1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
use crate::consts::constant_simple;
use crate::utils::span_lint;
use rustc_hir as hir;
use rustc_lint::{LateContext, LateLintPass};
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::source_map::Span;
declare_clippy_lint! {
/// **What it does:** Checks for plain integer arithmetic.
///
/// **Why is this bad?** This is only checked against overflow in debug builds.
/// In some applications one wants explicitly checked, wrapping or saturating
/// arithmetic.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// # let a = 0;
/// a + 1;
/// ```
pub INTEGER_ARITHMETIC,
restriction,
"any integer arithmetic statement"
}
declare_clippy_lint! {
/// **What it does:** Checks for float arithmetic.
///
/// **Why is this bad?** For some embedded systems or kernel development, it
/// can be useful to rule out floating-point numbers.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// # let a = 0.0;
/// a + 1.0;
/// ```
pub FLOAT_ARITHMETIC,
restriction,
"any floating-point arithmetic statement"
}
#[derive(Copy, Clone, Default)]
pub struct Arithmetic {
expr_span: Option<Span>,
/// This field is used to check whether expressions are constants, such as in enum discriminants
/// and consts
const_span: Option<Span>,
}
impl_lint_pass!(Arithmetic => [INTEGER_ARITHMETIC, FLOAT_ARITHMETIC]);
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Arithmetic {
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr<'_>) {
if self.expr_span.is_some() {
return;
}
if let Some(span) = self.const_span {
if span.contains(expr.span) {
return;
}
}
match &expr.kind {
hir::ExprKind::Binary(op, l, r) | hir::ExprKind::AssignOp(op, l, r) => {
match op.node {
hir::BinOpKind::And
| hir::BinOpKind::Or
| hir::BinOpKind::BitAnd
| hir::BinOpKind::BitOr
| hir::BinOpKind::BitXor
| hir::BinOpKind::Shl
| hir::BinOpKind::Shr
| hir::BinOpKind::Eq
| hir::BinOpKind::Lt
| hir::BinOpKind::Le
| hir::BinOpKind::Ne
| hir::BinOpKind::Ge
| hir::BinOpKind::Gt => return,
_ => (),
}
let (l_ty, r_ty) = (cx.tables.expr_ty(l), cx.tables.expr_ty(r));
if l_ty.is_integral() && r_ty.is_integral() {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_span = Some(expr.span);
} else if l_ty.is_floating_point() && r_ty.is_floating_point() {
span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
self.expr_span = Some(expr.span);
}
},
hir::ExprKind::Unary(hir::UnOp::UnNeg, arg) => {
let ty = cx.tables.expr_ty(arg);
if constant_simple(cx, cx.tables, expr).is_none() {
if ty.is_integral() {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_span = Some(expr.span);
} else if ty.is_floating_point() {
span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
self.expr_span = Some(expr.span);
}
}
},
_ => (),
}
}
fn check_expr_post(&mut self, _: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr<'_>) {
if Some(expr.span) == self.expr_span {
self.expr_span = None;
}
}
fn check_body(&mut self, cx: &LateContext<'_, '_>, body: &hir::Body<'_>) {
let body_owner = cx.tcx.hir().body_owner(body.id());
match cx.tcx.hir().body_owner_kind(body_owner) {
hir::BodyOwnerKind::Static(_) | hir::BodyOwnerKind::Const => {
let body_span = cx.tcx.hir().span(body_owner);
if let Some(span) = self.const_span {
if span.contains(body_span) {
return;
}
}
self.const_span = Some(body_span);
},
hir::BodyOwnerKind::Fn | hir::BodyOwnerKind::Closure => (),
}
}
fn check_body_post(&mut self, cx: &LateContext<'_, '_>, body: &hir::Body<'_>) {
let body_owner = cx.tcx.hir().body_owner(body.id());
let body_span = cx.tcx.hir().span(body_owner);
if let Some(span) = self.const_span {
if span.contains(body_span) {
return;
}
}
self.const_span = None;
}
}
|