about summary refs log tree commit diff
path: root/compiler/rustc_parse/src/parser/item.rs
blob: 39d4875f37b1d883c0c1edfaadbfb8d8eba412da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
use super::diagnostics::{dummy_arg, ConsumeClosingDelim, Error};
use super::ty::{AllowPlus, RecoverQPath};
use super::{FollowedByType, Parser, PathStyle};

use crate::maybe_whole;

use rustc_ast::ptr::P;
use rustc_ast::token::{self, TokenKind};
use rustc_ast::tokenstream::{DelimSpan, TokenStream, TokenTree};
use rustc_ast::{self as ast, AttrStyle, AttrVec, Attribute, DUMMY_NODE_ID};
use rustc_ast::{AssocItem, AssocItemKind, ForeignItemKind, Item, ItemKind, Mod};
use rustc_ast::{Async, Const, Defaultness, IsAuto, Mutability, Unsafe, UseTree, UseTreeKind};
use rustc_ast::{BindingMode, Block, FnDecl, FnSig, Param, SelfKind};
use rustc_ast::{EnumDef, Generics, StructField, TraitRef, Ty, TyKind, Variant, VariantData};
use rustc_ast::{FnHeader, ForeignItem, Path, PathSegment, Visibility, VisibilityKind};
use rustc_ast::{MacArgs, MacCall, MacDelimiter};
use rustc_ast_pretty::pprust;
use rustc_errors::{struct_span_err, Applicability, PResult, StashKey};
use rustc_span::edition::Edition;
use rustc_span::source_map::{self, Span};
use rustc_span::symbol::{kw, sym, Ident, Symbol};

use std::convert::TryFrom;
use std::mem;
use tracing::debug;

impl<'a> Parser<'a> {
    /// Parses a source module as a crate. This is the main entry point for the parser.
    pub fn parse_crate_mod(&mut self) -> PResult<'a, ast::Crate> {
        let lo = self.token.span;
        let (module, attrs) = self.parse_mod(&token::Eof, Unsafe::No)?;
        let span = lo.to(self.token.span);
        let proc_macros = Vec::new(); // Filled in by `proc_macro_harness::inject()`.
        Ok(ast::Crate { attrs, module, span, proc_macros })
    }

    /// Parses a `mod <foo> { ... }` or `mod <foo>;` item.
    fn parse_item_mod(&mut self, attrs: &mut Vec<Attribute>) -> PResult<'a, ItemInfo> {
        let unsafety = self.parse_unsafety();
        self.expect_keyword(kw::Mod)?;
        let id = self.parse_ident()?;
        let (module, mut inner_attrs) = if self.eat(&token::Semi) {
            (Mod { inner: Span::default(), unsafety, items: Vec::new(), inline: false }, Vec::new())
        } else {
            self.expect(&token::OpenDelim(token::Brace))?;
            self.parse_mod(&token::CloseDelim(token::Brace), unsafety)?
        };
        attrs.append(&mut inner_attrs);
        Ok((id, ItemKind::Mod(module)))
    }

    /// Parses the contents of a module (inner attributes followed by module items).
    pub fn parse_mod(
        &mut self,
        term: &TokenKind,
        unsafety: Unsafe,
    ) -> PResult<'a, (Mod, Vec<Attribute>)> {
        let lo = self.token.span;
        let attrs = self.parse_inner_attributes()?;
        let module = self.parse_mod_items(term, lo, unsafety)?;
        Ok((module, attrs))
    }

    /// Given a termination token, parses all of the items in a module.
    fn parse_mod_items(
        &mut self,
        term: &TokenKind,
        inner_lo: Span,
        unsafety: Unsafe,
    ) -> PResult<'a, Mod> {
        let mut items = vec![];
        while let Some(item) = self.parse_item()? {
            items.push(item);
            self.maybe_consume_incorrect_semicolon(&items);
        }

        if !self.eat(term) {
            let token_str = super::token_descr(&self.token);
            if !self.maybe_consume_incorrect_semicolon(&items) {
                let msg = &format!("expected item, found {}", token_str);
                let mut err = self.struct_span_err(self.token.span, msg);
                err.span_label(self.token.span, "expected item");
                return Err(err);
            }
        }

        let hi = if self.token.span.is_dummy() { inner_lo } else { self.prev_token.span };

        Ok(Mod { inner: inner_lo.to(hi), unsafety, items, inline: true })
    }
}

pub(super) type ItemInfo = (Ident, ItemKind);

impl<'a> Parser<'a> {
    pub fn parse_item(&mut self) -> PResult<'a, Option<P<Item>>> {
        self.parse_item_(|_| true).map(|i| i.map(P))
    }

    fn parse_item_(&mut self, req_name: ReqName) -> PResult<'a, Option<Item>> {
        let attrs = self.parse_outer_attributes()?;
        self.parse_item_common(attrs, true, false, req_name)
    }

    pub(super) fn parse_item_common(
        &mut self,
        mut attrs: Vec<Attribute>,
        mac_allowed: bool,
        attrs_allowed: bool,
        req_name: ReqName,
    ) -> PResult<'a, Option<Item>> {
        maybe_whole!(self, NtItem, |item| {
            let mut item = item;
            mem::swap(&mut item.attrs, &mut attrs);
            item.attrs.extend(attrs);
            Some(item.into_inner())
        });

        let needs_tokens = super::attr::maybe_needs_tokens(&attrs);

        let mut unclosed_delims = vec![];
        let parse_item = |this: &mut Self| {
            let item = this.parse_item_common_(attrs, mac_allowed, attrs_allowed, req_name);
            unclosed_delims.append(&mut this.unclosed_delims);
            item
        };

        let (mut item, tokens) = if needs_tokens {
            let (item, tokens) = self.collect_tokens(parse_item)?;
            (item, Some(tokens))
        } else {
            (parse_item(self)?, None)
        };

        self.unclosed_delims.append(&mut unclosed_delims);

        // Once we've parsed an item and recorded the tokens we got while
        // parsing we may want to store `tokens` into the item we're about to
        // return. Note, though, that we specifically didn't capture tokens
        // related to outer attributes. The `tokens` field here may later be
        // used with procedural macros to convert this item back into a token
        // stream, but during expansion we may be removing attributes as we go
        // along.
        //
        // If we've got inner attributes then the `tokens` we've got above holds
        // these inner attributes. If an inner attribute is expanded we won't
        // actually remove it from the token stream, so we'll just keep yielding
        // it (bad!). To work around this case for now we just avoid recording
        // `tokens` if we detect any inner attributes. This should help keep
        // expansion correct, but we should fix this bug one day!
        if let Some(tokens) = tokens {
            if let Some(item) = &mut item {
                if !item.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) {
                    item.tokens = tokens;
                }
            }
        }
        Ok(item)
    }

    fn parse_item_common_(
        &mut self,
        mut attrs: Vec<Attribute>,
        mac_allowed: bool,
        attrs_allowed: bool,
        req_name: ReqName,
    ) -> PResult<'a, Option<Item>> {
        let lo = self.token.span;
        let vis = self.parse_visibility(FollowedByType::No)?;
        let mut def = self.parse_defaultness();
        let kind = self.parse_item_kind(&mut attrs, mac_allowed, lo, &vis, &mut def, req_name)?;
        if let Some((ident, kind)) = kind {
            self.error_on_unconsumed_default(def, &kind);
            let span = lo.to(self.prev_token.span);
            let id = DUMMY_NODE_ID;
            let item = Item { ident, attrs, id, kind, vis, span, tokens: None };
            return Ok(Some(item));
        }

        // At this point, we have failed to parse an item.
        self.error_on_unmatched_vis(&vis);
        self.error_on_unmatched_defaultness(def);
        if !attrs_allowed {
            self.recover_attrs_no_item(&attrs)?;
        }
        Ok(None)
    }

    /// Error in-case a non-inherited visibility was parsed but no item followed.
    fn error_on_unmatched_vis(&self, vis: &Visibility) {
        if let VisibilityKind::Inherited = vis.kind {
            return;
        }
        let vs = pprust::vis_to_string(&vis);
        let vs = vs.trim_end();
        self.struct_span_err(vis.span, &format!("visibility `{}` is not followed by an item", vs))
            .span_label(vis.span, "the visibility")
            .help(&format!("you likely meant to define an item, e.g., `{} fn foo() {{}}`", vs))
            .emit();
    }

    /// Error in-case a `default` was parsed but no item followed.
    fn error_on_unmatched_defaultness(&self, def: Defaultness) {
        if let Defaultness::Default(sp) = def {
            self.struct_span_err(sp, "`default` is not followed by an item")
                .span_label(sp, "the `default` qualifier")
                .note("only `fn`, `const`, `type`, or `impl` items may be prefixed by `default`")
                .emit();
        }
    }

    /// Error in-case `default` was parsed in an in-appropriate context.
    fn error_on_unconsumed_default(&self, def: Defaultness, kind: &ItemKind) {
        if let Defaultness::Default(span) = def {
            let msg = format!("{} {} cannot be `default`", kind.article(), kind.descr());
            self.struct_span_err(span, &msg)
                .span_label(span, "`default` because of this")
                .note("only associated `fn`, `const`, and `type` items can be `default`")
                .emit();
        }
    }

    /// Parses one of the items allowed by the flags.
    fn parse_item_kind(
        &mut self,
        attrs: &mut Vec<Attribute>,
        macros_allowed: bool,
        lo: Span,
        vis: &Visibility,
        def: &mut Defaultness,
        req_name: ReqName,
    ) -> PResult<'a, Option<ItemInfo>> {
        let mut def = || mem::replace(def, Defaultness::Final);

        let info = if self.eat_keyword(kw::Use) {
            // USE ITEM
            let tree = self.parse_use_tree()?;
            self.expect_semi()?;
            (Ident::invalid(), ItemKind::Use(P(tree)))
        } else if self.check_fn_front_matter() {
            // FUNCTION ITEM
            let (ident, sig, generics, body) = self.parse_fn(attrs, req_name, lo)?;
            (ident, ItemKind::Fn(def(), sig, generics, body))
        } else if self.eat_keyword(kw::Extern) {
            if self.eat_keyword(kw::Crate) {
                // EXTERN CRATE
                self.parse_item_extern_crate()?
            } else {
                // EXTERN BLOCK
                self.parse_item_foreign_mod(attrs, Unsafe::No)?
            }
        } else if self.is_unsafe_foreign_mod() {
            // EXTERN BLOCK
            let unsafety = self.parse_unsafety();
            self.expect_keyword(kw::Extern)?;
            self.parse_item_foreign_mod(attrs, unsafety)?
        } else if self.is_static_global() {
            // STATIC ITEM
            self.bump(); // `static`
            let m = self.parse_mutability();
            let (ident, ty, expr) = self.parse_item_global(Some(m))?;
            (ident, ItemKind::Static(ty, m, expr))
        } else if let Const::Yes(const_span) = self.parse_constness() {
            // CONST ITEM
            self.recover_const_mut(const_span);
            let (ident, ty, expr) = self.parse_item_global(None)?;
            (ident, ItemKind::Const(def(), ty, expr))
        } else if self.check_keyword(kw::Trait) || self.check_auto_or_unsafe_trait_item() {
            // TRAIT ITEM
            self.parse_item_trait(attrs, lo)?
        } else if self.check_keyword(kw::Impl)
            || self.check_keyword(kw::Unsafe) && self.is_keyword_ahead(1, &[kw::Impl])
        {
            // IMPL ITEM
            self.parse_item_impl(attrs, def())?
        } else if self.check_keyword(kw::Mod)
            || self.check_keyword(kw::Unsafe) && self.is_keyword_ahead(1, &[kw::Mod])
        {
            // MODULE ITEM
            self.parse_item_mod(attrs)?
        } else if self.eat_keyword(kw::Type) {
            // TYPE ITEM
            self.parse_type_alias(def())?
        } else if self.eat_keyword(kw::Enum) {
            // ENUM ITEM
            self.parse_item_enum()?
        } else if self.eat_keyword(kw::Struct) {
            // STRUCT ITEM
            self.parse_item_struct()?
        } else if self.is_kw_followed_by_ident(kw::Union) {
            // UNION ITEM
            self.bump(); // `union`
            self.parse_item_union()?
        } else if self.eat_keyword(kw::Macro) {
            // MACROS 2.0 ITEM
            self.parse_item_decl_macro(lo)?
        } else if self.is_macro_rules_item() {
            // MACRO_RULES ITEM
            self.parse_item_macro_rules(vis)?
        } else if vis.kind.is_pub() && self.isnt_macro_invocation() {
            self.recover_missing_kw_before_item()?;
            return Ok(None);
        } else if macros_allowed && self.check_path() {
            // MACRO INVOCATION ITEM
            (Ident::invalid(), ItemKind::MacCall(self.parse_item_macro(vis)?))
        } else {
            return Ok(None);
        };
        Ok(Some(info))
    }

    /// When parsing a statement, would the start of a path be an item?
    pub(super) fn is_path_start_item(&mut self) -> bool {
        self.is_crate_vis() // no: `crate::b`, yes: `crate $item`
        || self.is_kw_followed_by_ident(kw::Union) // no: `union::b`, yes: `union U { .. }`
        || self.check_auto_or_unsafe_trait_item() // no: `auto::b`, yes: `auto trait X { .. }`
        || self.is_async_fn() // no(2015): `async::b`, yes: `async fn`
        || self.is_macro_rules_item() // no: `macro_rules::b`, yes: `macro_rules! mac`
    }

    /// Are we sure this could not possibly be a macro invocation?
    fn isnt_macro_invocation(&mut self) -> bool {
        self.check_ident() && self.look_ahead(1, |t| *t != token::Not && *t != token::ModSep)
    }

    /// Recover on encountering a struct or method definition where the user
    /// forgot to add the `struct` or `fn` keyword after writing `pub`: `pub S {}`.
    fn recover_missing_kw_before_item(&mut self) -> PResult<'a, ()> {
        // Space between `pub` keyword and the identifier
        //
        //     pub   S {}
        //        ^^^ `sp` points here
        let sp = self.prev_token.span.between(self.token.span);
        let full_sp = self.prev_token.span.to(self.token.span);
        let ident_sp = self.token.span;
        if self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace)) {
            // possible public struct definition where `struct` was forgotten
            let ident = self.parse_ident().unwrap();
            let msg = format!("add `struct` here to parse `{}` as a public struct", ident);
            let mut err = self.struct_span_err(sp, "missing `struct` for struct definition");
            err.span_suggestion_short(
                sp,
                &msg,
                " struct ".into(),
                Applicability::MaybeIncorrect, // speculative
            );
            Err(err)
        } else if self.look_ahead(1, |t| *t == token::OpenDelim(token::Paren)) {
            let ident = self.parse_ident().unwrap();
            self.bump(); // `(`
            let kw_name = self.recover_first_param();
            self.consume_block(token::Paren, ConsumeClosingDelim::Yes);
            let (kw, kw_name, ambiguous) = if self.check(&token::RArrow) {
                self.eat_to_tokens(&[&token::OpenDelim(token::Brace)]);
                self.bump(); // `{`
                ("fn", kw_name, false)
            } else if self.check(&token::OpenDelim(token::Brace)) {
                self.bump(); // `{`
                ("fn", kw_name, false)
            } else if self.check(&token::Colon) {
                let kw = "struct";
                (kw, kw, false)
            } else {
                ("fn` or `struct", "function or struct", true)
            };

            let msg = format!("missing `{}` for {} definition", kw, kw_name);
            let mut err = self.struct_span_err(sp, &msg);
            if !ambiguous {
                self.consume_block(token::Brace, ConsumeClosingDelim::Yes);
                let suggestion =
                    format!("add `{}` here to parse `{}` as a public {}", kw, ident, kw_name);
                err.span_suggestion_short(
                    sp,
                    &suggestion,
                    format!(" {} ", kw),
                    Applicability::MachineApplicable,
                );
            } else {
                if let Ok(snippet) = self.span_to_snippet(ident_sp) {
                    err.span_suggestion(
                        full_sp,
                        "if you meant to call a macro, try",
                        format!("{}!", snippet),
                        // this is the `ambiguous` conditional branch
                        Applicability::MaybeIncorrect,
                    );
                } else {
                    err.help(
                        "if you meant to call a macro, remove the `pub` \
                                  and add a trailing `!` after the identifier",
                    );
                }
            }
            Err(err)
        } else if self.look_ahead(1, |t| *t == token::Lt) {
            let ident = self.parse_ident().unwrap();
            self.eat_to_tokens(&[&token::Gt]);
            self.bump(); // `>`
            let (kw, kw_name, ambiguous) = if self.eat(&token::OpenDelim(token::Paren)) {
                ("fn", self.recover_first_param(), false)
            } else if self.check(&token::OpenDelim(token::Brace)) {
                ("struct", "struct", false)
            } else {
                ("fn` or `struct", "function or struct", true)
            };
            let msg = format!("missing `{}` for {} definition", kw, kw_name);
            let mut err = self.struct_span_err(sp, &msg);
            if !ambiguous {
                err.span_suggestion_short(
                    sp,
                    &format!("add `{}` here to parse `{}` as a public {}", kw, ident, kw_name),
                    format!(" {} ", kw),
                    Applicability::MachineApplicable,
                );
            }
            Err(err)
        } else {
            Ok(())
        }
    }

    /// Parses an item macro, e.g., `item!();`.
    fn parse_item_macro(&mut self, vis: &Visibility) -> PResult<'a, MacCall> {
        let path = self.parse_path(PathStyle::Mod)?; // `foo::bar`
        self.expect(&token::Not)?; // `!`
        let args = self.parse_mac_args()?; // `( .. )` or `[ .. ]` (followed by `;`), or `{ .. }`.
        self.eat_semi_for_macro_if_needed(&args);
        self.complain_if_pub_macro(vis, false);
        Ok(MacCall { path, args, prior_type_ascription: self.last_type_ascription })
    }

    /// Recover if we parsed attributes and expected an item but there was none.
    fn recover_attrs_no_item(&mut self, attrs: &[Attribute]) -> PResult<'a, ()> {
        let (start, end) = match attrs {
            [] => return Ok(()),
            [x0 @ xn] | [x0, .., xn] => (x0, xn),
        };
        let msg = if end.is_doc_comment() {
            "expected item after doc comment"
        } else {
            "expected item after attributes"
        };
        let mut err = self.struct_span_err(end.span, msg);
        if end.is_doc_comment() {
            err.span_label(end.span, "this doc comment doesn't document anything");
        }
        if let [.., penultimate, _] = attrs {
            err.span_label(start.span.to(penultimate.span), "other attributes here");
        }
        Err(err)
    }

    fn is_async_fn(&self) -> bool {
        self.token.is_keyword(kw::Async) && self.is_keyword_ahead(1, &[kw::Fn])
    }

    fn parse_polarity(&mut self) -> ast::ImplPolarity {
        // Disambiguate `impl !Trait for Type { ... }` and `impl ! { ... }` for the never type.
        if self.check(&token::Not) && self.look_ahead(1, |t| t.can_begin_type()) {
            self.bump(); // `!`
            ast::ImplPolarity::Negative(self.prev_token.span)
        } else {
            ast::ImplPolarity::Positive
        }
    }

    /// Parses an implementation item.
    ///
    /// ```
    /// impl<'a, T> TYPE { /* impl items */ }
    /// impl<'a, T> TRAIT for TYPE { /* impl items */ }
    /// impl<'a, T> !TRAIT for TYPE { /* impl items */ }
    /// impl<'a, T> const TRAIT for TYPE { /* impl items */ }
    /// ```
    ///
    /// We actually parse slightly more relaxed grammar for better error reporting and recovery.
    /// ```
    /// "impl" GENERICS "const"? "!"? TYPE "for"? (TYPE | "..") ("where" PREDICATES)? "{" BODY "}"
    /// "impl" GENERICS "const"? "!"? TYPE ("where" PREDICATES)? "{" BODY "}"
    /// ```
    fn parse_item_impl(
        &mut self,
        attrs: &mut Vec<Attribute>,
        defaultness: Defaultness,
    ) -> PResult<'a, ItemInfo> {
        let unsafety = self.parse_unsafety();
        self.expect_keyword(kw::Impl)?;

        // First, parse generic parameters if necessary.
        let mut generics = if self.choose_generics_over_qpath(0) {
            self.parse_generics()?
        } else {
            let mut generics = Generics::default();
            // impl A for B {}
            //    /\ this is where `generics.span` should point when there are no type params.
            generics.span = self.prev_token.span.shrink_to_hi();
            generics
        };

        let constness = self.parse_constness();
        if let Const::Yes(span) = constness {
            self.sess.gated_spans.gate(sym::const_trait_impl, span);
        }

        let polarity = self.parse_polarity();

        // Parse both types and traits as a type, then reinterpret if necessary.
        let err_path = |span| ast::Path::from_ident(Ident::new(kw::Invalid, span));
        let ty_first = if self.token.is_keyword(kw::For) && self.look_ahead(1, |t| t != &token::Lt)
        {
            let span = self.prev_token.span.between(self.token.span);
            self.struct_span_err(span, "missing trait in a trait impl").emit();
            P(Ty {
                kind: TyKind::Path(None, err_path(span)),
                span,
                id: DUMMY_NODE_ID,
                tokens: None,
            })
        } else {
            self.parse_ty()?
        };

        // If `for` is missing we try to recover.
        let has_for = self.eat_keyword(kw::For);
        let missing_for_span = self.prev_token.span.between(self.token.span);

        let ty_second = if self.token == token::DotDot {
            // We need to report this error after `cfg` expansion for compatibility reasons
            self.bump(); // `..`, do not add it to expected tokens
            Some(self.mk_ty(self.prev_token.span, TyKind::Err))
        } else if has_for || self.token.can_begin_type() {
            Some(self.parse_ty()?)
        } else {
            None
        };

        generics.where_clause = self.parse_where_clause()?;

        let impl_items = self.parse_item_list(attrs, |p| p.parse_impl_item())?;

        let item_kind = match ty_second {
            Some(ty_second) => {
                // impl Trait for Type
                if !has_for {
                    self.struct_span_err(missing_for_span, "missing `for` in a trait impl")
                        .span_suggestion_short(
                            missing_for_span,
                            "add `for` here",
                            " for ".to_string(),
                            Applicability::MachineApplicable,
                        )
                        .emit();
                }

                let ty_first = ty_first.into_inner();
                let path = match ty_first.kind {
                    // This notably includes paths passed through `ty` macro fragments (#46438).
                    TyKind::Path(None, path) => path,
                    _ => {
                        self.struct_span_err(ty_first.span, "expected a trait, found type").emit();
                        err_path(ty_first.span)
                    }
                };
                let trait_ref = TraitRef { path, ref_id: ty_first.id };

                ItemKind::Impl {
                    unsafety,
                    polarity,
                    defaultness,
                    constness,
                    generics,
                    of_trait: Some(trait_ref),
                    self_ty: ty_second,
                    items: impl_items,
                }
            }
            None => {
                // impl Type
                ItemKind::Impl {
                    unsafety,
                    polarity,
                    defaultness,
                    constness,
                    generics,
                    of_trait: None,
                    self_ty: ty_first,
                    items: impl_items,
                }
            }
        };

        Ok((Ident::invalid(), item_kind))
    }

    fn parse_item_list<T>(
        &mut self,
        attrs: &mut Vec<Attribute>,
        mut parse_item: impl FnMut(&mut Parser<'a>) -> PResult<'a, Option<Option<T>>>,
    ) -> PResult<'a, Vec<T>> {
        let open_brace_span = self.token.span;
        self.expect(&token::OpenDelim(token::Brace))?;
        attrs.append(&mut self.parse_inner_attributes()?);

        let mut items = Vec::new();
        while !self.eat(&token::CloseDelim(token::Brace)) {
            if self.recover_doc_comment_before_brace() {
                continue;
            }
            match parse_item(self) {
                Ok(None) => {
                    // We have to bail or we'll potentially never make progress.
                    let non_item_span = self.token.span;
                    self.consume_block(token::Brace, ConsumeClosingDelim::Yes);
                    self.struct_span_err(non_item_span, "non-item in item list")
                        .span_label(open_brace_span, "item list starts here")
                        .span_label(non_item_span, "non-item starts here")
                        .span_label(self.prev_token.span, "item list ends here")
                        .emit();
                    break;
                }
                Ok(Some(item)) => items.extend(item),
                Err(mut err) => {
                    self.consume_block(token::Brace, ConsumeClosingDelim::Yes);
                    err.span_label(open_brace_span, "while parsing this item list starting here")
                        .span_label(self.prev_token.span, "the item list ends here")
                        .emit();
                    break;
                }
            }
        }
        Ok(items)
    }

    /// Recover on a doc comment before `}`.
    fn recover_doc_comment_before_brace(&mut self) -> bool {
        if let token::DocComment(..) = self.token.kind {
            if self.look_ahead(1, |tok| tok == &token::CloseDelim(token::Brace)) {
                struct_span_err!(
                    self.diagnostic(),
                    self.token.span,
                    E0584,
                    "found a documentation comment that doesn't document anything",
                )
                .span_label(self.token.span, "this doc comment doesn't document anything")
                .help(
                    "doc comments must come before what they document, maybe a \
                    comment was intended with `//`?",
                )
                .emit();
                self.bump();
                return true;
            }
        }
        false
    }

    /// Parses defaultness (i.e., `default` or nothing).
    fn parse_defaultness(&mut self) -> Defaultness {
        // We are interested in `default` followed by another identifier.
        // However, we must avoid keywords that occur as binary operators.
        // Currently, the only applicable keyword is `as` (`default as Ty`).
        if self.check_keyword(kw::Default)
            && self.look_ahead(1, |t| t.is_non_raw_ident_where(|i| i.name != kw::As))
        {
            self.bump(); // `default`
            Defaultness::Default(self.prev_token.uninterpolated_span())
        } else {
            Defaultness::Final
        }
    }

    /// Is this an `(unsafe auto? | auto) trait` item?
    fn check_auto_or_unsafe_trait_item(&mut self) -> bool {
        // auto trait
        self.check_keyword(kw::Auto) && self.is_keyword_ahead(1, &[kw::Trait])
            // unsafe auto trait
            || self.check_keyword(kw::Unsafe) && self.is_keyword_ahead(1, &[kw::Trait, kw::Auto])
    }

    /// Parses `unsafe? auto? trait Foo { ... }` or `trait Foo = Bar;`.
    fn parse_item_trait(&mut self, attrs: &mut Vec<Attribute>, lo: Span) -> PResult<'a, ItemInfo> {
        let unsafety = self.parse_unsafety();
        // Parse optional `auto` prefix.
        let is_auto = if self.eat_keyword(kw::Auto) { IsAuto::Yes } else { IsAuto::No };

        self.expect_keyword(kw::Trait)?;
        let ident = self.parse_ident()?;
        let mut tps = self.parse_generics()?;

        // Parse optional colon and supertrait bounds.
        let had_colon = self.eat(&token::Colon);
        let span_at_colon = self.prev_token.span;
        let bounds = if had_colon {
            self.parse_generic_bounds(Some(self.prev_token.span))?
        } else {
            Vec::new()
        };

        let span_before_eq = self.prev_token.span;
        if self.eat(&token::Eq) {
            // It's a trait alias.
            if had_colon {
                let span = span_at_colon.to(span_before_eq);
                self.struct_span_err(span, "bounds are not allowed on trait aliases").emit();
            }

            let bounds = self.parse_generic_bounds(None)?;
            tps.where_clause = self.parse_where_clause()?;
            self.expect_semi()?;

            let whole_span = lo.to(self.prev_token.span);
            if is_auto == IsAuto::Yes {
                let msg = "trait aliases cannot be `auto`";
                self.struct_span_err(whole_span, msg).span_label(whole_span, msg).emit();
            }
            if let Unsafe::Yes(_) = unsafety {
                let msg = "trait aliases cannot be `unsafe`";
                self.struct_span_err(whole_span, msg).span_label(whole_span, msg).emit();
            }

            self.sess.gated_spans.gate(sym::trait_alias, whole_span);

            Ok((ident, ItemKind::TraitAlias(tps, bounds)))
        } else {
            // It's a normal trait.
            tps.where_clause = self.parse_where_clause()?;
            let items = self.parse_item_list(attrs, |p| p.parse_trait_item())?;
            Ok((ident, ItemKind::Trait(is_auto, unsafety, tps, bounds, items)))
        }
    }

    pub fn parse_impl_item(&mut self) -> PResult<'a, Option<Option<P<AssocItem>>>> {
        self.parse_assoc_item(|_| true)
    }

    pub fn parse_trait_item(&mut self) -> PResult<'a, Option<Option<P<AssocItem>>>> {
        self.parse_assoc_item(|edition| edition >= Edition::Edition2018)
    }

    /// Parses associated items.
    fn parse_assoc_item(&mut self, req_name: ReqName) -> PResult<'a, Option<Option<P<AssocItem>>>> {
        Ok(self.parse_item_(req_name)?.map(|Item { attrs, id, span, vis, ident, kind, tokens }| {
            let kind = match AssocItemKind::try_from(kind) {
                Ok(kind) => kind,
                Err(kind) => match kind {
                    ItemKind::Static(a, _, b) => {
                        self.struct_span_err(span, "associated `static` items are not allowed")
                            .emit();
                        AssocItemKind::Const(Defaultness::Final, a, b)
                    }
                    _ => return self.error_bad_item_kind(span, &kind, "`trait`s or `impl`s"),
                },
            };
            Some(P(Item { attrs, id, span, vis, ident, kind, tokens }))
        }))
    }

    /// Parses a `type` alias with the following grammar:
    /// ```
    /// TypeAlias = "type" Ident Generics {":" GenericBounds}? {"=" Ty}? ";" ;
    /// ```
    /// The `"type"` has already been eaten.
    fn parse_type_alias(&mut self, def: Defaultness) -> PResult<'a, ItemInfo> {
        let ident = self.parse_ident()?;
        let mut generics = self.parse_generics()?;

        // Parse optional colon and param bounds.
        let bounds =
            if self.eat(&token::Colon) { self.parse_generic_bounds(None)? } else { Vec::new() };
        generics.where_clause = self.parse_where_clause()?;

        let default = if self.eat(&token::Eq) { Some(self.parse_ty()?) } else { None };
        self.expect_semi()?;

        Ok((ident, ItemKind::TyAlias(def, generics, bounds, default)))
    }

    /// Parses a `UseTree`.
    ///
    /// ```text
    /// USE_TREE = [`::`] `*` |
    ///            [`::`] `{` USE_TREE_LIST `}` |
    ///            PATH `::` `*` |
    ///            PATH `::` `{` USE_TREE_LIST `}` |
    ///            PATH [`as` IDENT]
    /// ```
    fn parse_use_tree(&mut self) -> PResult<'a, UseTree> {
        let lo = self.token.span;

        let mut prefix = ast::Path { segments: Vec::new(), span: lo.shrink_to_lo(), tokens: None };
        let kind = if self.check(&token::OpenDelim(token::Brace))
            || self.check(&token::BinOp(token::Star))
            || self.is_import_coupler()
        {
            // `use *;` or `use ::*;` or `use {...};` or `use ::{...};`
            let mod_sep_ctxt = self.token.span.ctxt();
            if self.eat(&token::ModSep) {
                prefix
                    .segments
                    .push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
            }

            self.parse_use_tree_glob_or_nested()?
        } else {
            // `use path::*;` or `use path::{...};` or `use path;` or `use path as bar;`
            prefix = self.parse_path(PathStyle::Mod)?;

            if self.eat(&token::ModSep) {
                self.parse_use_tree_glob_or_nested()?
            } else {
                UseTreeKind::Simple(self.parse_rename()?, DUMMY_NODE_ID, DUMMY_NODE_ID)
            }
        };

        Ok(UseTree { prefix, kind, span: lo.to(self.prev_token.span) })
    }

    /// Parses `*` or `{...}`.
    fn parse_use_tree_glob_or_nested(&mut self) -> PResult<'a, UseTreeKind> {
        Ok(if self.eat(&token::BinOp(token::Star)) {
            UseTreeKind::Glob
        } else {
            UseTreeKind::Nested(self.parse_use_tree_list()?)
        })
    }

    /// Parses a `UseTreeKind::Nested(list)`.
    ///
    /// ```text
    /// USE_TREE_LIST = Ø | (USE_TREE `,`)* USE_TREE [`,`]
    /// ```
    fn parse_use_tree_list(&mut self) -> PResult<'a, Vec<(UseTree, ast::NodeId)>> {
        self.parse_delim_comma_seq(token::Brace, |p| Ok((p.parse_use_tree()?, DUMMY_NODE_ID)))
            .map(|(r, _)| r)
    }

    fn parse_rename(&mut self) -> PResult<'a, Option<Ident>> {
        if self.eat_keyword(kw::As) { self.parse_ident_or_underscore().map(Some) } else { Ok(None) }
    }

    fn parse_ident_or_underscore(&mut self) -> PResult<'a, Ident> {
        match self.token.ident() {
            Some((ident @ Ident { name: kw::Underscore, .. }, false)) => {
                self.bump();
                Ok(ident)
            }
            _ => self.parse_ident(),
        }
    }

    /// Parses `extern crate` links.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate foo;
    /// extern crate bar as foo;
    /// ```
    fn parse_item_extern_crate(&mut self) -> PResult<'a, ItemInfo> {
        // Accept `extern crate name-like-this` for better diagnostics
        let orig_name = self.parse_crate_name_with_dashes()?;
        let (item_name, orig_name) = if let Some(rename) = self.parse_rename()? {
            (rename, Some(orig_name.name))
        } else {
            (orig_name, None)
        };
        self.expect_semi()?;
        Ok((item_name, ItemKind::ExternCrate(orig_name)))
    }

    fn parse_crate_name_with_dashes(&mut self) -> PResult<'a, Ident> {
        let error_msg = "crate name using dashes are not valid in `extern crate` statements";
        let suggestion_msg = "if the original crate name uses dashes you need to use underscores \
                              in the code";
        let mut ident = if self.token.is_keyword(kw::SelfLower) {
            self.parse_path_segment_ident()
        } else {
            self.parse_ident()
        }?;
        let mut idents = vec![];
        let mut replacement = vec![];
        let mut fixed_crate_name = false;
        // Accept `extern crate name-like-this` for better diagnostics.
        let dash = token::BinOp(token::BinOpToken::Minus);
        if self.token == dash {
            // Do not include `-` as part of the expected tokens list.
            while self.eat(&dash) {
                fixed_crate_name = true;
                replacement.push((self.prev_token.span, "_".to_string()));
                idents.push(self.parse_ident()?);
            }
        }
        if fixed_crate_name {
            let fixed_name_sp = ident.span.to(idents.last().unwrap().span);
            let mut fixed_name = format!("{}", ident.name);
            for part in idents {
                fixed_name.push_str(&format!("_{}", part.name));
            }
            ident = Ident::from_str_and_span(&fixed_name, fixed_name_sp);

            self.struct_span_err(fixed_name_sp, error_msg)
                .span_label(fixed_name_sp, "dash-separated idents are not valid")
                .multipart_suggestion(suggestion_msg, replacement, Applicability::MachineApplicable)
                .emit();
        }
        Ok(ident)
    }

    /// Parses `extern` for foreign ABIs modules.
    ///
    /// `extern` is expected to have been consumed before calling this method.
    ///
    /// # Examples
    ///
    /// ```ignore (only-for-syntax-highlight)
    /// extern "C" {}
    /// extern {}
    /// ```
    fn parse_item_foreign_mod(
        &mut self,
        attrs: &mut Vec<Attribute>,
        unsafety: Unsafe,
    ) -> PResult<'a, ItemInfo> {
        let abi = self.parse_abi(); // ABI?
        let items = self.parse_item_list(attrs, |p| p.parse_foreign_item())?;
        let module = ast::ForeignMod { unsafety, abi, items };
        Ok((Ident::invalid(), ItemKind::ForeignMod(module)))
    }

    /// Parses a foreign item (one in an `extern { ... }` block).
    pub fn parse_foreign_item(&mut self) -> PResult<'a, Option<Option<P<ForeignItem>>>> {
        Ok(self.parse_item_(|_| true)?.map(|Item { attrs, id, span, vis, ident, kind, tokens }| {
            let kind = match ForeignItemKind::try_from(kind) {
                Ok(kind) => kind,
                Err(kind) => match kind {
                    ItemKind::Const(_, a, b) => {
                        self.error_on_foreign_const(span, ident);
                        ForeignItemKind::Static(a, Mutability::Not, b)
                    }
                    _ => return self.error_bad_item_kind(span, &kind, "`extern` blocks"),
                },
            };
            Some(P(Item { attrs, id, span, vis, ident, kind, tokens }))
        }))
    }

    fn error_bad_item_kind<T>(&self, span: Span, kind: &ItemKind, ctx: &str) -> Option<T> {
        let span = self.sess.source_map().guess_head_span(span);
        let descr = kind.descr();
        self.struct_span_err(span, &format!("{} is not supported in {}", descr, ctx))
            .help(&format!("consider moving the {} out to a nearby module scope", descr))
            .emit();
        None
    }

    fn error_on_foreign_const(&self, span: Span, ident: Ident) {
        self.struct_span_err(ident.span, "extern items cannot be `const`")
            .span_suggestion(
                span.with_hi(ident.span.lo()),
                "try using a static value",
                "static ".to_string(),
                Applicability::MachineApplicable,
            )
            .note("for more information, visit https://doc.rust-lang.org/std/keyword.extern.html")
            .emit();
    }

    fn is_unsafe_foreign_mod(&self) -> bool {
        self.token.is_keyword(kw::Unsafe)
            && self.is_keyword_ahead(1, &[kw::Extern])
            && self.look_ahead(
                2 + self.look_ahead(2, |t| t.can_begin_literal_maybe_minus() as usize),
                |t| t.kind == token::OpenDelim(token::Brace),
            )
    }

    fn is_static_global(&mut self) -> bool {
        if self.check_keyword(kw::Static) {
            // Check if this could be a closure.
            !self.look_ahead(1, |token| {
                if token.is_keyword(kw::Move) {
                    return true;
                }
                match token.kind {
                    token::BinOp(token::Or) | token::OrOr => true,
                    _ => false,
                }
            })
        } else {
            false
        }
    }

    /// Recover on `const mut` with `const` already eaten.
    fn recover_const_mut(&mut self, const_span: Span) {
        if self.eat_keyword(kw::Mut) {
            let span = self.prev_token.span;
            self.struct_span_err(span, "const globals cannot be mutable")
                .span_label(span, "cannot be mutable")
                .span_suggestion(
                    const_span,
                    "you might want to declare a static instead",
                    "static".to_owned(),
                    Applicability::MaybeIncorrect,
                )
                .emit();
        }
    }

    /// Parse `["const" | ("static" "mut"?)] $ident ":" $ty (= $expr)?` with
    /// `["const" | ("static" "mut"?)]` already parsed and stored in `m`.
    ///
    /// When `m` is `"const"`, `$ident` may also be `"_"`.
    fn parse_item_global(
        &mut self,
        m: Option<Mutability>,
    ) -> PResult<'a, (Ident, P<Ty>, Option<P<ast::Expr>>)> {
        let id = if m.is_none() { self.parse_ident_or_underscore() } else { self.parse_ident() }?;

        // Parse the type of a `const` or `static mut?` item.
        // That is, the `":" $ty` fragment.
        let ty = if self.eat(&token::Colon) {
            self.parse_ty()?
        } else {
            self.recover_missing_const_type(id, m)
        };

        let expr = if self.eat(&token::Eq) { Some(self.parse_expr()?) } else { None };
        self.expect_semi()?;
        Ok((id, ty, expr))
    }

    /// We were supposed to parse `:` but the `:` was missing.
    /// This means that the type is missing.
    fn recover_missing_const_type(&mut self, id: Ident, m: Option<Mutability>) -> P<Ty> {
        // Construct the error and stash it away with the hope
        // that typeck will later enrich the error with a type.
        let kind = match m {
            Some(Mutability::Mut) => "static mut",
            Some(Mutability::Not) => "static",
            None => "const",
        };
        let mut err = self.struct_span_err(id.span, &format!("missing type for `{}` item", kind));
        err.span_suggestion(
            id.span,
            "provide a type for the item",
            format!("{}: <type>", id),
            Applicability::HasPlaceholders,
        );
        err.stash(id.span, StashKey::ItemNoType);

        // The user intended that the type be inferred,
        // so treat this as if the user wrote e.g. `const A: _ = expr;`.
        P(Ty { kind: TyKind::Infer, span: id.span, id: ast::DUMMY_NODE_ID, tokens: None })
    }

    /// Parses an enum declaration.
    fn parse_item_enum(&mut self) -> PResult<'a, ItemInfo> {
        let id = self.parse_ident()?;
        let mut generics = self.parse_generics()?;
        generics.where_clause = self.parse_where_clause()?;

        let (variants, _) =
            self.parse_delim_comma_seq(token::Brace, |p| p.parse_enum_variant()).map_err(|e| {
                self.recover_stmt();
                e
            })?;

        let enum_definition =
            EnumDef { variants: variants.into_iter().filter_map(|v| v).collect() };
        Ok((id, ItemKind::Enum(enum_definition, generics)))
    }

    fn parse_enum_variant(&mut self) -> PResult<'a, Option<Variant>> {
        let variant_attrs = self.parse_outer_attributes()?;
        let vlo = self.token.span;

        let vis = self.parse_visibility(FollowedByType::No)?;
        if !self.recover_nested_adt_item(kw::Enum)? {
            return Ok(None);
        }
        let ident = self.parse_ident()?;

        let struct_def = if self.check(&token::OpenDelim(token::Brace)) {
            // Parse a struct variant.
            let (fields, recovered) = self.parse_record_struct_body()?;
            VariantData::Struct(fields, recovered)
        } else if self.check(&token::OpenDelim(token::Paren)) {
            VariantData::Tuple(self.parse_tuple_struct_body()?, DUMMY_NODE_ID)
        } else {
            VariantData::Unit(DUMMY_NODE_ID)
        };

        let disr_expr =
            if self.eat(&token::Eq) { Some(self.parse_anon_const_expr()?) } else { None };

        let vr = ast::Variant {
            ident,
            vis,
            id: DUMMY_NODE_ID,
            attrs: variant_attrs,
            data: struct_def,
            disr_expr,
            span: vlo.to(self.prev_token.span),
            is_placeholder: false,
        };

        Ok(Some(vr))
    }

    /// Parses `struct Foo { ... }`.
    fn parse_item_struct(&mut self) -> PResult<'a, ItemInfo> {
        let class_name = self.parse_ident()?;

        let mut generics = self.parse_generics()?;

        // There is a special case worth noting here, as reported in issue #17904.
        // If we are parsing a tuple struct it is the case that the where clause
        // should follow the field list. Like so:
        //
        // struct Foo<T>(T) where T: Copy;
        //
        // If we are parsing a normal record-style struct it is the case
        // that the where clause comes before the body, and after the generics.
        // So if we look ahead and see a brace or a where-clause we begin
        // parsing a record style struct.
        //
        // Otherwise if we look ahead and see a paren we parse a tuple-style
        // struct.

        let vdata = if self.token.is_keyword(kw::Where) {
            generics.where_clause = self.parse_where_clause()?;
            if self.eat(&token::Semi) {
                // If we see a: `struct Foo<T> where T: Copy;` style decl.
                VariantData::Unit(DUMMY_NODE_ID)
            } else {
                // If we see: `struct Foo<T> where T: Copy { ... }`
                let (fields, recovered) = self.parse_record_struct_body()?;
                VariantData::Struct(fields, recovered)
            }
        // No `where` so: `struct Foo<T>;`
        } else if self.eat(&token::Semi) {
            VariantData::Unit(DUMMY_NODE_ID)
        // Record-style struct definition
        } else if self.token == token::OpenDelim(token::Brace) {
            let (fields, recovered) = self.parse_record_struct_body()?;
            VariantData::Struct(fields, recovered)
        // Tuple-style struct definition with optional where-clause.
        } else if self.token == token::OpenDelim(token::Paren) {
            let body = VariantData::Tuple(self.parse_tuple_struct_body()?, DUMMY_NODE_ID);
            generics.where_clause = self.parse_where_clause()?;
            self.expect_semi()?;
            body
        } else {
            let token_str = super::token_descr(&self.token);
            let msg = &format!(
                "expected `where`, `{{`, `(`, or `;` after struct name, found {}",
                token_str
            );
            let mut err = self.struct_span_err(self.token.span, msg);
            err.span_label(self.token.span, "expected `where`, `{`, `(`, or `;` after struct name");
            return Err(err);
        };

        Ok((class_name, ItemKind::Struct(vdata, generics)))
    }

    /// Parses `union Foo { ... }`.
    fn parse_item_union(&mut self) -> PResult<'a, ItemInfo> {
        let class_name = self.parse_ident()?;

        let mut generics = self.parse_generics()?;

        let vdata = if self.token.is_keyword(kw::Where) {
            generics.where_clause = self.parse_where_clause()?;
            let (fields, recovered) = self.parse_record_struct_body()?;
            VariantData::Struct(fields, recovered)
        } else if self.token == token::OpenDelim(token::Brace) {
            let (fields, recovered) = self.parse_record_struct_body()?;
            VariantData::Struct(fields, recovered)
        } else {
            let token_str = super::token_descr(&self.token);
            let msg = &format!("expected `where` or `{{` after union name, found {}", token_str);
            let mut err = self.struct_span_err(self.token.span, msg);
            err.span_label(self.token.span, "expected `where` or `{` after union name");
            return Err(err);
        };

        Ok((class_name, ItemKind::Union(vdata, generics)))
    }

    fn parse_record_struct_body(
        &mut self,
    ) -> PResult<'a, (Vec<StructField>, /* recovered */ bool)> {
        let mut fields = Vec::new();
        let mut recovered = false;
        if self.eat(&token::OpenDelim(token::Brace)) {
            while self.token != token::CloseDelim(token::Brace) {
                let field = self.parse_struct_decl_field().map_err(|e| {
                    self.consume_block(token::Brace, ConsumeClosingDelim::No);
                    recovered = true;
                    e
                });
                match field {
                    Ok(field) => fields.push(field),
                    Err(mut err) => {
                        err.emit();
                        break;
                    }
                }
            }
            self.eat(&token::CloseDelim(token::Brace));
        } else {
            let token_str = super::token_descr(&self.token);
            let msg = &format!("expected `where`, or `{{` after struct name, found {}", token_str);
            let mut err = self.struct_span_err(self.token.span, msg);
            err.span_label(self.token.span, "expected `where`, or `{` after struct name");
            return Err(err);
        }

        Ok((fields, recovered))
    }

    fn parse_tuple_struct_body(&mut self) -> PResult<'a, Vec<StructField>> {
        // This is the case where we find `struct Foo<T>(T) where T: Copy;`
        // Unit like structs are handled in parse_item_struct function
        self.parse_paren_comma_seq(|p| {
            let attrs = p.parse_outer_attributes()?;
            let lo = p.token.span;
            let vis = p.parse_visibility(FollowedByType::Yes)?;
            let ty = p.parse_ty()?;
            Ok(StructField {
                span: lo.to(ty.span),
                vis,
                ident: None,
                id: DUMMY_NODE_ID,
                ty,
                attrs,
                is_placeholder: false,
            })
        })
        .map(|(r, _)| r)
    }

    /// Parses an element of a struct declaration.
    fn parse_struct_decl_field(&mut self) -> PResult<'a, StructField> {
        let attrs = self.parse_outer_attributes()?;
        let lo = self.token.span;
        let vis = self.parse_visibility(FollowedByType::No)?;
        self.parse_single_struct_field(lo, vis, attrs)
    }

    /// Parses a structure field declaration.
    fn parse_single_struct_field(
        &mut self,
        lo: Span,
        vis: Visibility,
        attrs: Vec<Attribute>,
    ) -> PResult<'a, StructField> {
        let mut seen_comma: bool = false;
        let a_var = self.parse_name_and_ty(lo, vis, attrs)?;
        if self.token == token::Comma {
            seen_comma = true;
        }
        match self.token.kind {
            token::Comma => {
                self.bump();
            }
            token::CloseDelim(token::Brace) => {}
            token::DocComment(..) => {
                let previous_span = self.prev_token.span;
                let mut err = self.span_fatal_err(self.token.span, Error::UselessDocComment);
                self.bump(); // consume the doc comment
                let comma_after_doc_seen = self.eat(&token::Comma);
                // `seen_comma` is always false, because we are inside doc block
                // condition is here to make code more readable
                if !seen_comma && comma_after_doc_seen {
                    seen_comma = true;
                }
                if comma_after_doc_seen || self.token == token::CloseDelim(token::Brace) {
                    err.emit();
                } else {
                    if !seen_comma {
                        let sp = self.sess.source_map().next_point(previous_span);
                        err.span_suggestion(
                            sp,
                            "missing comma here",
                            ",".into(),
                            Applicability::MachineApplicable,
                        );
                    }
                    return Err(err);
                }
            }
            _ => {
                let sp = self.prev_token.span.shrink_to_hi();
                let mut err = self.struct_span_err(
                    sp,
                    &format!("expected `,`, or `}}`, found {}", super::token_descr(&self.token)),
                );

                // Try to recover extra trailing angle brackets
                let mut recovered = false;
                if let TyKind::Path(_, Path { segments, .. }) = &a_var.ty.kind {
                    if let Some(last_segment) = segments.last() {
                        recovered = self.check_trailing_angle_brackets(
                            last_segment,
                            &[&token::Comma, &token::CloseDelim(token::Brace)],
                        );
                        if recovered {
                            // Handle a case like `Vec<u8>>,` where we can continue parsing fields
                            // after the comma
                            self.eat(&token::Comma);
                            // `check_trailing_angle_brackets` already emitted a nicer error
                            err.cancel();
                        }
                    }
                }

                if self.token.is_ident() {
                    // This is likely another field; emit the diagnostic and keep going
                    err.span_suggestion(
                        sp,
                        "try adding a comma",
                        ",".into(),
                        Applicability::MachineApplicable,
                    );
                    err.emit();
                    recovered = true;
                }

                if recovered {
                    // Make sure an error was emitted (either by recovering an angle bracket,
                    // or by finding an identifier as the next token), since we're
                    // going to continue parsing
                    assert!(self.sess.span_diagnostic.has_errors());
                } else {
                    return Err(err);
                }
            }
        }
        Ok(a_var)
    }

    /// Parses a structure field.
    fn parse_name_and_ty(
        &mut self,
        lo: Span,
        vis: Visibility,
        attrs: Vec<Attribute>,
    ) -> PResult<'a, StructField> {
        let name = self.parse_ident_common(false)?;
        self.expect(&token::Colon)?;
        let ty = self.parse_ty()?;
        Ok(StructField {
            span: lo.to(self.prev_token.span),
            ident: Some(name),
            vis,
            id: DUMMY_NODE_ID,
            ty,
            attrs,
            is_placeholder: false,
        })
    }

    /// Parses a declarative macro 2.0 definition.
    /// The `macro` keyword has already been parsed.
    /// ```
    /// MacBody = "{" TOKEN_STREAM "}" ;
    /// MacParams = "(" TOKEN_STREAM ")" ;
    /// DeclMac = "macro" Ident MacParams? MacBody ;
    /// ```
    fn parse_item_decl_macro(&mut self, lo: Span) -> PResult<'a, ItemInfo> {
        let ident = self.parse_ident()?;
        let body = if self.check(&token::OpenDelim(token::Brace)) {
            self.parse_mac_args()? // `MacBody`
        } else if self.check(&token::OpenDelim(token::Paren)) {
            let params = self.parse_token_tree(); // `MacParams`
            let pspan = params.span();
            if !self.check(&token::OpenDelim(token::Brace)) {
                return self.unexpected();
            }
            let body = self.parse_token_tree(); // `MacBody`
            // Convert `MacParams MacBody` into `{ MacParams => MacBody }`.
            let bspan = body.span();
            let arrow = TokenTree::token(token::FatArrow, pspan.between(bspan)); // `=>`
            let tokens = TokenStream::new(vec![params.into(), arrow.into(), body.into()]);
            let dspan = DelimSpan::from_pair(pspan.shrink_to_lo(), bspan.shrink_to_hi());
            P(MacArgs::Delimited(dspan, MacDelimiter::Brace, tokens))
        } else {
            return self.unexpected();
        };

        self.sess.gated_spans.gate(sym::decl_macro, lo.to(self.prev_token.span));
        Ok((ident, ItemKind::MacroDef(ast::MacroDef { body, macro_rules: false })))
    }

    /// Is this unambiguously the start of a `macro_rules! foo` item defnition?
    fn is_macro_rules_item(&mut self) -> bool {
        self.check_keyword(kw::MacroRules)
            && self.look_ahead(1, |t| *t == token::Not)
            && self.look_ahead(2, |t| t.is_ident())
    }

    /// Parses a `macro_rules! foo { ... }` declarative macro.
    fn parse_item_macro_rules(&mut self, vis: &Visibility) -> PResult<'a, ItemInfo> {
        self.expect_keyword(kw::MacroRules)?; // `macro_rules`
        self.expect(&token::Not)?; // `!`

        let ident = self.parse_ident()?;
        let body = self.parse_mac_args()?;
        self.eat_semi_for_macro_if_needed(&body);
        self.complain_if_pub_macro(vis, true);

        Ok((ident, ItemKind::MacroDef(ast::MacroDef { body, macro_rules: true })))
    }

    /// Item macro invocations or `macro_rules!` definitions need inherited visibility.
    /// If that's not the case, emit an error.
    fn complain_if_pub_macro(&self, vis: &Visibility, macro_rules: bool) {
        if let VisibilityKind::Inherited = vis.kind {
            return;
        }

        let vstr = pprust::vis_to_string(vis);
        let vstr = vstr.trim_end();
        if macro_rules {
            let msg = format!("can't qualify macro_rules invocation with `{}`", vstr);
            self.struct_span_err(vis.span, &msg)
                .span_suggestion(
                    vis.span,
                    "try exporting the macro",
                    "#[macro_export]".to_owned(),
                    Applicability::MaybeIncorrect, // speculative
                )
                .emit();
        } else {
            self.struct_span_err(vis.span, "can't qualify macro invocation with `pub`")
                .span_suggestion(
                    vis.span,
                    "remove the visibility",
                    String::new(),
                    Applicability::MachineApplicable,
                )
                .help(&format!("try adjusting the macro to put `{}` inside the invocation", vstr))
                .emit();
        }
    }

    fn eat_semi_for_macro_if_needed(&mut self, args: &MacArgs) {
        if args.need_semicolon() && !self.eat(&token::Semi) {
            self.report_invalid_macro_expansion_item(args);
        }
    }

    fn report_invalid_macro_expansion_item(&self, args: &MacArgs) {
        let span = args.span().expect("undelimited macro call");
        let mut err = self.struct_span_err(
            span,
            "macros that expand to items must be delimited with braces or followed by a semicolon",
        );
        if self.unclosed_delims.is_empty() {
            let DelimSpan { open, close } = match args {
                MacArgs::Empty | MacArgs::Eq(..) => unreachable!(),
                MacArgs::Delimited(dspan, ..) => *dspan,
            };
            err.multipart_suggestion(
                "change the delimiters to curly braces",
                vec![(open, "{".to_string()), (close, '}'.to_string())],
                Applicability::MaybeIncorrect,
            );
        } else {
            err.span_suggestion(
                span,
                "change the delimiters to curly braces",
                " { /* items */ }".to_string(),
                Applicability::HasPlaceholders,
            );
        }
        err.span_suggestion(
            span.shrink_to_hi(),
            "add a semicolon",
            ';'.to_string(),
            Applicability::MaybeIncorrect,
        );
        err.emit();
    }

    /// Checks if current token is one of tokens which cannot be nested like `kw::Enum`. In case
    /// it is, we try to parse the item and report error about nested types.
    fn recover_nested_adt_item(&mut self, keyword: Symbol) -> PResult<'a, bool> {
        if (self.token.is_keyword(kw::Enum)
            || self.token.is_keyword(kw::Struct)
            || self.token.is_keyword(kw::Union))
            && self.look_ahead(1, |t| t.is_ident())
        {
            let kw_token = self.token.clone();
            let kw_str = pprust::token_to_string(&kw_token);
            let item = self.parse_item()?;

            self.struct_span_err(
                kw_token.span,
                &format!("`{}` definition cannot be nested inside `{}`", kw_str, keyword),
            )
            .span_suggestion(
                item.unwrap().span,
                &format!("consider creating a new `{}` definition instead of nesting", kw_str),
                String::new(),
                Applicability::MaybeIncorrect,
            )
            .emit();
            // We successfully parsed the item but we must inform the caller about nested problem.
            return Ok(false);
        }
        Ok(true)
    }
}

/// The parsing configuration used to parse a parameter list (see `parse_fn_params`).
///
/// The function decides if, per-parameter `p`, `p` must have a pattern or just a type.
type ReqName = fn(Edition) -> bool;

/// Parsing of functions and methods.
impl<'a> Parser<'a> {
    /// Parse a function starting from the front matter (`const ...`) to the body `{ ... }` or `;`.
    fn parse_fn(
        &mut self,
        attrs: &mut Vec<Attribute>,
        req_name: ReqName,
        sig_lo: Span,
    ) -> PResult<'a, (Ident, FnSig, Generics, Option<P<Block>>)> {
        let header = self.parse_fn_front_matter()?; // `const ... fn`
        let ident = self.parse_ident()?; // `foo`
        let mut generics = self.parse_generics()?; // `<'a, T, ...>`
        let decl = self.parse_fn_decl(req_name, AllowPlus::Yes)?; // `(p: u8, ...)`
        generics.where_clause = self.parse_where_clause()?; // `where T: Ord`

        let mut sig_hi = self.prev_token.span;
        let body = self.parse_fn_body(attrs, &ident, &mut sig_hi)?; // `;` or `{ ... }`.
        let fn_sig_span = sig_lo.to(sig_hi);
        Ok((ident, FnSig { header, decl, span: fn_sig_span }, generics, body))
    }

    /// Parse the "body" of a function.
    /// This can either be `;` when there's no body,
    /// or e.g. a block when the function is a provided one.
    fn parse_fn_body(
        &mut self,
        attrs: &mut Vec<Attribute>,
        ident: &Ident,
        sig_hi: &mut Span,
    ) -> PResult<'a, Option<P<Block>>> {
        let (inner_attrs, body) = if self.eat(&token::Semi) {
            // Include the trailing semicolon in the span of the signature
            *sig_hi = self.prev_token.span;
            (Vec::new(), None)
        } else if self.check(&token::OpenDelim(token::Brace)) || self.token.is_whole_block() {
            self.parse_inner_attrs_and_block().map(|(attrs, body)| (attrs, Some(body)))?
        } else if self.token.kind == token::Eq {
            // Recover `fn foo() = $expr;`.
            self.bump(); // `=`
            let eq_sp = self.prev_token.span;
            let _ = self.parse_expr()?;
            self.expect_semi()?; // `;`
            let span = eq_sp.to(self.prev_token.span);
            self.struct_span_err(span, "function body cannot be `= expression;`")
                .multipart_suggestion(
                    "surround the expression with `{` and `}` instead of `=` and `;`",
                    vec![(eq_sp, "{".to_string()), (self.prev_token.span, " }".to_string())],
                    Applicability::MachineApplicable,
                )
                .emit();
            (Vec::new(), Some(self.mk_block_err(span)))
        } else {
            if let Err(mut err) =
                self.expected_one_of_not_found(&[], &[token::Semi, token::OpenDelim(token::Brace)])
            {
                if self.token.kind == token::CloseDelim(token::Brace) {
                    // The enclosing `mod`, `trait` or `impl` is being closed, so keep the `fn` in
                    // the AST for typechecking.
                    err.span_label(ident.span, "while parsing this `fn`");
                    err.emit();
                    (Vec::new(), None)
                } else {
                    return Err(err);
                }
            } else {
                unreachable!()
            }
        };
        attrs.extend(inner_attrs);
        Ok(body)
    }

    /// Is the current token the start of an `FnHeader` / not a valid parse?
    pub(super) fn check_fn_front_matter(&mut self) -> bool {
        // We use an over-approximation here.
        // `const const`, `fn const` won't parse, but we're not stepping over other syntax either.
        const QUALS: [Symbol; 4] = [kw::Const, kw::Async, kw::Unsafe, kw::Extern];
        self.check_keyword(kw::Fn) // Definitely an `fn`.
            // `$qual fn` or `$qual $qual`:
            || QUALS.iter().any(|&kw| self.check_keyword(kw))
                && self.look_ahead(1, |t| {
                    // `$qual fn`, e.g. `const fn` or `async fn`.
                    t.is_keyword(kw::Fn)
                    // Two qualifiers `$qual $qual` is enough, e.g. `async unsafe`.
                    || t.is_non_raw_ident_where(|i| QUALS.contains(&i.name)
                        // Rule out 2015 `const async: T = val`.
                        && i.is_reserved()
                        // Rule out unsafe extern block.
                        && !self.is_unsafe_foreign_mod())
                })
            // `extern ABI fn`
            || self.check_keyword(kw::Extern)
                && self.look_ahead(1, |t| t.can_begin_literal_maybe_minus())
                && self.look_ahead(2, |t| t.is_keyword(kw::Fn))
    }

    /// Parses all the "front matter" (or "qualifiers") for a `fn` declaration,
    /// up to and including the `fn` keyword. The formal grammar is:
    ///
    /// ```
    /// Extern = "extern" StringLit? ;
    /// FnQual = "const"? "async"? "unsafe"? Extern? ;
    /// FnFrontMatter = FnQual "fn" ;
    /// ```
    pub(super) fn parse_fn_front_matter(&mut self) -> PResult<'a, FnHeader> {
        let constness = self.parse_constness();
        let asyncness = self.parse_asyncness();
        let unsafety = self.parse_unsafety();
        let ext = self.parse_extern()?;

        if let Async::Yes { span, .. } = asyncness {
            self.ban_async_in_2015(span);
        }

        if !self.eat_keyword(kw::Fn) {
            // It is possible for `expect_one_of` to recover given the contents of
            // `self.expected_tokens`, therefore, do not use `self.unexpected()` which doesn't
            // account for this.
            if !self.expect_one_of(&[], &[])? {
                unreachable!()
            }
        }

        Ok(FnHeader { constness, unsafety, asyncness, ext })
    }

    /// We are parsing `async fn`. If we are on Rust 2015, emit an error.
    fn ban_async_in_2015(&self, span: Span) {
        if span.rust_2015() {
            let diag = self.diagnostic();
            struct_span_err!(diag, span, E0670, "`async fn` is not permitted in the 2015 edition")
                .span_label(span, "to use `async fn`, switch to Rust 2018")
                .help("set `edition = \"2018\"` in `Cargo.toml`")
                .note("for more on editions, read https://doc.rust-lang.org/edition-guide")
                .emit();
        }
    }

    /// Parses the parameter list and result type of a function declaration.
    pub(super) fn parse_fn_decl(
        &mut self,
        req_name: ReqName,
        ret_allow_plus: AllowPlus,
    ) -> PResult<'a, P<FnDecl>> {
        let inputs = self.parse_fn_params(req_name)?;
        let output = self.parse_ret_ty(ret_allow_plus, RecoverQPath::Yes)?;

        if let ast::FnRetTy::Ty(ty) = &output {
            if let TyKind::Path(_, Path { segments, .. }) = &ty.kind {
                if let [.., last] = &segments[..] {
                    // Detect and recover `fn foo() -> Vec<i32>> {}`
                    self.check_trailing_angle_brackets(last, &[&token::OpenDelim(token::Brace)]);
                }
            }
        }

        Ok(P(FnDecl { inputs, output }))
    }

    /// Parses the parameter list of a function, including the `(` and `)` delimiters.
    fn parse_fn_params(&mut self, req_name: ReqName) -> PResult<'a, Vec<Param>> {
        let mut first_param = true;
        // Parse the arguments, starting out with `self` being allowed...
        let (mut params, _) = self.parse_paren_comma_seq(|p| {
            let param = p.parse_param_general(req_name, first_param).or_else(|mut e| {
                e.emit();
                let lo = p.prev_token.span;
                // Skip every token until next possible arg or end.
                p.eat_to_tokens(&[&token::Comma, &token::CloseDelim(token::Paren)]);
                // Create a placeholder argument for proper arg count (issue #34264).
                Ok(dummy_arg(Ident::new(kw::Invalid, lo.to(p.prev_token.span))))
            });
            // ...now that we've parsed the first argument, `self` is no longer allowed.
            first_param = false;
            param
        })?;
        // Replace duplicated recovered params with `_` pattern to avoid unnecessary errors.
        self.deduplicate_recovered_params_names(&mut params);
        Ok(params)
    }

    /// Parses a single function parameter.
    ///
    /// - `self` is syntactically allowed when `first_param` holds.
    fn parse_param_general(&mut self, req_name: ReqName, first_param: bool) -> PResult<'a, Param> {
        let lo = self.token.span;
        let attrs = self.parse_outer_attributes()?;

        // Possibly parse `self`. Recover if we parsed it and it wasn't allowed here.
        if let Some(mut param) = self.parse_self_param()? {
            param.attrs = attrs.into();
            return if first_param { Ok(param) } else { self.recover_bad_self_param(param) };
        }

        let is_name_required = match self.token.kind {
            token::DotDotDot => false,
            _ => req_name(self.token.span.edition()),
        };
        let (pat, ty) = if is_name_required || self.is_named_param() {
            debug!("parse_param_general parse_pat (is_name_required:{})", is_name_required);

            let pat = self.parse_fn_param_pat()?;
            if let Err(mut err) = self.expect(&token::Colon) {
                return if let Some(ident) =
                    self.parameter_without_type(&mut err, pat, is_name_required, first_param)
                {
                    err.emit();
                    Ok(dummy_arg(ident))
                } else {
                    Err(err)
                };
            }

            self.eat_incorrect_doc_comment_for_param_type();
            (pat, self.parse_ty_for_param()?)
        } else {
            debug!("parse_param_general ident_to_pat");
            let parser_snapshot_before_ty = self.clone();
            self.eat_incorrect_doc_comment_for_param_type();
            let mut ty = self.parse_ty_for_param();
            if ty.is_ok()
                && self.token != token::Comma
                && self.token != token::CloseDelim(token::Paren)
            {
                // This wasn't actually a type, but a pattern looking like a type,
                // so we are going to rollback and re-parse for recovery.
                ty = self.unexpected();
            }
            match ty {
                Ok(ty) => {
                    let ident = Ident::new(kw::Invalid, self.prev_token.span);
                    let bm = BindingMode::ByValue(Mutability::Not);
                    let pat = self.mk_pat_ident(ty.span, bm, ident);
                    (pat, ty)
                }
                // If this is a C-variadic argument and we hit an error, return the error.
                Err(err) if self.token == token::DotDotDot => return Err(err),
                // Recover from attempting to parse the argument as a type without pattern.
                Err(mut err) => {
                    err.cancel();
                    *self = parser_snapshot_before_ty;
                    self.recover_arg_parse()?
                }
            }
        };

        let span = lo.until(self.token.span);

        Ok(Param {
            attrs: attrs.into(),
            id: ast::DUMMY_NODE_ID,
            is_placeholder: false,
            pat,
            span,
            ty,
        })
    }

    /// Returns the parsed optional self parameter and whether a self shortcut was used.
    fn parse_self_param(&mut self) -> PResult<'a, Option<Param>> {
        // Extract an identifier *after* having confirmed that the token is one.
        let expect_self_ident = |this: &mut Self| match this.token.ident() {
            Some((ident, false)) => {
                this.bump();
                ident
            }
            _ => unreachable!(),
        };
        // Is `self` `n` tokens ahead?
        let is_isolated_self = |this: &Self, n| {
            this.is_keyword_ahead(n, &[kw::SelfLower])
                && this.look_ahead(n + 1, |t| t != &token::ModSep)
        };
        // Is `mut self` `n` tokens ahead?
        let is_isolated_mut_self =
            |this: &Self, n| this.is_keyword_ahead(n, &[kw::Mut]) && is_isolated_self(this, n + 1);
        // Parse `self` or `self: TYPE`. We already know the current token is `self`.
        let parse_self_possibly_typed = |this: &mut Self, m| {
            let eself_ident = expect_self_ident(this);
            let eself_hi = this.prev_token.span;
            let eself = if this.eat(&token::Colon) {
                SelfKind::Explicit(this.parse_ty()?, m)
            } else {
                SelfKind::Value(m)
            };
            Ok((eself, eself_ident, eself_hi))
        };
        // Recover for the grammar `*self`, `*const self`, and `*mut self`.
        let recover_self_ptr = |this: &mut Self| {
            let msg = "cannot pass `self` by raw pointer";
            let span = this.token.span;
            this.struct_span_err(span, msg).span_label(span, msg).emit();

            Ok((SelfKind::Value(Mutability::Not), expect_self_ident(this), this.prev_token.span))
        };

        // Parse optional `self` parameter of a method.
        // Only a limited set of initial token sequences is considered `self` parameters; anything
        // else is parsed as a normal function parameter list, so some lookahead is required.
        let eself_lo = self.token.span;
        let (eself, eself_ident, eself_hi) = match self.token.uninterpolate().kind {
            token::BinOp(token::And) => {
                let eself = if is_isolated_self(self, 1) {
                    // `&self`
                    self.bump();
                    SelfKind::Region(None, Mutability::Not)
                } else if is_isolated_mut_self(self, 1) {
                    // `&mut self`
                    self.bump();
                    self.bump();
                    SelfKind::Region(None, Mutability::Mut)
                } else if self.look_ahead(1, |t| t.is_lifetime()) && is_isolated_self(self, 2) {
                    // `&'lt self`
                    self.bump();
                    let lt = self.expect_lifetime();
                    SelfKind::Region(Some(lt), Mutability::Not)
                } else if self.look_ahead(1, |t| t.is_lifetime()) && is_isolated_mut_self(self, 2) {
                    // `&'lt mut self`
                    self.bump();
                    let lt = self.expect_lifetime();
                    self.bump();
                    SelfKind::Region(Some(lt), Mutability::Mut)
                } else {
                    // `&not_self`
                    return Ok(None);
                };
                (eself, expect_self_ident(self), self.prev_token.span)
            }
            // `*self`
            token::BinOp(token::Star) if is_isolated_self(self, 1) => {
                self.bump();
                recover_self_ptr(self)?
            }
            // `*mut self` and `*const self`
            token::BinOp(token::Star)
                if self.look_ahead(1, |t| t.is_mutability()) && is_isolated_self(self, 2) =>
            {
                self.bump();
                self.bump();
                recover_self_ptr(self)?
            }
            // `self` and `self: TYPE`
            token::Ident(..) if is_isolated_self(self, 0) => {
                parse_self_possibly_typed(self, Mutability::Not)?
            }
            // `mut self` and `mut self: TYPE`
            token::Ident(..) if is_isolated_mut_self(self, 0) => {
                self.bump();
                parse_self_possibly_typed(self, Mutability::Mut)?
            }
            _ => return Ok(None),
        };

        let eself = source_map::respan(eself_lo.to(eself_hi), eself);
        Ok(Some(Param::from_self(AttrVec::default(), eself, eself_ident)))
    }

    fn is_named_param(&self) -> bool {
        let offset = match self.token.kind {
            token::Interpolated(ref nt) => match **nt {
                token::NtPat(..) => return self.look_ahead(1, |t| t == &token::Colon),
                _ => 0,
            },
            token::BinOp(token::And) | token::AndAnd => 1,
            _ if self.token.is_keyword(kw::Mut) => 1,
            _ => 0,
        };

        self.look_ahead(offset, |t| t.is_ident())
            && self.look_ahead(offset + 1, |t| t == &token::Colon)
    }

    fn recover_first_param(&mut self) -> &'static str {
        match self
            .parse_outer_attributes()
            .and_then(|_| self.parse_self_param())
            .map_err(|mut e| e.cancel())
        {
            Ok(Some(_)) => "method",
            _ => "function",
        }
    }
}