of the complexity comes from the platform-specific support code needed to create keys and register destructors. In keeping with #117276, I have therefore moved all of the `thread_local_key`/`thread_local_dtor` modules to the `thread_local` module in `sys` and merged them into a new structure, so that future porters of `std` can simply mix-and-match the existing code instead of having to copy the same (bad) implementation everywhere. The new structure should become obvious when looking at `sys/thread_local/mod.rs`.
Unfortunately, the documentation changes associated with the refactoring have made this PR rather large. That said, this contains no functional changes except for two small ones:
* the key-based destructor fallback now, by virtue of sharing the implementation used by macOS and others, stores its list in a `#[thread_local]` static instead of in the key, eliminating one indirection layer and drastically simplifying its code.
* I've switched over ZKVM (tier 3) to use the same implementation as WebAssembly, as the implementation was just a way worse version of that
Please let me know if I can make this easier to review! I know these large PRs aren't optimal, but I couldn't think of any good intermediate steps.
@rustbot label +A-thread-locals | 
|  |  | 
|  | SeqCst is unnecessary here. | 
|  |  | 
|  | Co-authored-by: gh-tr <troach@qnx.com> | 
|  | There are OSs that always return the lowest free value.
The algorithm in `lazy_init` always avoids keys with the
sentinel value.
In affected OSs, this means that each call to `lazy_init`
will always request two keys from the OS and returns/frees
the first one (with sentinel value) immediately afterwards.
By making the sentinel value configurable, affected OSs can
use a different value than zero to prevent this performance
issue. | 
|  |  | 
|  |  | 
|  | The oldest occurence is from 9e224c2bf18ebf8f871efb2e1aba43ed7970ebb7,
which is from the pre-1.0 days. In the years since then, std::sys still
hasn't been exported, and the last attempt was met with strong criticism:
https://github.com/rust-lang/rust/pull/97151
Thus, removing the "yet" part makes a lot of sense. | 
|  |  | 
|  | The (unsafe) Mutex from sys_common had a rather complicated interface.
You were supposed to call init() manually, unless you could guarantee it
was neither moved nor used reentrantly.
Calling `destroy()` was also optional, although it was unclear if 1)
resources might be leaked or not, and 2) if destroy() should only be
called when `init()` was called.
This allowed for a number of interesting (confusing?) different ways to
use this Mutex, all captured in a single type.
In practice, this type was only ever used in two ways:
1. As a static variable. In this case, neither init() nor destroy() are
   called. The variable is never moved, and it is never used
   reentrantly. It is only ever locked using the LockGuard, never with
   raw_lock.
2. As a Boxed variable. In this case, both init() and destroy() are
   called, it will be moved and possibly used reentrantly.
No other combinations are used anywhere in `std`.
This change simplifies things by splitting this Mutex type into
two types matching the two use cases: StaticMutex and MovableMutex.
The interface of both new types is now both safer and simpler. The first
one does not call nor expose init/destroy, and the second one calls
those automatically in its new() and Drop functions. Also, the locking
functions of MovableMutex are no longer unsafe. | 
|  | This may not be strictly minimal, but all unstable functions also need a
`rustc_const_unstable` attribute. | 
|  | Also doing fmt inplace as requested. | 
|  |  |