1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
|
use rustc_abi::{Align, BackendRepr, Endian, HasDataLayout, Primitive, Size, TyAndLayout};
use rustc_codegen_ssa::MemFlags;
use rustc_codegen_ssa::common::IntPredicate;
use rustc_codegen_ssa::mir::operand::OperandRef;
use rustc_codegen_ssa::traits::{
BaseTypeCodegenMethods, BuilderMethods, ConstCodegenMethods, LayoutTypeCodegenMethods,
};
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf};
use crate::builder::Builder;
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;
fn round_up_to_alignment<'ll>(
bx: &mut Builder<'_, 'll, '_>,
mut value: &'ll Value,
align: Align,
) -> &'ll Value {
value = bx.add(value, bx.cx().const_i32(align.bytes() as i32 - 1));
return bx.and(value, bx.cx().const_i32(-(align.bytes() as i32)));
}
fn round_pointer_up_to_alignment<'ll>(
bx: &mut Builder<'_, 'll, '_>,
addr: &'ll Value,
align: Align,
ptr_ty: &'ll Type,
) -> &'ll Value {
let ptr = bx.inbounds_ptradd(addr, bx.const_i32(align.bytes() as i32 - 1));
bx.call_intrinsic(
"llvm.ptrmask",
&[ptr_ty, bx.type_i32()],
&[ptr, bx.const_int(bx.isize_ty, -(align.bytes() as isize) as i64)],
)
}
fn emit_direct_ptr_va_arg<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
list: OperandRef<'tcx, &'ll Value>,
size: Size,
align: Align,
slot_size: Align,
allow_higher_align: bool,
force_right_adjust: bool,
) -> (&'ll Value, Align) {
let va_list_ty = bx.type_ptr();
let va_list_addr = list.immediate();
let ptr_align_abi = bx.tcx().data_layout.pointer_align().abi;
let ptr = bx.load(va_list_ty, va_list_addr, ptr_align_abi);
let (addr, addr_align) = if allow_higher_align && align > slot_size {
(round_pointer_up_to_alignment(bx, ptr, align, bx.type_ptr()), align)
} else {
(ptr, slot_size)
};
let aligned_size = size.align_to(slot_size).bytes() as i32;
let full_direct_size = bx.cx().const_i32(aligned_size);
let next = bx.inbounds_ptradd(addr, full_direct_size);
bx.store(next, va_list_addr, ptr_align_abi);
if size.bytes() < slot_size.bytes()
&& bx.tcx().sess.target.endian == Endian::Big
&& force_right_adjust
{
let adjusted_size = bx.cx().const_i32((slot_size.bytes() - size.bytes()) as i32);
let adjusted = bx.inbounds_ptradd(addr, adjusted_size);
(adjusted, addr_align)
} else {
(addr, addr_align)
}
}
enum PassMode {
Direct,
Indirect,
}
enum SlotSize {
Bytes8 = 8,
Bytes4 = 4,
}
enum AllowHigherAlign {
No,
Yes,
}
enum ForceRightAdjust {
No,
Yes,
}
fn emit_ptr_va_arg<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
list: OperandRef<'tcx, &'ll Value>,
target_ty: Ty<'tcx>,
pass_mode: PassMode,
slot_size: SlotSize,
allow_higher_align: AllowHigherAlign,
force_right_adjust: ForceRightAdjust,
) -> &'ll Value {
let indirect = matches!(pass_mode, PassMode::Indirect);
let allow_higher_align = matches!(allow_higher_align, AllowHigherAlign::Yes);
let force_right_adjust = matches!(force_right_adjust, ForceRightAdjust::Yes);
let slot_size = Align::from_bytes(slot_size as u64).unwrap();
let layout = bx.cx.layout_of(target_ty);
let (llty, size, align) = if indirect {
(
bx.cx.layout_of(Ty::new_imm_ptr(bx.cx.tcx, target_ty)).llvm_type(bx.cx),
bx.cx.data_layout().pointer_size(),
bx.cx.data_layout().pointer_align(),
)
} else {
(layout.llvm_type(bx.cx), layout.size, layout.align)
};
let (addr, addr_align) = emit_direct_ptr_va_arg(
bx,
list,
size,
align.abi,
slot_size,
allow_higher_align,
force_right_adjust,
);
if indirect {
let tmp_ret = bx.load(llty, addr, addr_align);
bx.load(bx.cx.layout_of(target_ty).llvm_type(bx.cx), tmp_ret, align.abi)
} else {
bx.load(llty, addr, addr_align)
}
}
fn emit_aapcs_va_arg<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
list: OperandRef<'tcx, &'ll Value>,
target_ty: Ty<'tcx>,
) -> &'ll Value {
let dl = bx.cx.data_layout();
// Implementation of the AAPCS64 calling convention for va_args see
// https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst
//
// typedef struct va_list {
// void * stack; // next stack param
// void * gr_top; // end of GP arg reg save area
// void * vr_top; // end of FP/SIMD arg reg save area
// int gr_offs; // offset from gr_top to next GP register arg
// int vr_offs; // offset from vr_top to next FP/SIMD register arg
// } va_list;
let va_list_addr = list.immediate();
// There is no padding between fields since `void*` is size=8 align=8, `int` is size=4 align=4.
// See https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst
// Table 1, Byte size and byte alignment of fundamental data types
// Table 3, Mapping of C & C++ built-in data types
let ptr_offset = 8;
let i32_offset = 4;
let gr_top = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(ptr_offset));
let vr_top = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(2 * ptr_offset));
let gr_offs = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(3 * ptr_offset));
let vr_offs = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(3 * ptr_offset + i32_offset));
let layout = bx.cx.layout_of(target_ty);
let maybe_reg = bx.append_sibling_block("va_arg.maybe_reg");
let in_reg = bx.append_sibling_block("va_arg.in_reg");
let on_stack = bx.append_sibling_block("va_arg.on_stack");
let end = bx.append_sibling_block("va_arg.end");
let zero = bx.const_i32(0);
let offset_align = Align::from_bytes(4).unwrap();
let gr_type = target_ty.is_any_ptr() || target_ty.is_integral();
let (reg_off, reg_top, slot_size) = if gr_type {
let nreg = layout.size.bytes().div_ceil(8);
(gr_offs, gr_top, nreg * 8)
} else {
let nreg = layout.size.bytes().div_ceil(16);
(vr_offs, vr_top, nreg * 16)
};
// if the offset >= 0 then the value will be on the stack
let mut reg_off_v = bx.load(bx.type_i32(), reg_off, offset_align);
let use_stack = bx.icmp(IntPredicate::IntSGE, reg_off_v, zero);
bx.cond_br(use_stack, on_stack, maybe_reg);
// The value at this point might be in a register, but there is a chance that
// it could be on the stack so we have to update the offset and then check
// the offset again.
bx.switch_to_block(maybe_reg);
if gr_type && layout.align.bytes() > 8 {
reg_off_v = bx.add(reg_off_v, bx.const_i32(15));
reg_off_v = bx.and(reg_off_v, bx.const_i32(-16));
}
let new_reg_off_v = bx.add(reg_off_v, bx.const_i32(slot_size as i32));
bx.store(new_reg_off_v, reg_off, offset_align);
// Check to see if we have overflowed the registers as a result of this.
// If we have then we need to use the stack for this value
let use_stack = bx.icmp(IntPredicate::IntSGT, new_reg_off_v, zero);
bx.cond_br(use_stack, on_stack, in_reg);
bx.switch_to_block(in_reg);
let top_type = bx.type_ptr();
let top = bx.load(top_type, reg_top, dl.pointer_align().abi);
// reg_value = *(@top + reg_off_v);
let mut reg_addr = bx.ptradd(top, reg_off_v);
if bx.tcx().sess.target.endian == Endian::Big && layout.size.bytes() != slot_size {
// On big-endian systems the value is right-aligned in its slot.
let offset = bx.const_i32((slot_size - layout.size.bytes()) as i32);
reg_addr = bx.ptradd(reg_addr, offset);
}
let reg_type = layout.llvm_type(bx);
let reg_value = bx.load(reg_type, reg_addr, layout.align.abi);
bx.br(end);
// On Stack block
bx.switch_to_block(on_stack);
let stack_value = emit_ptr_va_arg(
bx,
list,
target_ty,
PassMode::Direct,
SlotSize::Bytes8,
AllowHigherAlign::Yes,
ForceRightAdjust::No,
);
bx.br(end);
bx.switch_to_block(end);
let val =
bx.phi(layout.immediate_llvm_type(bx), &[reg_value, stack_value], &[in_reg, on_stack]);
val
}
fn emit_powerpc_va_arg<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
list: OperandRef<'tcx, &'ll Value>,
target_ty: Ty<'tcx>,
) -> &'ll Value {
let dl = bx.cx.data_layout();
// struct __va_list_tag {
// unsigned char gpr;
// unsigned char fpr;
// unsigned short reserved;
// void *overflow_arg_area;
// void *reg_save_area;
// };
let va_list_addr = list.immediate();
// Peel off any newtype wrappers.
let layout = {
let mut layout = bx.cx.layout_of(target_ty);
while let Some((_, inner)) = layout.non_1zst_field(bx.cx) {
layout = inner;
}
layout
};
// Rust does not currently support any powerpc softfloat targets.
let target = &bx.cx.tcx.sess.target;
let is_soft_float_abi = target.abi == "softfloat";
assert!(!is_soft_float_abi);
// All instances of VaArgSafe are passed directly.
let is_indirect = false;
let (is_i64, is_int, is_f64) = match layout.layout.backend_repr() {
BackendRepr::Scalar(scalar) => match scalar.primitive() {
rustc_abi::Primitive::Int(integer, _) => (integer.size().bits() == 64, true, false),
rustc_abi::Primitive::Float(float) => (false, false, float.size().bits() == 64),
rustc_abi::Primitive::Pointer(_) => (false, true, false),
},
_ => unreachable!("all instances of VaArgSafe are represented as scalars"),
};
let num_regs_addr = if is_int || is_soft_float_abi {
va_list_addr // gpr
} else {
bx.inbounds_ptradd(va_list_addr, bx.const_usize(1)) // fpr
};
let mut num_regs = bx.load(bx.type_i8(), num_regs_addr, dl.i8_align);
// "Align" the register count when the type is passed as `i64`.
if is_i64 || (is_f64 && is_soft_float_abi) {
num_regs = bx.add(num_regs, bx.const_u8(1));
num_regs = bx.and(num_regs, bx.const_u8(0b1111_1110));
}
let max_regs = 8u8;
let use_regs = bx.icmp(IntPredicate::IntULT, num_regs, bx.const_u8(max_regs));
let ptr_align_abi = bx.tcx().data_layout.pointer_align().abi;
let in_reg = bx.append_sibling_block("va_arg.in_reg");
let in_mem = bx.append_sibling_block("va_arg.in_mem");
let end = bx.append_sibling_block("va_arg.end");
bx.cond_br(use_regs, in_reg, in_mem);
let reg_addr = {
bx.switch_to_block(in_reg);
let reg_safe_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(1 + 1 + 2 + 4));
let mut reg_addr = bx.load(bx.type_ptr(), reg_safe_area_ptr, ptr_align_abi);
// Floating-point registers start after the general-purpose registers.
if !is_int && !is_soft_float_abi {
reg_addr = bx.inbounds_ptradd(reg_addr, bx.cx.const_usize(32))
}
// Get the address of the saved value by scaling the number of
// registers we've used by the number of.
let reg_size = if is_int || is_soft_float_abi { 4 } else { 8 };
let reg_offset = bx.mul(num_regs, bx.cx().const_u8(reg_size));
let reg_addr = bx.inbounds_ptradd(reg_addr, reg_offset);
// Increase the used-register count.
let reg_incr = if is_i64 || (is_f64 && is_soft_float_abi) { 2 } else { 1 };
let new_num_regs = bx.add(num_regs, bx.cx.const_u8(reg_incr));
bx.store(new_num_regs, num_regs_addr, dl.i8_align);
bx.br(end);
reg_addr
};
let mem_addr = {
bx.switch_to_block(in_mem);
bx.store(bx.const_u8(max_regs), num_regs_addr, dl.i8_align);
// Everything in the overflow area is rounded up to a size of at least 4.
let overflow_area_align = Align::from_bytes(4).unwrap();
let size = if !is_indirect {
layout.layout.size.align_to(overflow_area_align)
} else {
dl.pointer_size()
};
let overflow_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(1 + 1 + 2));
let mut overflow_area = bx.load(bx.type_ptr(), overflow_area_ptr, ptr_align_abi);
// Round up address of argument to alignment
if layout.layout.align.abi > overflow_area_align {
overflow_area = round_pointer_up_to_alignment(
bx,
overflow_area,
layout.layout.align.abi,
bx.type_ptr(),
);
}
let mem_addr = overflow_area;
// Increase the overflow area.
overflow_area = bx.inbounds_ptradd(overflow_area, bx.const_usize(size.bytes()));
bx.store(overflow_area, overflow_area_ptr, ptr_align_abi);
bx.br(end);
mem_addr
};
// Return the appropriate result.
bx.switch_to_block(end);
let val_addr = bx.phi(bx.type_ptr(), &[reg_addr, mem_addr], &[in_reg, in_mem]);
let val_type = layout.llvm_type(bx);
let val_addr =
if is_indirect { bx.load(bx.cx.type_ptr(), val_addr, ptr_align_abi) } else { val_addr };
bx.load(val_type, val_addr, layout.align.abi)
}
fn emit_s390x_va_arg<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
list: OperandRef<'tcx, &'ll Value>,
target_ty: Ty<'tcx>,
) -> &'ll Value {
let dl = bx.cx.data_layout();
// Implementation of the s390x ELF ABI calling convention for va_args see
// https://github.com/IBM/s390x-abi (chapter 1.2.4)
//
// typedef struct __va_list_tag {
// long __gpr;
// long __fpr;
// void *__overflow_arg_area;
// void *__reg_save_area;
// } va_list[1];
let va_list_addr = list.immediate();
// There is no padding between fields since `long` and `void*` both have size=8 align=8.
// https://github.com/IBM/s390x-abi (Table 1.1.: Scalar types)
let i64_offset = 8;
let ptr_offset = 8;
let gpr = va_list_addr;
let fpr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(i64_offset));
let overflow_arg_area = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(2 * i64_offset));
let reg_save_area =
bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(2 * i64_offset + ptr_offset));
let layout = bx.cx.layout_of(target_ty);
let in_reg = bx.append_sibling_block("va_arg.in_reg");
let in_mem = bx.append_sibling_block("va_arg.in_mem");
let end = bx.append_sibling_block("va_arg.end");
let ptr_align_abi = dl.pointer_align().abi;
// FIXME: vector ABI not yet supported.
let target_ty_size = bx.cx.size_of(target_ty).bytes();
let indirect: bool = target_ty_size > 8 || !target_ty_size.is_power_of_two();
let unpadded_size = if indirect { 8 } else { target_ty_size };
let padded_size = 8;
let padding = padded_size - unpadded_size;
let gpr_type = indirect || !layout.is_single_fp_element(bx.cx);
let (max_regs, reg_count, reg_save_index, reg_padding) =
if gpr_type { (5, gpr, 2, padding) } else { (4, fpr, 16, 0) };
// Check whether the value was passed in a register or in memory.
let reg_count_v = bx.load(bx.type_i64(), reg_count, Align::from_bytes(8).unwrap());
let use_regs = bx.icmp(IntPredicate::IntULT, reg_count_v, bx.const_u64(max_regs));
bx.cond_br(use_regs, in_reg, in_mem);
// Emit code to load the value if it was passed in a register.
bx.switch_to_block(in_reg);
// Work out the address of the value in the register save area.
let reg_ptr_v = bx.load(bx.type_ptr(), reg_save_area, ptr_align_abi);
let scaled_reg_count = bx.mul(reg_count_v, bx.const_u64(8));
let reg_off = bx.add(scaled_reg_count, bx.const_u64(reg_save_index * 8 + reg_padding));
let reg_addr = bx.ptradd(reg_ptr_v, reg_off);
// Update the register count.
let new_reg_count_v = bx.add(reg_count_v, bx.const_u64(1));
bx.store(new_reg_count_v, reg_count, Align::from_bytes(8).unwrap());
bx.br(end);
// Emit code to load the value if it was passed in memory.
bx.switch_to_block(in_mem);
// Work out the address of the value in the argument overflow area.
let arg_ptr_v = bx.load(bx.type_ptr(), overflow_arg_area, ptr_align_abi);
let arg_off = bx.const_u64(padding);
let mem_addr = bx.ptradd(arg_ptr_v, arg_off);
// Update the argument overflow area pointer.
let arg_size = bx.cx().const_u64(padded_size);
let new_arg_ptr_v = bx.inbounds_ptradd(arg_ptr_v, arg_size);
bx.store(new_arg_ptr_v, overflow_arg_area, ptr_align_abi);
bx.br(end);
// Return the appropriate result.
bx.switch_to_block(end);
let val_addr = bx.phi(bx.type_ptr(), &[reg_addr, mem_addr], &[in_reg, in_mem]);
let val_type = layout.llvm_type(bx);
let val_addr =
if indirect { bx.load(bx.cx.type_ptr(), val_addr, ptr_align_abi) } else { val_addr };
bx.load(val_type, val_addr, layout.align.abi)
}
fn emit_x86_64_sysv64_va_arg<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
list: OperandRef<'tcx, &'ll Value>,
target_ty: Ty<'tcx>,
) -> &'ll Value {
let dl = bx.cx.data_layout();
// Implementation of the systemv x86_64 ABI calling convention for va_args, see
// https://gitlab.com/x86-psABIs/x86-64-ABI (section 3.5.7). This implementation is heavily
// based on the one in clang.
// We're able to take some shortcuts because the return type of `va_arg` must implement the
// `VaArgSafe` trait. Currently, only pointers, f64, i32, u32, i64 and u64 implement this trait.
// typedef struct __va_list_tag {
// unsigned int gp_offset;
// unsigned int fp_offset;
// void *overflow_arg_area;
// void *reg_save_area;
// } va_list[1];
let va_list_addr = list.immediate();
// Peel off any newtype wrappers.
//
// The "C" ABI does not unwrap newtypes (see `ReprOptions::inhibit_newtype_abi_optimization`).
// Here, we do actually want the unwrapped representation, because that is how LLVM/Clang
// pass such types to variadic functions.
//
// An example of a type that must be unwrapped is `Foo` below. Without the unwrapping, it has
// `BackendRepr::Memory`, but we need it to be `BackendRepr::Scalar` to generate correct code.
//
// ```
// #[repr(C)]
// struct Empty;
//
// #[repr(C)]
// struct Foo([Empty; 8], i32);
// ```
let layout = {
let mut layout = bx.cx.layout_of(target_ty);
while let Some((_, inner)) = layout.non_1zst_field(bx.cx) {
layout = inner;
}
layout
};
// AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
// in the registers. If not go to step 7.
// AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
// general purpose registers needed to pass type and num_fp to hold
// the number of floating point registers needed.
let mut num_gp_registers = 0;
let mut num_fp_registers = 0;
let mut registers_for_primitive = |p| match p {
Primitive::Int(integer, _is_signed) => {
num_gp_registers += integer.size().bytes().div_ceil(8) as u32;
}
Primitive::Float(float) => {
num_fp_registers += float.size().bytes().div_ceil(16) as u32;
}
Primitive::Pointer(_) => {
num_gp_registers += 1;
}
};
match layout.layout.backend_repr() {
BackendRepr::Scalar(scalar) => {
registers_for_primitive(scalar.primitive());
}
BackendRepr::ScalarPair(scalar1, scalar2) => {
registers_for_primitive(scalar1.primitive());
registers_for_primitive(scalar2.primitive());
}
BackendRepr::SimdVector { .. } => {
// Because no instance of VaArgSafe uses a non-scalar `BackendRepr`.
unreachable!(
"No x86-64 SysV va_arg implementation for {:?}",
layout.layout.backend_repr()
)
}
BackendRepr::Memory { .. } => {
let mem_addr = x86_64_sysv64_va_arg_from_memory(bx, va_list_addr, layout);
return bx.load(layout.llvm_type(bx), mem_addr, layout.align.abi);
}
};
// AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
// registers. In the case: l->gp_offset > 48 - num_gp * 8 or
// l->fp_offset > 176 - num_fp * 16 go to step 7.
let unsigned_int_offset = 4;
let ptr_offset = 8;
let gp_offset_ptr = va_list_addr;
let fp_offset_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(unsigned_int_offset));
let gp_offset_v = bx.load(bx.type_i32(), gp_offset_ptr, Align::from_bytes(8).unwrap());
let fp_offset_v = bx.load(bx.type_i32(), fp_offset_ptr, Align::from_bytes(4).unwrap());
let mut use_regs = bx.const_bool(false);
if num_gp_registers > 0 {
let max_offset_val = 48u32 - num_gp_registers * 8;
let fits_in_gp = bx.icmp(IntPredicate::IntULE, gp_offset_v, bx.const_u32(max_offset_val));
use_regs = fits_in_gp;
}
if num_fp_registers > 0 {
let max_offset_val = 176u32 - num_fp_registers * 16;
let fits_in_fp = bx.icmp(IntPredicate::IntULE, fp_offset_v, bx.const_u32(max_offset_val));
use_regs = if num_gp_registers > 0 { bx.and(use_regs, fits_in_fp) } else { fits_in_fp };
}
let in_reg = bx.append_sibling_block("va_arg.in_reg");
let in_mem = bx.append_sibling_block("va_arg.in_mem");
let end = bx.append_sibling_block("va_arg.end");
bx.cond_br(use_regs, in_reg, in_mem);
// Emit code to load the value if it was passed in a register.
bx.switch_to_block(in_reg);
// AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
// an offset of l->gp_offset and/or l->fp_offset. This may require
// copying to a temporary location in case the parameter is passed
// in different register classes or requires an alignment greater
// than 8 for general purpose registers and 16 for XMM registers.
//
// FIXME(llvm): This really results in shameful code when we end up needing to
// collect arguments from different places; often what should result in a
// simple assembling of a structure from scattered addresses has many more
// loads than necessary. Can we clean this up?
let reg_save_area_ptr =
bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(2 * unsigned_int_offset + ptr_offset));
let reg_save_area_v = bx.load(bx.type_ptr(), reg_save_area_ptr, dl.pointer_align().abi);
let reg_addr = match layout.layout.backend_repr() {
BackendRepr::Scalar(scalar) => match scalar.primitive() {
Primitive::Int(_, _) | Primitive::Pointer(_) => {
let reg_addr = bx.inbounds_ptradd(reg_save_area_v, gp_offset_v);
// Copy into a temporary if the type is more aligned than the register save area.
let gp_align = Align::from_bytes(8).unwrap();
copy_to_temporary_if_more_aligned(bx, reg_addr, layout, gp_align)
}
Primitive::Float(_) => bx.inbounds_ptradd(reg_save_area_v, fp_offset_v),
},
BackendRepr::ScalarPair(scalar1, scalar2) => {
let ty_lo = bx.cx().scalar_pair_element_backend_type(layout, 0, false);
let ty_hi = bx.cx().scalar_pair_element_backend_type(layout, 1, false);
let align_lo = layout.field(bx.cx, 0).layout.align().abi;
let align_hi = layout.field(bx.cx, 1).layout.align().abi;
match (scalar1.primitive(), scalar2.primitive()) {
(Primitive::Float(_), Primitive::Float(_)) => {
// SSE registers are spaced 16 bytes apart in the register save
// area, we need to collect the two eightbytes together.
// The ABI isn't explicit about this, but it seems reasonable
// to assume that the slots are 16-byte aligned, since the stack is
// naturally 16-byte aligned and the prologue is expected to store
// all the SSE registers to the RSA.
let reg_lo_addr = bx.inbounds_ptradd(reg_save_area_v, fp_offset_v);
let reg_hi_addr = bx.inbounds_ptradd(reg_lo_addr, bx.const_i32(16));
let align = layout.layout.align().abi;
let tmp = bx.alloca(layout.layout.size(), align);
let reg_lo = bx.load(ty_lo, reg_lo_addr, align_lo);
let reg_hi = bx.load(ty_hi, reg_hi_addr, align_hi);
let offset = scalar1.size(bx.cx).align_to(align_hi).bytes();
let field0 = tmp;
let field1 = bx.inbounds_ptradd(tmp, bx.const_u32(offset as u32));
bx.store(reg_lo, field0, align);
bx.store(reg_hi, field1, align);
tmp
}
(Primitive::Float(_), _) | (_, Primitive::Float(_)) => {
let gp_addr = bx.inbounds_ptradd(reg_save_area_v, gp_offset_v);
let fp_addr = bx.inbounds_ptradd(reg_save_area_v, fp_offset_v);
let (reg_lo_addr, reg_hi_addr) = match scalar1.primitive() {
Primitive::Float(_) => (fp_addr, gp_addr),
Primitive::Int(_, _) | Primitive::Pointer(_) => (gp_addr, fp_addr),
};
let tmp = bx.alloca(layout.layout.size(), layout.layout.align().abi);
let reg_lo = bx.load(ty_lo, reg_lo_addr, align_lo);
let reg_hi = bx.load(ty_hi, reg_hi_addr, align_hi);
let offset = scalar1.size(bx.cx).align_to(align_hi).bytes();
let field0 = tmp;
let field1 = bx.inbounds_ptradd(tmp, bx.const_u32(offset as u32));
bx.store(reg_lo, field0, align_lo);
bx.store(reg_hi, field1, align_hi);
tmp
}
(_, _) => {
// Two integer/pointer values are just contiguous in memory.
let reg_addr = bx.inbounds_ptradd(reg_save_area_v, gp_offset_v);
// Copy into a temporary if the type is more aligned than the register save area.
let gp_align = Align::from_bytes(8).unwrap();
copy_to_temporary_if_more_aligned(bx, reg_addr, layout, gp_align)
}
}
}
// The Previous match on `BackendRepr` means control flow already escaped.
BackendRepr::SimdVector { .. } | BackendRepr::Memory { .. } => unreachable!(),
};
// AMD64-ABI 3.5.7p5: Step 5. Set:
// l->gp_offset = l->gp_offset + num_gp * 8
if num_gp_registers > 0 {
let offset = bx.const_u32(num_gp_registers * 8);
let sum = bx.add(gp_offset_v, offset);
// An alignment of 8 because `__va_list_tag` is 8-aligned and this is its first field.
bx.store(sum, gp_offset_ptr, Align::from_bytes(8).unwrap());
}
// l->fp_offset = l->fp_offset + num_fp * 16.
if num_fp_registers > 0 {
let offset = bx.const_u32(num_fp_registers * 16);
let sum = bx.add(fp_offset_v, offset);
bx.store(sum, fp_offset_ptr, Align::from_bytes(4).unwrap());
}
bx.br(end);
bx.switch_to_block(in_mem);
let mem_addr = x86_64_sysv64_va_arg_from_memory(bx, va_list_addr, layout);
bx.br(end);
bx.switch_to_block(end);
let val_type = layout.llvm_type(bx);
let val_addr = bx.phi(bx.type_ptr(), &[reg_addr, mem_addr], &[in_reg, in_mem]);
bx.load(val_type, val_addr, layout.align.abi)
}
/// Copy into a temporary if the type is more aligned than the register save area.
fn copy_to_temporary_if_more_aligned<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
reg_addr: &'ll Value,
layout: TyAndLayout<'tcx, Ty<'tcx>>,
src_align: Align,
) -> &'ll Value {
if layout.layout.align.abi > src_align {
let tmp = bx.alloca(layout.layout.size(), layout.layout.align().abi);
bx.memcpy(
tmp,
layout.layout.align.abi,
reg_addr,
src_align,
bx.const_u32(layout.layout.size().bytes() as u32),
MemFlags::empty(),
None,
);
tmp
} else {
reg_addr
}
}
fn x86_64_sysv64_va_arg_from_memory<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
va_list_addr: &'ll Value,
layout: TyAndLayout<'tcx, Ty<'tcx>>,
) -> &'ll Value {
let dl = bx.cx.data_layout();
let ptr_align_abi = dl.data_layout().pointer_align().abi;
let overflow_arg_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.const_usize(8));
let overflow_arg_area_v = bx.load(bx.type_ptr(), overflow_arg_area_ptr, ptr_align_abi);
// AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
// byte boundary if alignment needed by type exceeds 8 byte boundary.
// It isn't stated explicitly in the standard, but in practice we use
// alignment greater than 16 where necessary.
if layout.layout.align.bytes() > 8 {
unreachable!("all instances of VaArgSafe have an alignment <= 8");
}
// AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
let mem_addr = overflow_arg_area_v;
// AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
// l->overflow_arg_area + sizeof(type).
// AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
// an 8 byte boundary.
let size_in_bytes = layout.layout.size().bytes();
let offset = bx.const_i32(size_in_bytes.next_multiple_of(8) as i32);
let overflow_arg_area = bx.inbounds_ptradd(overflow_arg_area_v, offset);
bx.store(overflow_arg_area, overflow_arg_area_ptr, ptr_align_abi);
mem_addr
}
fn emit_xtensa_va_arg<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
list: OperandRef<'tcx, &'ll Value>,
target_ty: Ty<'tcx>,
) -> &'ll Value {
// Implementation of va_arg for Xtensa. There doesn't seem to be an authoritative source for
// this, other than "what GCC does".
//
// The va_list type has three fields:
// struct __va_list_tag {
// int32_t *va_stk; // Arguments passed on the stack
// int32_t *va_reg; // Arguments passed in registers, saved to memory by the prologue.
// int32_t va_ndx; // Offset into the arguments, in bytes
// };
//
// The first 24 bytes (equivalent to 6 registers) come from va_reg, the rest from va_stk.
// Thus if va_ndx is less than 24, the next va_arg *may* read from va_reg,
// otherwise it must come from va_stk.
//
// Primitive arguments are never split between registers and the stack. For example, if loading an 8 byte
// primitive value and va_ndx = 20, we instead bump the offset and read everything from va_stk.
let va_list_addr = list.immediate();
// FIXME: handle multi-field structs that split across regsave/stack?
let layout = bx.cx.layout_of(target_ty);
let from_stack = bx.append_sibling_block("va_arg.from_stack");
let from_regsave = bx.append_sibling_block("va_arg.from_regsave");
let end = bx.append_sibling_block("va_arg.end");
let ptr_align_abi = bx.tcx().data_layout.pointer_align().abi;
// (*va).va_ndx
let va_reg_offset = 4;
let va_ndx_offset = va_reg_offset + 4;
let offset_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(va_ndx_offset));
let offset = bx.load(bx.type_i32(), offset_ptr, bx.tcx().data_layout.i32_align);
let offset = round_up_to_alignment(bx, offset, layout.align.abi);
let slot_size = layout.size.align_to(Align::from_bytes(4).unwrap()).bytes() as i32;
// Update the offset in va_list, by adding the slot's size.
let offset_next = bx.add(offset, bx.const_i32(slot_size));
// Figure out where to look for our value. We do that by checking the end of our slot (offset_next).
// If that is within the regsave area, then load from there. Otherwise load from the stack area.
let regsave_size = bx.const_i32(24);
let use_regsave = bx.icmp(IntPredicate::IntULE, offset_next, regsave_size);
bx.cond_br(use_regsave, from_regsave, from_stack);
bx.switch_to_block(from_regsave);
// update va_ndx
bx.store(offset_next, offset_ptr, ptr_align_abi);
// (*va).va_reg
let regsave_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(va_reg_offset));
let regsave_area = bx.load(bx.type_ptr(), regsave_area_ptr, ptr_align_abi);
let regsave_value_ptr = bx.inbounds_ptradd(regsave_area, offset);
bx.br(end);
bx.switch_to_block(from_stack);
// The first time we switch from regsave to stack we needs to adjust our offsets a bit.
// va_stk is set up such that the first stack argument is always at va_stk + 32.
// The corrected offset is written back into the va_list struct.
// let offset_corrected = cmp::max(offset, 32);
let stack_offset_start = bx.const_i32(32);
let needs_correction = bx.icmp(IntPredicate::IntULE, offset, stack_offset_start);
let offset_corrected = bx.select(needs_correction, stack_offset_start, offset);
// let offset_next_corrected = offset_corrected + slot_size;
// va_ndx = offset_next_corrected;
let offset_next_corrected = bx.add(offset_next, bx.const_i32(slot_size));
// update va_ndx
bx.store(offset_next_corrected, offset_ptr, ptr_align_abi);
// let stack_value_ptr = unsafe { (*va).va_stk.byte_add(offset_corrected) };
let stack_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(0));
let stack_area = bx.load(bx.type_ptr(), stack_area_ptr, ptr_align_abi);
let stack_value_ptr = bx.inbounds_ptradd(stack_area, offset_corrected);
bx.br(end);
bx.switch_to_block(end);
// On big-endian, for values smaller than the slot size we'd have to align the read to the end
// of the slot rather than the start. While the ISA and GCC support big-endian, all the Xtensa
// targets supported by rustc are little-endian so don't worry about it.
// if from_regsave {
// unsafe { *regsave_value_ptr }
// } else {
// unsafe { *stack_value_ptr }
// }
assert!(bx.tcx().sess.target.endian == Endian::Little);
let value_ptr =
bx.phi(bx.type_ptr(), &[regsave_value_ptr, stack_value_ptr], &[from_regsave, from_stack]);
return bx.load(layout.llvm_type(bx), value_ptr, layout.align.abi);
}
pub(super) fn emit_va_arg<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
addr: OperandRef<'tcx, &'ll Value>,
target_ty: Ty<'tcx>,
) -> &'ll Value {
// Determine the va_arg implementation to use. The LLVM va_arg instruction
// is lacking in some instances, so we should only use it as a fallback.
let target = &bx.cx.tcx.sess.target;
match &*target.arch {
"x86" => emit_ptr_va_arg(
bx,
addr,
target_ty,
PassMode::Direct,
SlotSize::Bytes4,
if target.is_like_windows { AllowHigherAlign::No } else { AllowHigherAlign::Yes },
ForceRightAdjust::No,
),
"aarch64" | "arm64ec" if target.is_like_windows || target.is_like_darwin => {
emit_ptr_va_arg(
bx,
addr,
target_ty,
PassMode::Direct,
SlotSize::Bytes8,
if target.is_like_windows { AllowHigherAlign::No } else { AllowHigherAlign::Yes },
ForceRightAdjust::No,
)
}
"aarch64" => emit_aapcs_va_arg(bx, addr, target_ty),
"arm" => {
// Types wider than 16 bytes are not currently supported. Clang has special logic for
// such types, but `VaArgSafe` is not implemented for any type that is this large.
assert!(bx.cx.size_of(target_ty).bytes() <= 16);
emit_ptr_va_arg(
bx,
addr,
target_ty,
PassMode::Direct,
SlotSize::Bytes4,
AllowHigherAlign::Yes,
ForceRightAdjust::No,
)
}
"s390x" => emit_s390x_va_arg(bx, addr, target_ty),
"powerpc" => emit_powerpc_va_arg(bx, addr, target_ty),
"powerpc64" | "powerpc64le" => emit_ptr_va_arg(
bx,
addr,
target_ty,
PassMode::Direct,
SlotSize::Bytes8,
AllowHigherAlign::Yes,
match &*target.arch {
"powerpc64" => ForceRightAdjust::Yes,
_ => ForceRightAdjust::No,
},
),
// Windows x86_64
"x86_64" if target.is_like_windows => {
let target_ty_size = bx.cx.size_of(target_ty).bytes();
emit_ptr_va_arg(
bx,
addr,
target_ty,
if target_ty_size > 8 || !target_ty_size.is_power_of_two() {
PassMode::Indirect
} else {
PassMode::Direct
},
SlotSize::Bytes8,
AllowHigherAlign::No,
ForceRightAdjust::No,
)
}
// This includes `target.is_like_darwin`, which on x86_64 targets is like sysv64.
"x86_64" => emit_x86_64_sysv64_va_arg(bx, addr, target_ty),
"xtensa" => emit_xtensa_va_arg(bx, addr, target_ty),
// For all other architecture/OS combinations fall back to using
// the LLVM va_arg instruction.
// https://llvm.org/docs/LangRef.html#va-arg-instruction
_ => bx.va_arg(addr.immediate(), bx.cx.layout_of(target_ty).llvm_type(bx.cx)),
}
}
|