about summary refs log tree commit diff
path: root/compiler/rustc_codegen_cranelift/src/backend.rs
blob: 9e32259716f5105508d59d8bc0edbc01a5b30f7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//! Abstraction around the object writing crate

use std::convert::{TryFrom, TryInto};

use rustc_data_structures::fx::FxHashMap;
use rustc_session::Session;

use cranelift_module::FuncId;

use object::write::*;
use object::{RelocationEncoding, RelocationKind, SectionKind, SymbolFlags};

use cranelift_object::{ObjectBuilder, ObjectModule, ObjectProduct};

use gimli::SectionId;

use crate::debuginfo::{DebugReloc, DebugRelocName};

pub(crate) trait WriteMetadata {
    fn add_rustc_section(&mut self, symbol_name: String, data: Vec<u8>, is_like_osx: bool);
}

impl WriteMetadata for object::write::Object {
    fn add_rustc_section(&mut self, symbol_name: String, data: Vec<u8>, _is_like_osx: bool) {
        let segment = self
            .segment_name(object::write::StandardSegment::Data)
            .to_vec();
        let section_id = self.add_section(segment, b".rustc".to_vec(), object::SectionKind::Data);
        let offset = self.append_section_data(section_id, &data, 1);
        // For MachO and probably PE this is necessary to prevent the linker from throwing away the
        // .rustc section. For ELF this isn't necessary, but it also doesn't harm.
        self.add_symbol(object::write::Symbol {
            name: symbol_name.into_bytes(),
            value: offset,
            size: data.len() as u64,
            kind: object::SymbolKind::Data,
            scope: object::SymbolScope::Dynamic,
            weak: false,
            section: SymbolSection::Section(section_id),
            flags: SymbolFlags::None,
        });
    }
}

pub(crate) trait WriteDebugInfo {
    type SectionId: Copy;

    fn add_debug_section(&mut self, name: SectionId, data: Vec<u8>) -> Self::SectionId;
    fn add_debug_reloc(
        &mut self,
        section_map: &FxHashMap<SectionId, Self::SectionId>,
        from: &Self::SectionId,
        reloc: &DebugReloc,
    );
}

impl WriteDebugInfo for ObjectProduct {
    type SectionId = (object::write::SectionId, object::write::SymbolId);

    fn add_debug_section(
        &mut self,
        id: SectionId,
        data: Vec<u8>,
    ) -> (object::write::SectionId, object::write::SymbolId) {
        let name = if self.object.format() == object::BinaryFormat::MachO {
            id.name().replace('.', "__") // machO expects __debug_info instead of .debug_info
        } else {
            id.name().to_string()
        }
        .into_bytes();

        let segment = self.object.segment_name(StandardSegment::Debug).to_vec();
        // FIXME use SHT_X86_64_UNWIND for .eh_frame
        let section_id = self.object.add_section(
            segment,
            name,
            if id == SectionId::EhFrame {
                SectionKind::ReadOnlyData
            } else {
                SectionKind::Debug
            },
        );
        self.object
            .section_mut(section_id)
            .set_data(data, if id == SectionId::EhFrame { 8 } else { 1 });
        let symbol_id = self.object.section_symbol(section_id);
        (section_id, symbol_id)
    }

    fn add_debug_reloc(
        &mut self,
        section_map: &FxHashMap<SectionId, Self::SectionId>,
        from: &Self::SectionId,
        reloc: &DebugReloc,
    ) {
        let (symbol, symbol_offset) = match reloc.name {
            DebugRelocName::Section(id) => (section_map.get(&id).unwrap().1, 0),
            DebugRelocName::Symbol(id) => {
                let symbol_id = self.function_symbol(FuncId::from_u32(id.try_into().unwrap()));
                self.object
                    .symbol_section_and_offset(symbol_id)
                    .expect("Debug reloc for undef sym???")
            }
        };
        self.object
            .add_relocation(
                from.0,
                Relocation {
                    offset: u64::from(reloc.offset),
                    symbol,
                    kind: reloc.kind,
                    encoding: RelocationEncoding::Generic,
                    size: reloc.size * 8,
                    addend: i64::try_from(symbol_offset).unwrap() + reloc.addend,
                },
            )
            .unwrap();
    }
}

// FIXME remove once atomic instructions are implemented in Cranelift.
pub(crate) trait AddConstructor {
    fn add_constructor(&mut self, func_id: FuncId);
}

impl AddConstructor for ObjectProduct {
    fn add_constructor(&mut self, func_id: FuncId) {
        let symbol = self.function_symbol(func_id);
        let segment = self
            .object
            .segment_name(object::write::StandardSegment::Data);
        let init_array_section =
            self.object
                .add_section(segment.to_vec(), b".init_array".to_vec(), SectionKind::Data);
        let address_size = self
            .object
            .architecture()
            .address_size()
            .expect("address_size must be known")
            .bytes();
        self.object.append_section_data(
            init_array_section,
            &std::iter::repeat(0)
                .take(address_size.into())
                .collect::<Vec<u8>>(),
            8,
        );
        self.object
            .add_relocation(
                init_array_section,
                object::write::Relocation {
                    offset: 0,
                    size: address_size * 8,
                    kind: RelocationKind::Absolute,
                    encoding: RelocationEncoding::Generic,
                    symbol,
                    addend: 0,
                },
            )
            .unwrap();
    }
}

pub(crate) fn with_object(sess: &Session, name: &str, f: impl FnOnce(&mut Object)) -> Vec<u8> {
    let triple = crate::build_isa(sess, true).triple().clone();

    let binary_format = match triple.binary_format {
        target_lexicon::BinaryFormat::Elf => object::BinaryFormat::Elf,
        target_lexicon::BinaryFormat::Coff => object::BinaryFormat::Coff,
        target_lexicon::BinaryFormat::Macho => object::BinaryFormat::MachO,
        binary_format => sess.fatal(&format!("binary format {} is unsupported", binary_format)),
    };
    let architecture = match triple.architecture {
        target_lexicon::Architecture::X86_32(_) => object::Architecture::I386,
        target_lexicon::Architecture::X86_64 => object::Architecture::X86_64,
        target_lexicon::Architecture::Arm(_) => object::Architecture::Arm,
        target_lexicon::Architecture::Aarch64(_) => object::Architecture::Aarch64,
        architecture => sess.fatal(&format!(
            "target architecture {:?} is unsupported",
            architecture,
        )),
    };
    let endian = match triple.endianness().unwrap() {
        target_lexicon::Endianness::Little => object::Endianness::Little,
        target_lexicon::Endianness::Big => object::Endianness::Big,
    };

    let mut metadata_object = object::write::Object::new(binary_format, architecture, endian);
    metadata_object.add_file_symbol(name.as_bytes().to_vec());
    f(&mut metadata_object);
    metadata_object.write().unwrap()
}

pub(crate) fn make_module(sess: &Session, name: String) -> ObjectModule {
    let mut builder = ObjectBuilder::new(
        crate::build_isa(sess, true),
        name + ".o",
        cranelift_module::default_libcall_names(),
    )
    .unwrap();
    // Unlike cg_llvm, cg_clif defaults to disabling -Zfunction-sections. For cg_llvm binary size
    // is important, while cg_clif cares more about compilation times. Enabling -Zfunction-sections
    // can easily double the amount of time necessary to perform linking.
    builder.per_function_section(sess.opts.debugging_opts.function_sections.unwrap_or(false));
    ObjectModule::new(builder)
}