| Age | Commit message (Collapse) | Author | Lines |
|
|
|
Add `RawFd` to WASI's `std::os::wasi::prelude`.
Add `RawFd` to WASI's `std::os::wasi::prelude`, making it consistent
with all other platforms which also have `AsRawFd`, `FromRawFd`, and
`IntoRawFd` in their respective preludes.
|
|
Rename the existing read_at/write_at to read_vectored_at/write_vectored_at,
for consistency with libstd's read_vectored/write_vectored. And,
introduce new read_at/write_at functions which take a single buffer,
similar to all other targets which provide these functions, so this will
make it easier for applications to share code between WASI and other
targets.
Note that WASI's FileExt is currently unstable.
|
|
This adds `read_exact_at` and `write_all_at` to WASI's `FileExt`,
similar to the Unix versions of the same names.
|
|
Add `RawFd` to WASI's `std::os::wasi::prelude`, making it consistent
with all other platforms which also have `AsRawFd`, `FromRawFd`, and
`IntoRawFd` in their respective preludes.
|
|
|
|
|
|
This commit updates the `wasi` crate used by the standard library which
is used to implement most of the functionality of libstd on the
`wasm32-wasi` target. This update comes with a brand new crate structure
in the `wasi` crate which caused quite a few changes for the wasi target
here, but it also comes with a significant change to where the
functionality is coming from.
The WASI specification is organized into "snapshots" and a new snapshot
happened recently, so the WASI APIs themselves have changed since the
previous revision. This had only minor impact on the public facing
surface area of libstd, only changing on `u32` to a `u64` in an unstable
API. The actual source for all of these types and such, however, is now
coming from the `wasi_preview_snapshot1` module instead of the
`wasi_unstable` module like before. This means that any implementors
generating binaries will need to ensure that their embedding environment
handles the `wasi_preview_snapshot1` module.
|
|
This commit applies rustfmt with rust-lang/rust's default settings to
files in src/libstd/sys *that are not involved in any currently open PR*
to minimize merge conflicts. THe list of files involved in open PRs was
determined by querying GitHub's GraphQL API with this script:
https://gist.github.com/dtolnay/aa9c34993dc051a4f344d1b10e4487e8
With the list of files from the script in outstanding_files, the
relevant commands were:
$ find src/libstd/sys -name '*.rs' \
| xargs rustfmt --edition=2018 --unstable-features --skip-children
$ rg libstd/sys outstanding_files | xargs git checkout --
Repeating this process several months apart should get us coverage of
most of the rest of the files.
To confirm no funny business:
$ git checkout $THIS_COMMIT^
$ git show --pretty= --name-only $THIS_COMMIT \
| xargs rustfmt --edition=2018 --unstable-features --skip-children
$ git diff $THIS_COMMIT # there should be no difference
|
|
|
|
|
|
This renames `std::io::IoVec` to `std::io::IoSlice` and
`std::io::IoVecMut` to `std::io::IoSliceMut`, and stabilizes
`std::io::IoSlice`, `std::io::IoSliceMut`,
`std::io::Read::read_vectored`, and `std::io::Write::write_vectored`.
Closes #58452
|
|
|
|
This commit fills out the `std::fs` module and implementation for WASI.
Not all APIs are implemented, such as permissions-related ones and
`canonicalize`, but all others APIs have been implemented and very
lightly tested so far. We'll eventually want to run a more exhaustive
test suite!
For now the highlights of this commit are:
* The `std::fs::File` type is now backed by `WasiFd`, a raw WASI file
descriptor.
* All APIs in `std::fs` (except permissions/canonicalize) have
implementations for the WASI target.
* A suite of unstable extension traits were added to
`std::os::wasi::fs`. These traits expose the raw filesystem
functionality of WASI, namely `*at` syscalls (opening a file relative
to an already opened one, for example). Additionally metadata only
available on wasi is exposed through these traits.
Perhaps one of the most notable parts is the implementation of
path-taking APIs. WASI actually has no fundamental API that just takes a
path, but rather everything is relative to a previously opened file
descriptor. To allow existing APIs to work (that only take a path) WASI
has a few syscalls to learn about "pre opened" file descriptors by the
runtime. We use these to build a map of existing directory names to file
descriptors, and then when using a path we try to anchor it at an
already-opened file.
This support is very rudimentary though and is intended to be shared
with C since it's likely to be so tricky. For now though the C library
doesn't expose quite an API for us to use, so we implement it for now
and will swap it out as soon as one is available.
|
|
This commit adds a new wasm32-based target distributed through rustup,
supported in the standard library, and implemented in the compiler. The
`wasm32-unknown-wasi` target is intended to be a WebAssembly target
which matches the [WASI proposal recently announced.][LINK]. In summary
the WASI target is an effort to define a standard set of syscalls for
WebAssembly modules, allowing WebAssembly modules to not only be
portable across architectures but also be portable across environments
implementing this standard set of system calls.
The wasi target in libstd is still somewhat bare bones. This PR does not
fill out the filesystem, networking, threads, etc. Instead it only
provides the most basic of integration with the wasi syscalls, enabling
features like:
* `Instant::now` and `SystemTime::now` work
* `env::args` is hooked up
* `env::vars` will look up environment variables
* `println!` will print to standard out
* `process::{exit, abort}` should be hooked up appropriately
None of these APIs can work natively on the `wasm32-unknown-unknown`
target, but with the assumption of the WASI set of syscalls we're able
to provide implementations of these syscalls that engines can implement.
Currently the primary engine implementing wasi is [wasmtime], but more
will surely emerge!
In terms of future development of libstd, I think this is something
we'll probably want to discuss. The purpose of the WASI target is to
provide a standardized set of syscalls, but it's *also* to provide a
standard C sysroot for compiling C/C++ programs. This means it's
intended that functions like `read` and `write` are implemented for this
target with a relatively standard definition and implementation. It's
unclear, therefore, how we want to expose file descriptors and how we'll
want to implement system primitives. For example should `std::fs::File`
have a libc-based file descriptor underneath it? The raw wasi file
descriptor? We'll see! Currently these details are all intentionally
hidden and things we can change over time.
A `WasiFd` sample struct was added to the standard library as part of
this commit, but it's not currently used. It shows how all the wasi
syscalls could be ergonomically bound in Rust, and they offer a possible
implementation of primitives like `std::fs::File` if we bind wasi file
descriptors exactly.
Apart from the standard library, there's also the matter of how this
target is integrated with respect to its C standard library. The
reference sysroot, for example, provides managment of standard unix file
descriptors and also standard APIs like `open` (as opposed to the
relative `openat` inspiration for the wasi ssycalls). Currently the
standard library relies on the C sysroot symbols for operations such as
environment management, process exit, and `read`/`write` of stdio fds.
We want these operations in Rust to be interoperable with C if they're
used in the same process. Put another way, if Rust and C are linked into
the same WebAssembly binary they should work together, but that requires
that the same C standard library is used.
We also, however, want the `wasm32-unknown-wasi` target to be
usable-by-default with the Rust compiler without requiring a separate
toolchain to get downloaded and configured. With that in mind, there's
two modes of operation for the `wasm32-unknown-wasi` target:
1. By default the C standard library is statically provided inside of
`liblibc.rlib` distributed as part of the sysroot. This means that
you can `rustc foo.wasm --target wasm32-unknown-unknown` and you're
good to go, a fully workable wasi binary pops out. This is
incompatible with linking in C code, however, which may be compiled
against a different sysroot than the Rust code was previously
compiled against. In this mode the default of `rust-lld` is used to
link binaries.
2. For linking with C code, the `-C target-feature=-crt-static` flag
needs to be passed. This takes inspiration from the musl target for
this flag, but the idea is that you're no longer using the provided
static C runtime, but rather one will be provided externally. This
flag is intended to also get coupled with an external `clang`
compiler configured with its own sysroot. Therefore you'll typically
use this flag with `-C linker=/path/to/clang-script-wrapper`. Using
this mode the Rust code will continue to reference standard C
symbols, but the definition will be pulled in by the linker configured.
Alright so that's all the current state of this PR. I suspect we'll
definitely want to discuss this before landing of course! This PR is
coupled with libc changes as well which I'll be posting shortly.
[LINK]:
[wasmtime]:
|