1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
|
use rustc_ast::TraitObjectSyntax;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_errors::codes::*;
use rustc_errors::{
Applicability, Diag, EmissionGuarantee, StashKey, Suggestions, struct_span_code_err,
};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_lint_defs::builtin::{BARE_TRAIT_OBJECTS, UNUSED_ASSOCIATED_TYPE_BOUNDS};
use rustc_middle::ty::elaborate::ClauseWithSupertraitSpan;
use rustc_middle::ty::{
self, BottomUpFolder, ExistentialPredicateStableCmpExt as _, Ty, TyCtxt, TypeFoldable,
TypeVisitableExt, Upcast,
};
use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::{ErrorGuaranteed, Span};
use rustc_trait_selection::error_reporting::traits::report_dyn_incompatibility;
use rustc_trait_selection::error_reporting::traits::suggestions::NextTypeParamName;
use rustc_trait_selection::traits;
use smallvec::{SmallVec, smallvec};
use tracing::{debug, instrument};
use super::HirTyLowerer;
use crate::errors::SelfInTypeAlias;
use crate::hir_ty_lowering::{
GenericArgCountMismatch, OverlappingAsssocItemConstraints, PredicateFilter, RegionInferReason,
};
impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
/// Lower a trait object type from the HIR to our internal notion of a type.
#[instrument(level = "debug", skip_all, ret)]
pub(super) fn lower_trait_object_ty(
&self,
span: Span,
hir_id: hir::HirId,
hir_bounds: &[hir::PolyTraitRef<'tcx>],
lifetime: &hir::Lifetime,
syntax: TraitObjectSyntax,
) -> Ty<'tcx> {
let tcx = self.tcx();
let dummy_self = tcx.types.trait_object_dummy_self;
match syntax {
TraitObjectSyntax::Dyn => {}
TraitObjectSyntax::None => {
match self.prohibit_or_lint_bare_trait_object_ty(span, hir_id, hir_bounds) {
// Don't continue with type analysis if the `dyn` keyword is missing.
// It generates confusing errors, especially if the user meant to use
// another keyword like `impl`.
Some(guar) => return Ty::new_error(tcx, guar),
None => {}
}
}
}
let mut user_written_bounds = Vec::new();
let mut potential_assoc_types = Vec::new();
for poly_trait_ref in hir_bounds.iter() {
let result = self.lower_poly_trait_ref(
poly_trait_ref,
dummy_self,
&mut user_written_bounds,
PredicateFilter::SelfOnly,
OverlappingAsssocItemConstraints::Forbidden,
);
if let Err(GenericArgCountMismatch { invalid_args, .. }) = result.correct {
potential_assoc_types.extend(invalid_args);
}
}
self.add_default_traits(
&mut user_written_bounds,
dummy_self,
&hir_bounds
.iter()
.map(|&trait_ref| hir::GenericBound::Trait(trait_ref))
.collect::<Vec<_>>(),
None,
span,
);
let (elaborated_trait_bounds, elaborated_projection_bounds) =
traits::expand_trait_aliases(tcx, user_written_bounds.iter().copied());
let (regular_traits, mut auto_traits): (Vec<_>, Vec<_>) = elaborated_trait_bounds
.into_iter()
.partition(|(trait_ref, _)| !tcx.trait_is_auto(trait_ref.def_id()));
// We don't support empty trait objects.
if regular_traits.is_empty() && auto_traits.is_empty() {
let guar =
self.report_trait_object_with_no_traits(span, user_written_bounds.iter().copied());
return Ty::new_error(tcx, guar);
}
// We don't support >1 principal
if regular_traits.len() > 1 {
let guar = self.report_trait_object_addition_traits(®ular_traits);
return Ty::new_error(tcx, guar);
}
// Don't create a dyn trait if we have errors in the principal.
if let Err(guar) = regular_traits.error_reported() {
return Ty::new_error(tcx, guar);
}
// Check that there are no gross dyn-compatibility violations;
// most importantly, that the supertraits don't contain `Self`,
// to avoid ICEs.
for (clause, span) in user_written_bounds {
if let Some(trait_pred) = clause.as_trait_clause() {
let violations = self.dyn_compatibility_violations(trait_pred.def_id());
if !violations.is_empty() {
let reported = report_dyn_incompatibility(
tcx,
span,
Some(hir_id),
trait_pred.def_id(),
&violations,
)
.emit();
return Ty::new_error(tcx, reported);
}
}
}
// Map the projection bounds onto a key that makes it easy to remove redundant
// bounds that are constrained by supertraits of the principal def id.
//
// Also make sure we detect conflicting bounds from expanding a trait alias and
// also specifying it manually, like:
// ```
// type Alias = Trait<Assoc = i32>;
// let _: &dyn Alias<Assoc = u32> = /* ... */;
// ```
let mut projection_bounds = FxIndexMap::default();
for (proj, proj_span) in elaborated_projection_bounds {
let proj = proj.map_bound(|mut b| {
if let Some(term_ty) = &b.term.as_type() {
let references_self = term_ty.walk().any(|arg| arg == dummy_self.into());
if references_self {
// With trait alias and type alias combined, type resolver
// may not be able to catch all illegal `Self` usages (issue 139082)
let guar = self.dcx().emit_err(SelfInTypeAlias { span });
b.term = replace_dummy_self_with_error(tcx, b.term, guar);
}
}
b
});
let key = (
proj.skip_binder().projection_term.def_id,
tcx.anonymize_bound_vars(
proj.map_bound(|proj| proj.projection_term.trait_ref(tcx)),
),
);
if let Some((old_proj, old_proj_span)) =
projection_bounds.insert(key, (proj, proj_span))
&& tcx.anonymize_bound_vars(proj) != tcx.anonymize_bound_vars(old_proj)
{
let item = tcx.item_name(proj.item_def_id());
self.dcx()
.struct_span_err(
span,
format!("conflicting associated type bounds for `{item}`"),
)
.with_span_label(
old_proj_span,
format!("`{item}` is specified to be `{}` here", old_proj.term()),
)
.with_span_label(
proj_span,
format!("`{item}` is specified to be `{}` here", proj.term()),
)
.emit();
}
}
let principal_trait = regular_traits.into_iter().next();
// A stable ordering of associated types from the principal trait and all its
// supertraits. We use this to ensure that different substitutions of a trait
// don't result in `dyn Trait` types with different projections lists, which
// can be unsound: <https://github.com/rust-lang/rust/pull/136458>.
// We achieve a stable ordering by walking over the unsubstituted principal
// trait ref.
let mut ordered_associated_types = vec![];
if let Some((principal_trait, ref spans)) = principal_trait {
let principal_trait = principal_trait.map_bound(|trait_pred| {
assert_eq!(trait_pred.polarity, ty::PredicatePolarity::Positive);
trait_pred.trait_ref
});
for ClauseWithSupertraitSpan { clause, supertrait_span } in traits::elaborate(
tcx,
[ClauseWithSupertraitSpan::new(
ty::TraitRef::identity(tcx, principal_trait.def_id()).upcast(tcx),
*spans.last().unwrap(),
)],
)
.filter_only_self()
{
let clause = clause.instantiate_supertrait(tcx, principal_trait);
debug!("observing object predicate `{clause:?}`");
let bound_predicate = clause.kind();
match bound_predicate.skip_binder() {
ty::ClauseKind::Trait(pred) => {
// FIXME(negative_bounds): Handle this correctly...
let trait_ref =
tcx.anonymize_bound_vars(bound_predicate.rebind(pred.trait_ref));
ordered_associated_types.extend(
tcx.associated_items(pred.trait_ref.def_id)
.in_definition_order()
// We only care about associated types.
.filter(|item| item.is_type())
// No RPITITs -- they're not dyn-compatible for now.
.filter(|item| !item.is_impl_trait_in_trait())
.map(|item| (item.def_id, trait_ref)),
);
}
ty::ClauseKind::Projection(pred) => {
let pred = bound_predicate.rebind(pred);
// A `Self` within the original bound will be instantiated with a
// `trait_object_dummy_self`, so check for that.
let references_self = match pred.skip_binder().term.kind() {
ty::TermKind::Ty(ty) => ty.walk().any(|arg| arg == dummy_self.into()),
// FIXME(associated_const_equality): We should walk the const instead of not doing anything
ty::TermKind::Const(_) => false,
};
// If the projection output contains `Self`, force the user to
// elaborate it explicitly to avoid a lot of complexity.
//
// The "classically useful" case is the following:
// ```
// trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
// type MyOutput;
// }
// ```
//
// Here, the user could theoretically write `dyn MyTrait<MyOutput = X>`,
// but actually supporting that would "expand" to an infinitely-long type
// `fix $ τ → dyn MyTrait<MyOutput = X, Output = <τ as MyTrait>::MyOutput`.
//
// Instead, we force the user to write
// `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
// the discussion in #56288 for alternatives.
if !references_self {
let key = (
pred.skip_binder().projection_term.def_id,
tcx.anonymize_bound_vars(
pred.map_bound(|proj| proj.projection_term.trait_ref(tcx)),
),
);
if !projection_bounds.contains_key(&key) {
projection_bounds.insert(key, (pred, supertrait_span));
}
}
self.check_elaborated_projection_mentions_input_lifetimes(
pred,
*spans.first().unwrap(),
supertrait_span,
);
}
_ => (),
}
}
}
// `dyn Trait<Assoc = Foo>` desugars to (not Rust syntax) `dyn Trait where
// <Self as Trait>::Assoc = Foo`. So every `Projection` clause is an
// `Assoc = Foo` bound. `needed_associated_types` contains all associated
// types that we expect to be provided by the user, so the following loop
// removes all the associated types that have a corresponding `Projection`
// clause, either from expanding trait aliases or written by the user.
for &(projection_bound, span) in projection_bounds.values() {
let def_id = projection_bound.item_def_id();
if tcx.generics_require_sized_self(def_id) {
tcx.emit_node_span_lint(
UNUSED_ASSOCIATED_TYPE_BOUNDS,
hir_id,
span,
crate::errors::UnusedAssociatedTypeBounds { span },
);
}
}
// We compute the list of projection bounds taking the ordered associated types,
// and check if there was an entry in the collected `projection_bounds`. Those
// are computed by first taking the user-written associated types, then elaborating
// the principal trait ref, and only using those if there was no user-written.
// See note below about how we handle missing associated types with `Self: Sized`,
// which are not required to be provided, but are still used if they are provided.
let mut missing_assoc_types = FxIndexSet::default();
let projection_bounds: Vec<_> = ordered_associated_types
.into_iter()
.filter_map(|key| {
if let Some(assoc) = projection_bounds.get(&key) {
Some(*assoc)
} else {
// If the associated type has a `where Self: Sized` bound, then
// we do not need to provide the associated type. This results in
// a `dyn Trait` type that has a different number of projection
// bounds, which may lead to type mismatches.
if !tcx.generics_require_sized_self(key.0) {
missing_assoc_types.insert(key);
}
None
}
})
.collect();
if let Err(guar) = self.check_for_required_assoc_tys(
principal_trait.as_ref().map_or(smallvec![], |(_, spans)| spans.clone()),
missing_assoc_types,
potential_assoc_types,
hir_bounds,
) {
return Ty::new_error(tcx, guar);
}
// De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
// `dyn Trait + Send`.
// We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
// the bounds
let mut duplicates = FxHashSet::default();
auto_traits.retain(|(trait_pred, _)| duplicates.insert(trait_pred.def_id()));
debug!(?principal_trait);
debug!(?auto_traits);
// Erase the `dummy_self` (`trait_object_dummy_self`) used above.
let principal_trait_ref = principal_trait.map(|(trait_pred, spans)| {
trait_pred.map_bound(|trait_pred| {
let trait_ref = trait_pred.trait_ref;
assert_eq!(trait_pred.polarity, ty::PredicatePolarity::Positive);
assert_eq!(trait_ref.self_ty(), dummy_self);
let span = *spans.first().unwrap();
// Verify that `dummy_self` did not leak inside default type parameters. This
// could not be done at path creation, since we need to see through trait aliases.
let mut missing_type_params = vec![];
let generics = tcx.generics_of(trait_ref.def_id);
let args: Vec<_> = trait_ref
.args
.iter()
.enumerate()
// Skip `Self`
.skip(1)
.map(|(index, arg)| {
if arg.walk().any(|arg| arg == dummy_self.into()) {
let param = &generics.own_params[index];
missing_type_params.push(param.name);
Ty::new_misc_error(tcx).into()
} else {
arg
}
})
.collect();
let empty_generic_args = hir_bounds.iter().any(|hir_bound| {
hir_bound.trait_ref.path.res == Res::Def(DefKind::Trait, trait_ref.def_id)
&& hir_bound.span.contains(span)
});
self.report_missing_type_params(
missing_type_params,
trait_ref.def_id,
span,
empty_generic_args,
);
ty::ExistentialPredicate::Trait(ty::ExistentialTraitRef::new(
tcx,
trait_ref.def_id,
args,
))
})
});
let existential_projections = projection_bounds.into_iter().map(|(bound, _)| {
bound.map_bound(|mut b| {
assert_eq!(b.projection_term.self_ty(), dummy_self);
// Like for trait refs, verify that `dummy_self` did not leak inside default type
// parameters.
let references_self = b.projection_term.args.iter().skip(1).any(|arg| {
if arg.walk().any(|arg| arg == dummy_self.into()) {
return true;
}
false
});
if references_self {
let guar = tcx
.dcx()
.span_delayed_bug(span, "trait object projection bounds reference `Self`");
b.projection_term = replace_dummy_self_with_error(tcx, b.projection_term, guar);
}
ty::ExistentialPredicate::Projection(ty::ExistentialProjection::erase_self_ty(
tcx, b,
))
})
});
let mut auto_trait_predicates: Vec<_> = auto_traits
.into_iter()
.map(|(trait_pred, _)| {
assert_eq!(trait_pred.polarity(), ty::PredicatePolarity::Positive);
assert_eq!(trait_pred.self_ty().skip_binder(), dummy_self);
ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_pred.def_id()))
})
.collect();
auto_trait_predicates.dedup();
// N.b. principal, projections, auto traits
// FIXME: This is actually wrong with multiple principals in regards to symbol mangling
let mut v = principal_trait_ref
.into_iter()
.chain(existential_projections)
.chain(auto_trait_predicates)
.collect::<SmallVec<[_; 8]>>();
v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
let existential_predicates = tcx.mk_poly_existential_predicates(&v);
// Use explicitly-specified region bound, unless the bound is missing.
let region_bound = if !lifetime.is_elided() {
self.lower_lifetime(lifetime, RegionInferReason::ExplicitObjectLifetime)
} else {
self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
// Curiously, we prefer object lifetime default for `+ '_`...
if tcx.named_bound_var(lifetime.hir_id).is_some() {
self.lower_lifetime(lifetime, RegionInferReason::ExplicitObjectLifetime)
} else {
let reason =
if let hir::LifetimeKind::ImplicitObjectLifetimeDefault = lifetime.kind {
if let hir::Node::Ty(hir::Ty {
kind: hir::TyKind::Ref(parent_lifetime, _),
..
}) = tcx.parent_hir_node(hir_id)
&& tcx.named_bound_var(parent_lifetime.hir_id).is_none()
{
// Parent lifetime must have failed to resolve. Don't emit a redundant error.
RegionInferReason::ExplicitObjectLifetime
} else {
RegionInferReason::ObjectLifetimeDefault
}
} else {
RegionInferReason::ExplicitObjectLifetime
};
self.re_infer(span, reason)
}
})
};
debug!(?region_bound);
Ty::new_dynamic(tcx, existential_predicates, region_bound)
}
/// Check that elaborating the principal of a trait ref doesn't lead to projections
/// that are unconstrained. This can happen because an otherwise unconstrained
/// *type variable* can be substituted with a type that has late-bound regions. See
/// `elaborated-predicates-unconstrained-late-bound.rs` for a test.
fn check_elaborated_projection_mentions_input_lifetimes(
&self,
pred: ty::PolyProjectionPredicate<'tcx>,
span: Span,
supertrait_span: Span,
) {
let tcx = self.tcx();
// Find any late-bound regions declared in `ty` that are not
// declared in the trait-ref or assoc_item. These are not well-formed.
//
// Example:
//
// for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
// for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
let late_bound_in_projection_term =
tcx.collect_constrained_late_bound_regions(pred.map_bound(|pred| pred.projection_term));
let late_bound_in_term =
tcx.collect_referenced_late_bound_regions(pred.map_bound(|pred| pred.term));
debug!(?late_bound_in_projection_term);
debug!(?late_bound_in_term);
// FIXME: point at the type params that don't have appropriate lifetimes:
// struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
// ---- ---- ^^^^^^^
// NOTE(associated_const_equality): This error should be impossible to trigger
// with associated const equality constraints.
self.validate_late_bound_regions(
late_bound_in_projection_term,
late_bound_in_term,
|br_name| {
let item_name = tcx.item_name(pred.item_def_id());
struct_span_code_err!(
self.dcx(),
span,
E0582,
"binding for associated type `{}` references {}, \
which does not appear in the trait input types",
item_name,
br_name
)
.with_span_label(supertrait_span, "due to this supertrait")
},
);
}
/// Prohibit or lint against *bare* trait object types depending on the edition.
///
/// *Bare* trait object types are ones that aren't preceded by the keyword `dyn`.
/// In edition 2021 and onward we emit a hard error for them.
fn prohibit_or_lint_bare_trait_object_ty(
&self,
span: Span,
hir_id: hir::HirId,
hir_bounds: &[hir::PolyTraitRef<'tcx>],
) -> Option<ErrorGuaranteed> {
let tcx = self.tcx();
let [poly_trait_ref, ..] = hir_bounds else { return None };
let in_path = match tcx.parent_hir_node(hir_id) {
hir::Node::Ty(hir::Ty {
kind: hir::TyKind::Path(hir::QPath::TypeRelative(qself, _)),
..
})
| hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Path(hir::QPath::TypeRelative(qself, _)),
..
})
| hir::Node::PatExpr(hir::PatExpr {
kind: hir::PatExprKind::Path(hir::QPath::TypeRelative(qself, _)),
..
}) if qself.hir_id == hir_id => true,
_ => false,
};
let needs_bracket = in_path
&& !tcx
.sess
.source_map()
.span_to_prev_source(span)
.ok()
.is_some_and(|s| s.trim_end().ends_with('<'));
let is_global = poly_trait_ref.trait_ref.path.is_global();
let mut sugg = vec![(
span.shrink_to_lo(),
format!(
"{}dyn {}",
if needs_bracket { "<" } else { "" },
if is_global { "(" } else { "" },
),
)];
if is_global || needs_bracket {
sugg.push((
span.shrink_to_hi(),
format!(
"{}{}",
if is_global { ")" } else { "" },
if needs_bracket { ">" } else { "" },
),
));
}
if span.edition().at_least_rust_2021() {
let mut diag = rustc_errors::struct_span_code_err!(
self.dcx(),
span,
E0782,
"{}",
"expected a type, found a trait"
);
if span.can_be_used_for_suggestions()
&& poly_trait_ref.trait_ref.trait_def_id().is_some()
&& !self.maybe_suggest_impl_trait(span, hir_id, hir_bounds, &mut diag)
&& !self.maybe_suggest_dyn_trait(hir_id, sugg, &mut diag)
{
self.maybe_suggest_add_generic_impl_trait(span, hir_id, &mut diag);
}
// Check if the impl trait that we are considering is an impl of a local trait.
self.maybe_suggest_blanket_trait_impl(span, hir_id, &mut diag);
self.maybe_suggest_assoc_ty_bound(hir_id, &mut diag);
self.maybe_suggest_typoed_method(
hir_id,
poly_trait_ref.trait_ref.trait_def_id(),
&mut diag,
);
// In case there is an associated type with the same name
// Add the suggestion to this error
if let Some(mut sugg) =
self.dcx().steal_non_err(span, StashKey::AssociatedTypeSuggestion)
&& let Suggestions::Enabled(ref mut s1) = diag.suggestions
&& let Suggestions::Enabled(ref mut s2) = sugg.suggestions
{
s1.append(s2);
sugg.cancel();
}
Some(diag.emit())
} else {
tcx.node_span_lint(BARE_TRAIT_OBJECTS, hir_id, span, |lint| {
lint.primary_message("trait objects without an explicit `dyn` are deprecated");
if span.can_be_used_for_suggestions() {
lint.multipart_suggestion_verbose(
"if this is a dyn-compatible trait, use `dyn`",
sugg,
Applicability::MachineApplicable,
);
}
self.maybe_suggest_blanket_trait_impl(span, hir_id, lint);
});
None
}
}
/// For a struct or enum with an invalid bare trait object field, suggest turning
/// it into a generic type bound.
fn maybe_suggest_add_generic_impl_trait(
&self,
span: Span,
hir_id: hir::HirId,
diag: &mut Diag<'_>,
) -> bool {
let tcx = self.tcx();
let parent_hir_id = tcx.parent_hir_id(hir_id);
let parent_item = tcx.hir_get_parent_item(hir_id).def_id;
let generics = match tcx.hir_node_by_def_id(parent_item) {
hir::Node::Item(hir::Item {
kind: hir::ItemKind::Struct(_, generics, variant),
..
}) => {
if !variant.fields().iter().any(|field| field.hir_id == parent_hir_id) {
return false;
}
generics
}
hir::Node::Item(hir::Item { kind: hir::ItemKind::Enum(_, generics, def), .. }) => {
if !def
.variants
.iter()
.flat_map(|variant| variant.data.fields().iter())
.any(|field| field.hir_id == parent_hir_id)
{
return false;
}
generics
}
_ => return false,
};
let Ok(rendered_ty) = tcx.sess.source_map().span_to_snippet(span) else {
return false;
};
let param = "TUV"
.chars()
.map(|c| c.to_string())
.chain((0..).map(|i| format!("P{i}")))
.find(|s| !generics.params.iter().any(|param| param.name.ident().as_str() == s))
.expect("we definitely can find at least one param name to generate");
let mut sugg = vec![(span, param.to_string())];
if let Some(insertion_span) = generics.span_for_param_suggestion() {
sugg.push((insertion_span, format!(", {param}: {}", rendered_ty)));
} else {
sugg.push((generics.where_clause_span, format!("<{param}: {}>", rendered_ty)));
}
diag.multipart_suggestion_verbose(
"you might be missing a type parameter",
sugg,
Applicability::MachineApplicable,
);
true
}
/// Make sure that we are in the condition to suggest the blanket implementation.
fn maybe_suggest_blanket_trait_impl<G: EmissionGuarantee>(
&self,
span: Span,
hir_id: hir::HirId,
diag: &mut Diag<'_, G>,
) {
let tcx = self.tcx();
let parent_id = tcx.hir_get_parent_item(hir_id).def_id;
if let hir::Node::Item(hir::Item {
kind: hir::ItemKind::Impl(hir::Impl { self_ty: impl_self_ty, of_trait, generics, .. }),
..
}) = tcx.hir_node_by_def_id(parent_id)
&& hir_id == impl_self_ty.hir_id
{
let Some(of_trait) = of_trait else {
diag.span_suggestion_verbose(
impl_self_ty.span.shrink_to_hi(),
"you might have intended to implement this trait for a given type",
format!(" for /* Type */"),
Applicability::HasPlaceholders,
);
return;
};
if !of_trait.trait_ref.trait_def_id().is_some_and(|def_id| def_id.is_local()) {
return;
}
let of_trait_span = of_trait.trait_ref.path.span;
// make sure that we are not calling unwrap to abort during the compilation
let Ok(of_trait_name) = tcx.sess.source_map().span_to_snippet(of_trait_span) else {
return;
};
let Ok(impl_trait_name) = self.tcx().sess.source_map().span_to_snippet(span) else {
return;
};
let sugg = self.add_generic_param_suggestion(generics, span, &impl_trait_name);
diag.multipart_suggestion(
format!(
"alternatively use a blanket implementation to implement `{of_trait_name}` for \
all types that also implement `{impl_trait_name}`"
),
sugg,
Applicability::MaybeIncorrect,
);
}
}
/// Try our best to approximate when adding `dyn` would be helpful for a bare
/// trait object.
///
/// Right now, this is if the type is either directly nested in another ty,
/// or if it's in the tail field within a struct. This approximates what the
/// user would've gotten on edition 2015, except for the case where we have
/// an *obvious* knock-on `Sized` error.
fn maybe_suggest_dyn_trait(
&self,
hir_id: hir::HirId,
sugg: Vec<(Span, String)>,
diag: &mut Diag<'_>,
) -> bool {
let tcx = self.tcx();
// Look at the direct HIR parent, since we care about the relationship between
// the type and the thing that directly encloses it.
match tcx.parent_hir_node(hir_id) {
// These are all generally ok. Namely, when a trait object is nested
// into another expression or ty, it's either very certain that they
// missed the ty (e.g. `&Trait`) or it's not really possible to tell
// what their intention is, so let's not give confusing suggestions and
// just mention `dyn`. The user can make up their mind what to do here.
hir::Node::Ty(_)
| hir::Node::Expr(_)
| hir::Node::PatExpr(_)
| hir::Node::PathSegment(_)
| hir::Node::AssocItemConstraint(_)
| hir::Node::TraitRef(_)
| hir::Node::Item(_)
| hir::Node::WherePredicate(_) => {}
hir::Node::Field(field) => {
// Enums can't have unsized fields, fields can only have an unsized tail field.
if let hir::Node::Item(hir::Item {
kind: hir::ItemKind::Struct(_, _, variant), ..
}) = tcx.parent_hir_node(field.hir_id)
&& variant
.fields()
.last()
.is_some_and(|tail_field| tail_field.hir_id == field.hir_id)
{
// Ok
} else {
return false;
}
}
_ => return false,
}
// FIXME: Only emit this suggestion if the trait is dyn-compatible.
diag.multipart_suggestion_verbose(
"you can add the `dyn` keyword if you want a trait object",
sugg,
Applicability::MachineApplicable,
);
true
}
fn add_generic_param_suggestion(
&self,
generics: &hir::Generics<'_>,
self_ty_span: Span,
impl_trait_name: &str,
) -> Vec<(Span, String)> {
// check if the trait has generics, to make a correct suggestion
let param_name = generics.params.next_type_param_name(None);
let add_generic_sugg = if let Some(span) = generics.span_for_param_suggestion() {
(span, format!(", {param_name}: {impl_trait_name}"))
} else {
(generics.span, format!("<{param_name}: {impl_trait_name}>"))
};
vec![(self_ty_span, param_name), add_generic_sugg]
}
/// Make sure that we are in the condition to suggest `impl Trait`.
fn maybe_suggest_impl_trait(
&self,
span: Span,
hir_id: hir::HirId,
hir_bounds: &[hir::PolyTraitRef<'tcx>],
diag: &mut Diag<'_>,
) -> bool {
let tcx = self.tcx();
let parent_id = tcx.hir_get_parent_item(hir_id).def_id;
// FIXME: If `type_alias_impl_trait` is enabled, also look for `Trait0<Ty = Trait1>`
// and suggest `Trait0<Ty = impl Trait1>`.
// Functions are found in three different contexts.
// 1. Independent functions
// 2. Functions inside trait blocks
// 3. Functions inside impl blocks
let (sig, generics) = match tcx.hir_node_by_def_id(parent_id) {
hir::Node::Item(hir::Item {
kind: hir::ItemKind::Fn { sig, generics, .. }, ..
}) => (sig, generics),
hir::Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Fn(sig, _),
generics,
..
}) => (sig, generics),
hir::Node::ImplItem(hir::ImplItem {
kind: hir::ImplItemKind::Fn(sig, _),
generics,
..
}) => (sig, generics),
_ => return false,
};
let Ok(trait_name) = tcx.sess.source_map().span_to_snippet(span) else {
return false;
};
let impl_sugg = vec![(span.shrink_to_lo(), "impl ".to_string())];
// Check if trait object is safe for suggesting dynamic dispatch.
let is_dyn_compatible = hir_bounds.iter().all(|bound| match bound.trait_ref.path.res {
Res::Def(DefKind::Trait, id) => tcx.is_dyn_compatible(id),
_ => false,
});
let borrowed = matches!(
tcx.parent_hir_node(hir_id),
hir::Node::Ty(hir::Ty { kind: hir::TyKind::Ref(..), .. })
);
// Suggestions for function return type.
if let hir::FnRetTy::Return(ty) = sig.decl.output
&& ty.peel_refs().hir_id == hir_id
{
let pre = if !is_dyn_compatible {
format!("`{trait_name}` is dyn-incompatible, ")
} else {
String::new()
};
let msg = format!(
"{pre}use `impl {trait_name}` to return an opaque type, as long as you return a \
single underlying type",
);
diag.multipart_suggestion_verbose(msg, impl_sugg, Applicability::MachineApplicable);
// Suggest `Box<dyn Trait>` for return type
if is_dyn_compatible {
// If the return type is `&Trait`, we don't want
// the ampersand to be displayed in the `Box<dyn Trait>`
// suggestion.
let suggestion = if borrowed {
vec![(ty.span, format!("Box<dyn {trait_name}>"))]
} else {
vec![
(ty.span.shrink_to_lo(), "Box<dyn ".to_string()),
(ty.span.shrink_to_hi(), ">".to_string()),
]
};
diag.multipart_suggestion_verbose(
"alternatively, you can return an owned trait object",
suggestion,
Applicability::MachineApplicable,
);
}
return true;
}
// Suggestions for function parameters.
for ty in sig.decl.inputs {
if ty.peel_refs().hir_id != hir_id {
continue;
}
let sugg = self.add_generic_param_suggestion(generics, span, &trait_name);
diag.multipart_suggestion_verbose(
format!("use a new generic type parameter, constrained by `{trait_name}`"),
sugg,
Applicability::MachineApplicable,
);
diag.multipart_suggestion_verbose(
"you can also use an opaque type, but users won't be able to specify the type \
parameter when calling the `fn`, having to rely exclusively on type inference",
impl_sugg,
Applicability::MachineApplicable,
);
if !is_dyn_compatible {
diag.note(format!(
"`{trait_name}` is dyn-incompatible, otherwise a trait object could be used"
));
} else {
// No ampersand in suggestion if it's borrowed already
let (dyn_str, paren_dyn_str) =
if borrowed { ("dyn ", "(dyn ") } else { ("&dyn ", "&(dyn ") };
let sugg = if let [_, _, ..] = hir_bounds {
// There is more than one trait bound, we need surrounding parentheses.
vec![
(span.shrink_to_lo(), paren_dyn_str.to_string()),
(span.shrink_to_hi(), ")".to_string()),
]
} else {
vec![(span.shrink_to_lo(), dyn_str.to_string())]
};
diag.multipart_suggestion_verbose(
format!(
"alternatively, use a trait object to accept any type that implements \
`{trait_name}`, accessing its methods at runtime using dynamic dispatch",
),
sugg,
Applicability::MachineApplicable,
);
}
return true;
}
false
}
fn maybe_suggest_assoc_ty_bound(&self, hir_id: hir::HirId, diag: &mut Diag<'_>) {
let mut parents = self.tcx().hir_parent_iter(hir_id);
if let Some((c_hir_id, hir::Node::AssocItemConstraint(constraint))) = parents.next()
&& let Some(obj_ty) = constraint.ty()
&& let Some((_, hir::Node::TraitRef(trait_ref))) = parents.next()
{
if let Some((_, hir::Node::Ty(ty))) = parents.next()
&& let hir::TyKind::TraitObject(..) = ty.kind
{
// Assoc ty bounds aren't permitted inside trait object types.
return;
}
if trait_ref
.path
.segments
.iter()
.find_map(|seg| {
seg.args.filter(|args| args.constraints.iter().any(|c| c.hir_id == c_hir_id))
})
.is_none_or(|args| args.parenthesized != hir::GenericArgsParentheses::No)
{
// Only consider angle-bracketed args (where we have a `=` to replace with `:`).
return;
}
let lo = if constraint.gen_args.span_ext.is_dummy() {
constraint.ident.span
} else {
constraint.gen_args.span_ext
};
let hi = obj_ty.span;
if !lo.eq_ctxt(hi) {
return;
}
diag.span_suggestion_verbose(
lo.between(hi),
"you might have meant to write a bound here",
": ",
Applicability::MaybeIncorrect,
);
}
}
fn maybe_suggest_typoed_method(
&self,
hir_id: hir::HirId,
trait_def_id: Option<DefId>,
diag: &mut Diag<'_>,
) {
let tcx = self.tcx();
let Some(trait_def_id) = trait_def_id else {
return;
};
let hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Path(hir::QPath::TypeRelative(path_ty, segment)),
..
}) = tcx.parent_hir_node(hir_id)
else {
return;
};
if path_ty.hir_id != hir_id {
return;
}
let names: Vec<_> = tcx
.associated_items(trait_def_id)
.in_definition_order()
.filter(|assoc| assoc.namespace() == hir::def::Namespace::ValueNS)
.map(|cand| cand.name())
.collect();
if let Some(typo) = find_best_match_for_name(&names, segment.ident.name, None) {
diag.span_suggestion_verbose(
segment.ident.span,
format!(
"you may have misspelled this associated item, causing `{}` \
to be interpreted as a type rather than a trait",
tcx.item_name(trait_def_id),
),
typo,
Applicability::MaybeIncorrect,
);
}
}
}
fn replace_dummy_self_with_error<'tcx, T: TypeFoldable<TyCtxt<'tcx>>>(
tcx: TyCtxt<'tcx>,
t: T,
guar: ErrorGuaranteed,
) -> T {
t.fold_with(&mut BottomUpFolder {
tcx,
ty_op: |ty| {
if ty == tcx.types.trait_object_dummy_self { Ty::new_error(tcx, guar) } else { ty }
},
lt_op: |lt| lt,
ct_op: |ct| ct,
})
}
|