1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
use rustc_errors::Applicability;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::LocalDefId;
use rustc_hir::{self as hir};
use rustc_macros::LintDiagnostic;
use rustc_middle::ty::{self, Ty};
use rustc_session::{declare_lint, impl_lint_pass};
use rustc_span::sym;
use crate::{LateContext, LateLintPass};
declare_lint! {
/// The `ptr_to_integer_transmute_in_consts` lint detects pointer to integer
/// transmute in const functions and associated constants.
///
/// ### Example
///
/// ```rust
/// const fn foo(ptr: *const u8) -> usize {
/// unsafe {
/// std::mem::transmute::<*const u8, usize>(ptr)
/// }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Transmuting pointers to integers in a `const` context is undefined behavior.
/// Any attempt to use the resulting integer will abort const-evaluation.
///
/// But sometimes the compiler might not emit an error for pointer to integer transmutes
/// inside const functions and associated consts because they are evaluated only when referenced.
/// Therefore, this lint serves as an extra layer of defense to prevent any undefined behavior
/// from compiling without any warnings or errors.
///
/// See [std::mem::transmute] in the reference for more details.
///
/// [std::mem::transmute]: https://doc.rust-lang.org/std/mem/fn.transmute.html
pub PTR_TO_INTEGER_TRANSMUTE_IN_CONSTS,
Warn,
"detects pointer to integer transmutes in const functions and associated constants",
}
declare_lint! {
/// The `unnecessary_transmutes` lint detects transmutations that have safer alternatives.
///
/// ### Example
///
/// ```rust
/// fn bytes_at_home(x: [u8; 4]) -> u32 {
/// unsafe { std::mem::transmute(x) }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Using an explicit method is preferable over calls to
/// [`transmute`](https://doc.rust-lang.org/std/mem/fn.transmute.html) as
/// they more clearly communicate the intent, are easier to review, and
/// are less likely to accidentally result in unsoundness.
pub UNNECESSARY_TRANSMUTES,
Warn,
"detects transmutes that can also be achieved by other operations"
}
pub(crate) struct CheckTransmutes;
impl_lint_pass!(CheckTransmutes => [PTR_TO_INTEGER_TRANSMUTE_IN_CONSTS, UNNECESSARY_TRANSMUTES]);
impl<'tcx> LateLintPass<'tcx> for CheckTransmutes {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
let hir::ExprKind::Call(callee, [arg]) = expr.kind else {
return;
};
let hir::ExprKind::Path(qpath) = callee.kind else {
return;
};
let Res::Def(DefKind::Fn, def_id) = cx.qpath_res(&qpath, callee.hir_id) else {
return;
};
if !cx.tcx.is_intrinsic(def_id, sym::transmute) {
return;
};
let body_owner_def_id = cx.tcx.hir_enclosing_body_owner(expr.hir_id);
let const_context = cx.tcx.hir_body_const_context(body_owner_def_id);
let args = cx.typeck_results().node_args(callee.hir_id);
let src = args.type_at(0);
let dst = args.type_at(1);
check_ptr_transmute_in_const(cx, expr, body_owner_def_id, const_context, src, dst);
check_unnecessary_transmute(cx, expr, callee, arg, const_context, src, dst);
}
}
/// Check for transmutes that exhibit undefined behavior.
/// For example, transmuting pointers to integers in a const context.
///
/// Why do we consider const functions and associated constants only?
///
/// Generally, undefined behavior in const items are handled by the evaluator.
/// But, const functions and associated constants are evaluated only when referenced.
/// This can result in undefined behavior in a library going unnoticed until
/// the function or constant is actually used.
///
/// Therefore, we only consider const functions and associated constants here and leave
/// other const items to be handled by the evaluator.
fn check_ptr_transmute_in_const<'tcx>(
cx: &LateContext<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
body_owner_def_id: LocalDefId,
const_context: Option<hir::ConstContext>,
src: Ty<'tcx>,
dst: Ty<'tcx>,
) {
if matches!(const_context, Some(hir::ConstContext::ConstFn))
|| matches!(cx.tcx.def_kind(body_owner_def_id), DefKind::AssocConst)
{
if src.is_raw_ptr() && dst.is_integral() {
cx.tcx.emit_node_span_lint(
PTR_TO_INTEGER_TRANSMUTE_IN_CONSTS,
expr.hir_id,
expr.span,
UndefinedTransmuteLint,
);
}
}
}
/// Check for transmutes that overlap with stdlib methods.
/// For example, transmuting `[u8; 4]` to `u32`.
///
/// We chose not to lint u8 -> bool transmutes, see #140431.
fn check_unnecessary_transmute<'tcx>(
cx: &LateContext<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
callee: &'tcx hir::Expr<'tcx>,
arg: &'tcx hir::Expr<'tcx>,
const_context: Option<hir::ConstContext>,
src: Ty<'tcx>,
dst: Ty<'tcx>,
) {
let callee_span = callee.span.find_ancestor_inside(expr.span).unwrap_or(callee.span);
let (sugg, help) = match (src.kind(), dst.kind()) {
// dont check the length; transmute does that for us.
// [u8; _] => primitive
(ty::Array(t, _), ty::Uint(_) | ty::Float(_) | ty::Int(_))
if *t.kind() == ty::Uint(ty::UintTy::U8) =>
{
(
Some(vec![(callee_span, format!("{dst}::from_ne_bytes"))]),
Some(
"there's also `from_le_bytes` and `from_be_bytes` if you expect a particular byte order",
),
)
}
// primitive => [u8; _]
(ty::Uint(_) | ty::Float(_) | ty::Int(_), ty::Array(t, _))
if *t.kind() == ty::Uint(ty::UintTy::U8) =>
{
(
Some(vec![(callee_span, format!("{src}::to_ne_bytes"))]),
Some(
"there's also `to_le_bytes` and `to_be_bytes` if you expect a particular byte order",
),
)
}
// char → u32
(ty::Char, ty::Uint(ty::UintTy::U32)) => {
(Some(vec![(callee_span, "u32::from".to_string())]), None)
}
// char (→ u32) → i32
(ty::Char, ty::Int(ty::IntTy::I32)) => (
Some(vec![
(callee_span, "u32::from".to_string()),
(expr.span.shrink_to_hi(), ".cast_signed()".to_string()),
]),
None,
),
// u32 → char
(ty::Uint(ty::UintTy::U32), ty::Char) => (
Some(vec![(callee_span, "char::from_u32_unchecked".to_string())]),
Some("consider using `char::from_u32(…).unwrap()`"),
),
// i32 → char
(ty::Int(ty::IntTy::I32), ty::Char) => (
Some(vec![
(callee_span, "char::from_u32_unchecked(i32::cast_unsigned".to_string()),
(expr.span.shrink_to_hi(), ")".to_string()),
]),
Some("consider using `char::from_u32(i32::cast_unsigned(…)).unwrap()`"),
),
// uNN → iNN
(ty::Uint(_), ty::Int(_)) => {
(Some(vec![(callee_span, format!("{src}::cast_signed"))]), None)
}
// iNN → uNN
(ty::Int(_), ty::Uint(_)) => {
(Some(vec![(callee_span, format!("{src}::cast_unsigned"))]), None)
}
// fNN → usize, isize
(ty::Float(_), ty::Uint(ty::UintTy::Usize) | ty::Int(ty::IntTy::Isize)) => (
Some(vec![
(callee_span, format!("{src}::to_bits")),
(expr.span.shrink_to_hi(), format!(" as {dst}")),
]),
None,
),
// fNN (→ uNN) → iNN
(ty::Float(_), ty::Int(..)) => (
Some(vec![
(callee_span, format!("{src}::to_bits")),
(expr.span.shrink_to_hi(), ".cast_signed()".to_string()),
]),
None,
),
// fNN → uNN
(ty::Float(_), ty::Uint(..)) => {
(Some(vec![(callee_span, format!("{src}::to_bits"))]), None)
}
// xsize → fNN
(ty::Uint(ty::UintTy::Usize) | ty::Int(ty::IntTy::Isize), ty::Float(_)) => (
Some(vec![
(callee_span, format!("{dst}::from_bits")),
(arg.span.shrink_to_hi(), " as _".to_string()),
]),
None,
),
// iNN (→ uNN) → fNN
(ty::Int(_), ty::Float(_)) => (
Some(vec![
(callee_span, format!("{dst}::from_bits({src}::cast_unsigned")),
(expr.span.shrink_to_hi(), ")".to_string()),
]),
None,
),
// uNN → fNN
(ty::Uint(_), ty::Float(_)) => {
(Some(vec![(callee_span, format!("{dst}::from_bits"))]), None)
}
// bool → x8 in const context since `From::from` is not const yet
// FIXME: Consider arg expr's precedence to avoid parentheses.
// FIXME(const_traits): Remove this when `From::from` is constified.
(ty::Bool, ty::Int(..) | ty::Uint(..)) if const_context.is_some() => (
Some(vec![
(callee_span, "".to_string()),
(expr.span.shrink_to_hi(), format!(" as {dst}")),
]),
None,
),
// bool → x8 using `x8::from`
(ty::Bool, ty::Int(..) | ty::Uint(..)) => {
(Some(vec![(callee_span, format!("{dst}::from"))]), None)
}
_ => return,
};
cx.tcx.node_span_lint(UNNECESSARY_TRANSMUTES, expr.hir_id, expr.span, |diag| {
diag.primary_message("unnecessary transmute");
if let Some(sugg) = sugg {
diag.multipart_suggestion("replace this with", sugg, Applicability::MachineApplicable);
}
if let Some(help) = help {
diag.help(help);
}
});
}
#[derive(LintDiagnostic)]
#[diag(lint_undefined_transmute)]
#[note]
#[note(lint_note2)]
#[help]
pub(crate) struct UndefinedTransmuteLint;
|