1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
|
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::profiling::QueryInvocationId;
use rustc_data_structures::sharded::{self, Sharded};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{AtomicU32, AtomicU64, Lock, LockGuard, Lrc, Ordering};
use rustc_data_structures::unlikely;
use rustc_errors::Diagnostic;
use rustc_index::vec::{Idx, IndexVec};
use rustc_serialize::{Encodable, Encoder};
use parking_lot::{Condvar, Mutex};
use smallvec::{smallvec, SmallVec};
use std::collections::hash_map::Entry;
use std::env;
use std::hash::Hash;
use std::marker::PhantomData;
use std::mem;
use std::ops::Range;
use std::sync::atomic::Ordering::Relaxed;
use super::debug::EdgeFilter;
use super::prev::PreviousDepGraph;
use super::query::DepGraphQuery;
use super::serialized::SerializedDepNodeIndex;
use super::{DepContext, DepKind, DepNode, WorkProductId};
#[derive(Clone)]
pub struct DepGraph<K: DepKind> {
data: Option<Lrc<DepGraphData<K>>>,
/// This field is used for assigning DepNodeIndices when running in
/// non-incremental mode. Even in non-incremental mode we make sure that
/// each task has a `DepNodeIndex` that uniquely identifies it. This unique
/// ID is used for self-profiling.
virtual_dep_node_index: Lrc<AtomicU32>,
}
rustc_index::newtype_index! {
pub struct DepNodeIndex { .. }
}
impl DepNodeIndex {
pub const INVALID: DepNodeIndex = DepNodeIndex::MAX;
}
impl std::convert::From<DepNodeIndex> for QueryInvocationId {
#[inline]
fn from(dep_node_index: DepNodeIndex) -> Self {
QueryInvocationId(dep_node_index.as_u32())
}
}
#[derive(PartialEq)]
pub enum DepNodeColor {
Red,
Green(DepNodeIndex),
}
impl DepNodeColor {
pub fn is_green(self) -> bool {
match self {
DepNodeColor::Red => false,
DepNodeColor::Green(_) => true,
}
}
}
struct DepGraphData<K: DepKind> {
/// The new encoding of the dependency graph, optimized for red/green
/// tracking. The `current` field is the dependency graph of only the
/// current compilation session: We don't merge the previous dep-graph into
/// current one anymore, but we do reference shared data to save space.
current: CurrentDepGraph<K>,
/// The dep-graph from the previous compilation session. It contains all
/// nodes and edges as well as all fingerprints of nodes that have them.
previous: PreviousDepGraph<K>,
colors: DepNodeColorMap,
/// A set of loaded diagnostics that is in the progress of being emitted.
emitting_diagnostics: Mutex<FxHashSet<DepNodeIndex>>,
/// Used to wait for diagnostics to be emitted.
emitting_diagnostics_cond_var: Condvar,
/// When we load, there may be `.o` files, cached MIR, or other such
/// things available to us. If we find that they are not dirty, we
/// load the path to the file storing those work-products here into
/// this map. We can later look for and extract that data.
previous_work_products: FxHashMap<WorkProductId, WorkProduct>,
dep_node_debug: Lock<FxHashMap<DepNode<K>, String>>,
}
pub fn hash_result<HashCtxt, R>(hcx: &mut HashCtxt, result: &R) -> Option<Fingerprint>
where
R: HashStable<HashCtxt>,
{
let mut stable_hasher = StableHasher::new();
result.hash_stable(hcx, &mut stable_hasher);
Some(stable_hasher.finish())
}
impl<K: DepKind> DepGraph<K> {
pub fn new(
prev_graph: PreviousDepGraph<K>,
prev_work_products: FxHashMap<WorkProductId, WorkProduct>,
) -> DepGraph<K> {
let prev_graph_node_count = prev_graph.node_count();
DepGraph {
data: Some(Lrc::new(DepGraphData {
previous_work_products: prev_work_products,
dep_node_debug: Default::default(),
current: CurrentDepGraph::new(prev_graph_node_count),
emitting_diagnostics: Default::default(),
emitting_diagnostics_cond_var: Condvar::new(),
previous: prev_graph,
colors: DepNodeColorMap::new(prev_graph_node_count),
})),
virtual_dep_node_index: Lrc::new(AtomicU32::new(0)),
}
}
pub fn new_disabled() -> DepGraph<K> {
DepGraph { data: None, virtual_dep_node_index: Lrc::new(AtomicU32::new(0)) }
}
/// Returns `true` if we are actually building the full dep-graph, and `false` otherwise.
#[inline]
pub fn is_fully_enabled(&self) -> bool {
self.data.is_some()
}
pub fn query(&self) -> DepGraphQuery<K> {
let data = self.data.as_ref().unwrap();
let previous = &data.previous;
// Note locking order: `prev_index_to_index`, then `data`.
let prev_index_to_index = data.current.prev_index_to_index.lock();
let data = data.current.data.lock();
let node_count = data.hybrid_indices.len();
let edge_count = self.edge_count(&data);
let mut nodes = Vec::with_capacity(node_count);
let mut edge_list_indices = Vec::with_capacity(node_count);
let mut edge_list_data = Vec::with_capacity(edge_count);
// See `DepGraph`'s `Encodable` implementation for notes on the approach used here.
edge_list_data.extend(data.unshared_edges.iter().map(|i| i.index()));
for &hybrid_index in data.hybrid_indices.iter() {
match hybrid_index.into() {
HybridIndex::New(new_index) => {
nodes.push(data.new.nodes[new_index]);
let edges = &data.new.edges[new_index];
edge_list_indices.push((edges.start.index(), edges.end.index()));
}
HybridIndex::Red(red_index) => {
nodes.push(previous.index_to_node(data.red.node_indices[red_index]));
let edges = &data.red.edges[red_index];
edge_list_indices.push((edges.start.index(), edges.end.index()));
}
HybridIndex::LightGreen(lg_index) => {
nodes.push(previous.index_to_node(data.light_green.node_indices[lg_index]));
let edges = &data.light_green.edges[lg_index];
edge_list_indices.push((edges.start.index(), edges.end.index()));
}
HybridIndex::DarkGreen(prev_index) => {
nodes.push(previous.index_to_node(prev_index));
let edges_iter = previous
.edge_targets_from(prev_index)
.iter()
.map(|&dst| prev_index_to_index[dst].unwrap().index());
let start = edge_list_data.len();
edge_list_data.extend(edges_iter);
let end = edge_list_data.len();
edge_list_indices.push((start, end));
}
}
}
debug_assert_eq!(nodes.len(), node_count);
debug_assert_eq!(edge_list_indices.len(), node_count);
debug_assert_eq!(edge_list_data.len(), edge_count);
DepGraphQuery::new(&nodes[..], &edge_list_indices[..], &edge_list_data[..])
}
pub fn assert_ignored(&self) {
if let Some(..) = self.data {
K::read_deps(|task_deps| {
assert!(task_deps.is_none(), "expected no task dependency tracking");
})
}
}
pub fn with_ignore<OP, R>(&self, op: OP) -> R
where
OP: FnOnce() -> R,
{
K::with_deps(None, op)
}
/// Starts a new dep-graph task. Dep-graph tasks are specified
/// using a free function (`task`) and **not** a closure -- this
/// is intentional because we want to exercise tight control over
/// what state they have access to. In particular, we want to
/// prevent implicit 'leaks' of tracked state into the task (which
/// could then be read without generating correct edges in the
/// dep-graph -- see the [rustc dev guide] for more details on
/// the dep-graph). To this end, the task function gets exactly two
/// pieces of state: the context `cx` and an argument `arg`. Both
/// of these bits of state must be of some type that implements
/// `DepGraphSafe` and hence does not leak.
///
/// The choice of two arguments is not fundamental. One argument
/// would work just as well, since multiple values can be
/// collected using tuples. However, using two arguments works out
/// to be quite convenient, since it is common to need a context
/// (`cx`) and some argument (e.g., a `DefId` identifying what
/// item to process).
///
/// For cases where you need some other number of arguments:
///
/// - If you only need one argument, just use `()` for the `arg`
/// parameter.
/// - If you need 3+ arguments, use a tuple for the
/// `arg` parameter.
///
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/incremental-compilation.html
pub fn with_task<Ctxt: DepContext<DepKind = K>, A, R>(
&self,
key: DepNode<K>,
cx: Ctxt,
arg: A,
task: fn(Ctxt, A) -> R,
hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option<Fingerprint>,
) -> (R, DepNodeIndex) {
self.with_task_impl(
key,
cx,
arg,
task,
|_key| {
Some(TaskDeps {
#[cfg(debug_assertions)]
node: Some(_key),
reads: SmallVec::new(),
read_set: Default::default(),
phantom_data: PhantomData,
})
},
hash_result,
)
}
fn with_task_impl<Ctxt: DepContext<DepKind = K>, A, R>(
&self,
key: DepNode<K>,
cx: Ctxt,
arg: A,
task: fn(Ctxt, A) -> R,
create_task: fn(DepNode<K>) -> Option<TaskDeps<K>>,
hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option<Fingerprint>,
) -> (R, DepNodeIndex) {
if let Some(ref data) = self.data {
let task_deps = create_task(key).map(Lock::new);
let result = K::with_deps(task_deps.as_ref(), || task(cx, arg));
let edges = task_deps.map_or_else(|| smallvec![], |lock| lock.into_inner().reads);
let mut hcx = cx.create_stable_hashing_context();
let current_fingerprint = hash_result(&mut hcx, &result);
let print_status = cfg!(debug_assertions) && cx.debug_dep_tasks();
// Intern the new `DepNode`.
let dep_node_index = if let Some(prev_index) = data.previous.node_to_index_opt(&key) {
// Determine the color and index of the new `DepNode`.
let (color, dep_node_index) = if let Some(current_fingerprint) = current_fingerprint
{
if current_fingerprint == data.previous.fingerprint_by_index(prev_index) {
if print_status {
eprintln!("[task::green] {:?}", key);
}
// This is a light green node: it existed in the previous compilation,
// its query was re-executed, and it has the same result as before.
let dep_node_index =
data.current.intern_light_green_node(&data.previous, prev_index, edges);
(DepNodeColor::Green(dep_node_index), dep_node_index)
} else {
if print_status {
eprintln!("[task::red] {:?}", key);
}
// This is a red node: it existed in the previous compilation, its query
// was re-executed, but it has a different result from before.
let dep_node_index = data.current.intern_red_node(
&data.previous,
prev_index,
edges,
current_fingerprint,
);
(DepNodeColor::Red, dep_node_index)
}
} else {
if print_status {
eprintln!("[task::unknown] {:?}", key);
}
// This is a red node, effectively: it existed in the previous compilation
// session, its query was re-executed, but it doesn't compute a result hash
// (i.e. it represents a `no_hash` query), so we have no way of determining
// whether or not the result was the same as before.
let dep_node_index = data.current.intern_red_node(
&data.previous,
prev_index,
edges,
Fingerprint::ZERO,
);
(DepNodeColor::Red, dep_node_index)
};
debug_assert!(
data.colors.get(prev_index).is_none(),
"DepGraph::with_task() - Duplicate DepNodeColor \
insertion for {:?}",
key
);
data.colors.insert(prev_index, color);
dep_node_index
} else {
if print_status {
eprintln!("[task::new] {:?}", key);
}
// This is a new node: it didn't exist in the previous compilation session.
data.current.intern_new_node(
&data.previous,
key,
edges,
current_fingerprint.unwrap_or(Fingerprint::ZERO),
)
};
(result, dep_node_index)
} else {
// Incremental compilation is turned off. We just execute the task
// without tracking. We still provide a dep-node index that uniquely
// identifies the task so that we have a cheap way of referring to
// the query for self-profiling.
(task(cx, arg), self.next_virtual_depnode_index())
}
}
/// Executes something within an "anonymous" task, that is, a task the
/// `DepNode` of which is determined by the list of inputs it read from.
pub fn with_anon_task<OP, R>(&self, dep_kind: K, op: OP) -> (R, DepNodeIndex)
where
OP: FnOnce() -> R,
{
debug_assert!(!dep_kind.is_eval_always());
if let Some(ref data) = self.data {
let task_deps = Lock::new(TaskDeps::default());
let result = K::with_deps(Some(&task_deps), op);
let task_deps = task_deps.into_inner();
// The dep node indices are hashed here instead of hashing the dep nodes of the
// dependencies. These indices may refer to different nodes per session, but this isn't
// a problem here because we that ensure the final dep node hash is per session only by
// combining it with the per session random number `anon_id_seed`. This hash only need
// to map the dependencies to a single value on a per session basis.
let mut hasher = StableHasher::new();
task_deps.reads.hash(&mut hasher);
let target_dep_node = DepNode {
kind: dep_kind,
// Fingerprint::combine() is faster than sending Fingerprint
// through the StableHasher (at least as long as StableHasher
// is so slow).
hash: data.current.anon_id_seed.combine(hasher.finish()).into(),
};
let dep_node_index = data.current.intern_new_node(
&data.previous,
target_dep_node,
task_deps.reads,
Fingerprint::ZERO,
);
(result, dep_node_index)
} else {
(op(), self.next_virtual_depnode_index())
}
}
/// Executes something within an "eval-always" task which is a task
/// that runs whenever anything changes.
pub fn with_eval_always_task<Ctxt: DepContext<DepKind = K>, A, R>(
&self,
key: DepNode<K>,
cx: Ctxt,
arg: A,
task: fn(Ctxt, A) -> R,
hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option<Fingerprint>,
) -> (R, DepNodeIndex) {
self.with_task_impl(key, cx, arg, task, |_| None, hash_result)
}
#[inline]
pub fn read_index(&self, dep_node_index: DepNodeIndex) {
if let Some(ref data) = self.data {
K::read_deps(|task_deps| {
if let Some(task_deps) = task_deps {
let mut task_deps = task_deps.lock();
let task_deps = &mut *task_deps;
if cfg!(debug_assertions) {
data.current.total_read_count.fetch_add(1, Relaxed);
}
// As long as we only have a low number of reads we can avoid doing a hash
// insert and potentially allocating/reallocating the hashmap
let new_read = if task_deps.reads.len() < TASK_DEPS_READS_CAP {
task_deps.reads.iter().all(|other| *other != dep_node_index)
} else {
task_deps.read_set.insert(dep_node_index)
};
if new_read {
task_deps.reads.push(dep_node_index);
if task_deps.reads.len() == TASK_DEPS_READS_CAP {
// Fill `read_set` with what we have so far so we can use the hashset
// next time
task_deps.read_set.extend(task_deps.reads.iter().copied());
}
#[cfg(debug_assertions)]
{
if let Some(target) = task_deps.node {
if let Some(ref forbidden_edge) = data.current.forbidden_edge {
let src = self.dep_node_of(dep_node_index);
if forbidden_edge.test(&src, &target) {
panic!("forbidden edge {:?} -> {:?} created", src, target)
}
}
}
}
} else if cfg!(debug_assertions) {
data.current.total_duplicate_read_count.fetch_add(1, Relaxed);
}
}
})
}
}
#[inline]
pub fn dep_node_index_of(&self, dep_node: &DepNode<K>) -> DepNodeIndex {
self.dep_node_index_of_opt(dep_node).unwrap()
}
#[inline]
pub fn dep_node_index_of_opt(&self, dep_node: &DepNode<K>) -> Option<DepNodeIndex> {
let data = self.data.as_ref().unwrap();
let current = &data.current;
if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
current.prev_index_to_index.lock()[prev_index]
} else {
current.new_node_to_index.get_shard_by_value(dep_node).lock().get(dep_node).copied()
}
}
#[inline]
pub fn dep_node_exists(&self, dep_node: &DepNode<K>) -> bool {
self.data.is_some() && self.dep_node_index_of_opt(dep_node).is_some()
}
#[inline]
pub fn dep_node_of(&self, dep_node_index: DepNodeIndex) -> DepNode<K> {
let data = self.data.as_ref().unwrap();
let previous = &data.previous;
let data = data.current.data.lock();
match data.hybrid_indices[dep_node_index].into() {
HybridIndex::New(new_index) => data.new.nodes[new_index],
HybridIndex::Red(red_index) => previous.index_to_node(data.red.node_indices[red_index]),
HybridIndex::LightGreen(light_green_index) => {
previous.index_to_node(data.light_green.node_indices[light_green_index])
}
HybridIndex::DarkGreen(prev_index) => previous.index_to_node(prev_index),
}
}
#[inline]
pub fn fingerprint_of(&self, dep_node_index: DepNodeIndex) -> Fingerprint {
let data = self.data.as_ref().unwrap();
let previous = &data.previous;
let data = data.current.data.lock();
match data.hybrid_indices[dep_node_index].into() {
HybridIndex::New(new_index) => data.new.fingerprints[new_index],
HybridIndex::Red(red_index) => data.red.fingerprints[red_index],
HybridIndex::LightGreen(light_green_index) => {
previous.fingerprint_by_index(data.light_green.node_indices[light_green_index])
}
HybridIndex::DarkGreen(prev_index) => previous.fingerprint_by_index(prev_index),
}
}
pub fn prev_fingerprint_of(&self, dep_node: &DepNode<K>) -> Option<Fingerprint> {
self.data.as_ref().unwrap().previous.fingerprint_of(dep_node)
}
/// Checks whether a previous work product exists for `v` and, if
/// so, return the path that leads to it. Used to skip doing work.
pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
self.data.as_ref().and_then(|data| data.previous_work_products.get(v).cloned())
}
/// Access the map of work-products created during the cached run. Only
/// used during saving of the dep-graph.
pub fn previous_work_products(&self) -> &FxHashMap<WorkProductId, WorkProduct> {
&self.data.as_ref().unwrap().previous_work_products
}
#[inline(always)]
pub fn register_dep_node_debug_str<F>(&self, dep_node: DepNode<K>, debug_str_gen: F)
where
F: FnOnce() -> String,
{
let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;
if dep_node_debug.borrow().contains_key(&dep_node) {
return;
}
let debug_str = debug_str_gen();
dep_node_debug.borrow_mut().insert(dep_node, debug_str);
}
pub fn dep_node_debug_str(&self, dep_node: DepNode<K>) -> Option<String> {
self.data.as_ref()?.dep_node_debug.borrow().get(&dep_node).cloned()
}
fn edge_count(&self, node_data: &LockGuard<'_, DepNodeData<K>>) -> usize {
let data = self.data.as_ref().unwrap();
let previous = &data.previous;
let mut edge_count = node_data.unshared_edges.len();
for &hybrid_index in node_data.hybrid_indices.iter() {
if let HybridIndex::DarkGreen(prev_index) = hybrid_index.into() {
edge_count += previous.edge_targets_from(prev_index).len()
}
}
edge_count
}
pub fn node_color(&self, dep_node: &DepNode<K>) -> Option<DepNodeColor> {
if let Some(ref data) = self.data {
if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
return data.colors.get(prev_index);
} else {
// This is a node that did not exist in the previous compilation
// session, so we consider it to be red.
return Some(DepNodeColor::Red);
}
}
None
}
/// Try to read a node index for the node dep_node.
/// A node will have an index, when it's already been marked green, or when we can mark it
/// green. This function will mark the current task as a reader of the specified node, when
/// a node index can be found for that node.
pub fn try_mark_green_and_read<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
dep_node: &DepNode<K>,
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
self.try_mark_green(tcx, dep_node).map(|(prev_index, dep_node_index)| {
debug_assert!(self.is_green(&dep_node));
self.read_index(dep_node_index);
(prev_index, dep_node_index)
})
}
pub fn try_mark_green<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
dep_node: &DepNode<K>,
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
debug_assert!(!dep_node.kind.is_eval_always());
// Return None if the dep graph is disabled
let data = self.data.as_ref()?;
// Return None if the dep node didn't exist in the previous session
let prev_index = data.previous.node_to_index_opt(dep_node)?;
match data.colors.get(prev_index) {
Some(DepNodeColor::Green(dep_node_index)) => Some((prev_index, dep_node_index)),
Some(DepNodeColor::Red) => None,
None => {
// This DepNode and the corresponding query invocation existed
// in the previous compilation session too, so we can try to
// mark it as green by recursively marking all of its
// dependencies green.
self.try_mark_previous_green(tcx, data, prev_index, &dep_node)
.map(|dep_node_index| (prev_index, dep_node_index))
}
}
}
/// Try to mark a dep-node which existed in the previous compilation session as green.
fn try_mark_previous_green<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
data: &DepGraphData<K>,
prev_dep_node_index: SerializedDepNodeIndex,
dep_node: &DepNode<K>,
) -> Option<DepNodeIndex> {
debug!("try_mark_previous_green({:?}) - BEGIN", dep_node);
#[cfg(not(parallel_compiler))]
{
debug_assert!(!self.dep_node_exists(dep_node));
debug_assert!(data.colors.get(prev_dep_node_index).is_none());
}
// We never try to mark eval_always nodes as green
debug_assert!(!dep_node.kind.is_eval_always());
debug_assert_eq!(data.previous.index_to_node(prev_dep_node_index), *dep_node);
let prev_deps = data.previous.edge_targets_from(prev_dep_node_index);
for &dep_dep_node_index in prev_deps {
let dep_dep_node_color = data.colors.get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(_)) => {
// This dependency has been marked as green before, we are
// still fine and can continue with checking the other
// dependencies.
debug!(
"try_mark_previous_green({:?}) --- found dependency {:?} to \
be immediately green",
dep_node,
data.previous.index_to_node(dep_dep_node_index)
);
}
Some(DepNodeColor::Red) => {
// We found a dependency the value of which has changed
// compared to the previous compilation session. We cannot
// mark the DepNode as green and also don't need to bother
// with checking any of the other dependencies.
debug!(
"try_mark_previous_green({:?}) - END - dependency {:?} was \
immediately red",
dep_node,
data.previous.index_to_node(dep_dep_node_index)
);
return None;
}
None => {
let dep_dep_node = &data.previous.index_to_node(dep_dep_node_index);
// We don't know the state of this dependency. If it isn't
// an eval_always node, let's try to mark it green recursively.
if !dep_dep_node.kind.is_eval_always() {
debug!(
"try_mark_previous_green({:?}) --- state of dependency {:?} ({}) \
is unknown, trying to mark it green",
dep_node, dep_dep_node, dep_dep_node.hash,
);
let node_index = self.try_mark_previous_green(
tcx,
data,
dep_dep_node_index,
dep_dep_node,
);
if node_index.is_some() {
debug!(
"try_mark_previous_green({:?}) --- managed to MARK \
dependency {:?} as green",
dep_node, dep_dep_node
);
continue;
}
}
// We failed to mark it green, so we try to force the query.
debug!(
"try_mark_previous_green({:?}) --- trying to force \
dependency {:?}",
dep_node, dep_dep_node
);
if tcx.try_force_from_dep_node(dep_dep_node) {
let dep_dep_node_color = data.colors.get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(_)) => {
debug!(
"try_mark_previous_green({:?}) --- managed to \
FORCE dependency {:?} to green",
dep_node, dep_dep_node
);
}
Some(DepNodeColor::Red) => {
debug!(
"try_mark_previous_green({:?}) - END - \
dependency {:?} was red after forcing",
dep_node, dep_dep_node
);
return None;
}
None => {
if !tcx.has_errors_or_delayed_span_bugs() {
panic!(
"try_mark_previous_green() - Forcing the DepNode \
should have set its color"
)
} else {
// If the query we just forced has resulted in
// some kind of compilation error, we cannot rely on
// the dep-node color having been properly updated.
// This means that the query system has reached an
// invalid state. We let the compiler continue (by
// returning `None`) so it can emit error messages
// and wind down, but rely on the fact that this
// invalid state will not be persisted to the
// incremental compilation cache because of
// compilation errors being present.
debug!(
"try_mark_previous_green({:?}) - END - \
dependency {:?} resulted in compilation error",
dep_node, dep_dep_node
);
return None;
}
}
}
} else {
// The DepNode could not be forced.
debug!(
"try_mark_previous_green({:?}) - END - dependency {:?} \
could not be forced",
dep_node, dep_dep_node
);
return None;
}
}
}
}
// If we got here without hitting a `return` that means that all
// dependencies of this DepNode could be marked as green. Therefore we
// can also mark this DepNode as green.
// There may be multiple threads trying to mark the same dep node green concurrently
let dep_node_index = {
// We allocating an entry for the node in the current dependency graph and
// adding all the appropriate edges imported from the previous graph
data.current.intern_dark_green_node(&data.previous, prev_dep_node_index)
};
// ... emitting any stored diagnostic ...
// FIXME: Store the fact that a node has diagnostics in a bit in the dep graph somewhere
// Maybe store a list on disk and encode this fact in the DepNodeState
let diagnostics = tcx.load_diagnostics(prev_dep_node_index);
#[cfg(not(parallel_compiler))]
debug_assert!(
data.colors.get(prev_dep_node_index).is_none(),
"DepGraph::try_mark_previous_green() - Duplicate DepNodeColor \
insertion for {:?}",
dep_node
);
if unlikely!(!diagnostics.is_empty()) {
self.emit_diagnostics(tcx, data, dep_node_index, prev_dep_node_index, diagnostics);
}
// ... and finally storing a "Green" entry in the color map.
// Multiple threads can all write the same color here
data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
debug!("try_mark_previous_green({:?}) - END - successfully marked as green", dep_node);
Some(dep_node_index)
}
/// Atomically emits some loaded diagnostics.
/// This may be called concurrently on multiple threads for the same dep node.
#[cold]
#[inline(never)]
fn emit_diagnostics<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
data: &DepGraphData<K>,
dep_node_index: DepNodeIndex,
prev_dep_node_index: SerializedDepNodeIndex,
diagnostics: Vec<Diagnostic>,
) {
let mut emitting = data.emitting_diagnostics.lock();
if data.colors.get(prev_dep_node_index) == Some(DepNodeColor::Green(dep_node_index)) {
// The node is already green so diagnostics must have been emitted already
return;
}
if emitting.insert(dep_node_index) {
// We were the first to insert the node in the set so this thread
// must emit the diagnostics and signal other potentially waiting
// threads after.
mem::drop(emitting);
// Promote the previous diagnostics to the current session.
tcx.store_diagnostics(dep_node_index, diagnostics.clone().into());
let handle = tcx.diagnostic();
for diagnostic in diagnostics {
handle.emit_diagnostic(&diagnostic);
}
// Mark the node as green now that diagnostics are emitted
data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
// Remove the node from the set
data.emitting_diagnostics.lock().remove(&dep_node_index);
// Wake up waiters
data.emitting_diagnostics_cond_var.notify_all();
} else {
// We must wait for the other thread to finish emitting the diagnostic
loop {
data.emitting_diagnostics_cond_var.wait(&mut emitting);
if data.colors.get(prev_dep_node_index) == Some(DepNodeColor::Green(dep_node_index))
{
break;
}
}
}
}
// Returns true if the given node has been marked as green during the
// current compilation session. Used in various assertions
pub fn is_green(&self, dep_node: &DepNode<K>) -> bool {
self.node_color(dep_node).map_or(false, |c| c.is_green())
}
// This method loads all on-disk cacheable query results into memory, so
// they can be written out to the new cache file again. Most query results
// will already be in memory but in the case where we marked something as
// green but then did not need the value, that value will never have been
// loaded from disk.
//
// This method will only load queries that will end up in the disk cache.
// Other queries will not be executed.
pub fn exec_cache_promotions<Ctxt: DepContext<DepKind = K>>(&self, tcx: Ctxt) {
let _prof_timer = tcx.profiler().generic_activity("incr_comp_query_cache_promotion");
let data = self.data.as_ref().unwrap();
for prev_index in data.colors.values.indices() {
match data.colors.get(prev_index) {
Some(DepNodeColor::Green(_)) => {
let dep_node = data.previous.index_to_node(prev_index);
tcx.try_load_from_on_disk_cache(&dep_node);
}
None | Some(DepNodeColor::Red) => {
// We can skip red nodes because a node can only be marked
// as red if the query result was recomputed and thus is
// already in memory.
}
}
}
}
// Register reused dep nodes (i.e. nodes we've marked red or green) with the context.
pub fn register_reused_dep_nodes<Ctxt: DepContext<DepKind = K>>(&self, tcx: Ctxt) {
let data = self.data.as_ref().unwrap();
for prev_index in data.colors.values.indices() {
match data.colors.get(prev_index) {
Some(DepNodeColor::Red) | Some(DepNodeColor::Green(_)) => {
let dep_node = data.previous.index_to_node(prev_index);
tcx.register_reused_dep_node(&dep_node);
}
None => {}
}
}
}
pub fn print_incremental_info(&self) {
#[derive(Clone)]
struct Stat<Kind: DepKind> {
kind: Kind,
node_counter: u64,
edge_counter: u64,
}
let data = self.data.as_ref().unwrap();
let prev = &data.previous;
let current = &data.current;
let data = current.data.lock();
let mut stats: FxHashMap<_, Stat<K>> = FxHashMap::with_hasher(Default::default());
for &hybrid_index in data.hybrid_indices.iter() {
let (kind, edge_count) = match hybrid_index.into() {
HybridIndex::New(new_index) => {
let kind = data.new.nodes[new_index].kind;
let edge_range = &data.new.edges[new_index];
(kind, edge_range.end.as_usize() - edge_range.start.as_usize())
}
HybridIndex::Red(red_index) => {
let kind = prev.index_to_node(data.red.node_indices[red_index]).kind;
let edge_range = &data.red.edges[red_index];
(kind, edge_range.end.as_usize() - edge_range.start.as_usize())
}
HybridIndex::LightGreen(lg_index) => {
let kind = prev.index_to_node(data.light_green.node_indices[lg_index]).kind;
let edge_range = &data.light_green.edges[lg_index];
(kind, edge_range.end.as_usize() - edge_range.start.as_usize())
}
HybridIndex::DarkGreen(prev_index) => {
let kind = prev.index_to_node(prev_index).kind;
let edge_count = prev.edge_targets_from(prev_index).len();
(kind, edge_count)
}
};
let stat = stats.entry(kind).or_insert(Stat { kind, node_counter: 0, edge_counter: 0 });
stat.node_counter += 1;
stat.edge_counter += edge_count as u64;
}
let total_node_count = data.hybrid_indices.len();
let total_edge_count = self.edge_count(&data);
// Drop the lock guard.
std::mem::drop(data);
let mut stats: Vec<_> = stats.values().cloned().collect();
stats.sort_by_key(|s| -(s.node_counter as i64));
const SEPARATOR: &str = "[incremental] --------------------------------\
----------------------------------------------\
------------";
eprintln!("[incremental]");
eprintln!("[incremental] DepGraph Statistics");
eprintln!("{}", SEPARATOR);
eprintln!("[incremental]");
eprintln!("[incremental] Total Node Count: {}", total_node_count);
eprintln!("[incremental] Total Edge Count: {}", total_edge_count);
if cfg!(debug_assertions) {
let total_edge_reads = current.total_read_count.load(Relaxed);
let total_duplicate_edge_reads = current.total_duplicate_read_count.load(Relaxed);
eprintln!("[incremental] Total Edge Reads: {}", total_edge_reads);
eprintln!("[incremental] Total Duplicate Edge Reads: {}", total_duplicate_edge_reads);
}
eprintln!("[incremental]");
eprintln!(
"[incremental] {:<36}| {:<17}| {:<12}| {:<17}|",
"Node Kind", "Node Frequency", "Node Count", "Avg. Edge Count"
);
eprintln!(
"[incremental] -------------------------------------\
|------------------\
|-------------\
|------------------|"
);
for stat in stats {
let node_kind_ratio = (100.0 * (stat.node_counter as f64)) / (total_node_count as f64);
let node_kind_avg_edges = (stat.edge_counter as f64) / (stat.node_counter as f64);
eprintln!(
"[incremental] {:<36}|{:>16.1}% |{:>12} |{:>17.1} |",
format!("{:?}", stat.kind),
node_kind_ratio,
stat.node_counter,
node_kind_avg_edges,
);
}
eprintln!("{}", SEPARATOR);
eprintln!("[incremental]");
}
fn next_virtual_depnode_index(&self) -> DepNodeIndex {
let index = self.virtual_dep_node_index.fetch_add(1, Relaxed);
DepNodeIndex::from_u32(index)
}
}
impl<E: Encoder, K: DepKind + Encodable<E>> Encodable<E> for DepGraph<K> {
fn encode(&self, e: &mut E) -> Result<(), E::Error> {
// We used to serialize the dep graph by creating and serializing a `SerializedDepGraph`
// using data copied from the `DepGraph`. But copying created a large memory spike, so we
// now serialize directly from the `DepGraph` as if it's a `SerializedDepGraph`. Because we
// deserialize that data into a `SerializedDepGraph` in the next compilation session, we
// need `DepGraph`'s `Encodable` and `SerializedDepGraph`'s `Decodable` implementations to
// be in sync. If you update this encoding, be sure to update the decoding, and vice-versa.
let data = self.data.as_ref().unwrap();
let prev = &data.previous;
// Note locking order: `prev_index_to_index`, then `data`.
let prev_index_to_index = data.current.prev_index_to_index.lock();
let data = data.current.data.lock();
let new = &data.new;
let red = &data.red;
let lg = &data.light_green;
let node_count = data.hybrid_indices.len();
let edge_count = self.edge_count(&data);
// `rustc_middle::ty::query::OnDiskCache` expects nodes to be encoded in `DepNodeIndex`
// order. The edges in `edge_list_data` don't need to be in a particular order, as long as
// each node references its edges as a contiguous range within it. Therefore, we can encode
// `edge_list_data` directly from `unshared_edges`. It meets the above requirements, as
// each non-dark-green node already knows the range of edges to reference within it, which
// they'll encode in `edge_list_indices`. Dark green nodes, however, don't have their edges
// in `unshared_edges`, so need to add them to `edge_list_data`.
use HybridIndex::*;
// Encoded values (nodes, etc.) are explicitly typed below to avoid inadvertently
// serializing data in the wrong format (i.e. one incompatible with `SerializedDepGraph`).
e.emit_struct("SerializedDepGraph", 4, |e| {
e.emit_struct_field("nodes", 0, |e| {
// `SerializedDepGraph` expects this to be encoded as a sequence of `DepNode`s.
e.emit_seq(node_count, |e| {
for (seq_index, &hybrid_index) in data.hybrid_indices.iter().enumerate() {
let node: DepNode<K> = match hybrid_index.into() {
New(i) => new.nodes[i],
Red(i) => prev.index_to_node(red.node_indices[i]),
LightGreen(i) => prev.index_to_node(lg.node_indices[i]),
DarkGreen(prev_index) => prev.index_to_node(prev_index),
};
e.emit_seq_elt(seq_index, |e| node.encode(e))?;
}
Ok(())
})
})?;
e.emit_struct_field("fingerprints", 1, |e| {
// `SerializedDepGraph` expects this to be encoded as a sequence of `Fingerprints`s.
e.emit_seq(node_count, |e| {
for (seq_index, &hybrid_index) in data.hybrid_indices.iter().enumerate() {
let fingerprint: Fingerprint = match hybrid_index.into() {
New(i) => new.fingerprints[i],
Red(i) => red.fingerprints[i],
LightGreen(i) => prev.fingerprint_by_index(lg.node_indices[i]),
DarkGreen(prev_index) => prev.fingerprint_by_index(prev_index),
};
e.emit_seq_elt(seq_index, |e| fingerprint.encode(e))?;
}
Ok(())
})
})?;
e.emit_struct_field("edge_list_indices", 2, |e| {
// `SerializedDepGraph` expects this to be encoded as a sequence of `(u32, u32)`s.
e.emit_seq(node_count, |e| {
// Dark green node edges start after the unshared (all other nodes') edges.
let mut dark_green_edge_index = data.unshared_edges.len();
for (seq_index, &hybrid_index) in data.hybrid_indices.iter().enumerate() {
let edge_indices: (u32, u32) = match hybrid_index.into() {
New(i) => (new.edges[i].start.as_u32(), new.edges[i].end.as_u32()),
Red(i) => (red.edges[i].start.as_u32(), red.edges[i].end.as_u32()),
LightGreen(i) => (lg.edges[i].start.as_u32(), lg.edges[i].end.as_u32()),
DarkGreen(prev_index) => {
let edge_count = prev.edge_targets_from(prev_index).len();
let start = dark_green_edge_index as u32;
dark_green_edge_index += edge_count;
let end = dark_green_edge_index as u32;
(start, end)
}
};
e.emit_seq_elt(seq_index, |e| edge_indices.encode(e))?;
}
assert_eq!(dark_green_edge_index, edge_count);
Ok(())
})
})?;
e.emit_struct_field("edge_list_data", 3, |e| {
// `SerializedDepGraph` expects this to be encoded as a sequence of
// `SerializedDepNodeIndex`.
e.emit_seq(edge_count, |e| {
for (seq_index, &edge) in data.unshared_edges.iter().enumerate() {
let serialized_edge = SerializedDepNodeIndex::new(edge.index());
e.emit_seq_elt(seq_index, |e| serialized_edge.encode(e))?;
}
let mut seq_index = data.unshared_edges.len();
for &hybrid_index in data.hybrid_indices.iter() {
if let DarkGreen(prev_index) = hybrid_index.into() {
for &edge in prev.edge_targets_from(prev_index) {
// Dark green node edges are stored in the previous graph
// and must be converted to edges in the current graph,
// and then serialized as `SerializedDepNodeIndex`.
let serialized_edge = SerializedDepNodeIndex::new(
prev_index_to_index[edge].as_ref().unwrap().index(),
);
e.emit_seq_elt(seq_index, |e| serialized_edge.encode(e))?;
seq_index += 1;
}
}
}
assert_eq!(seq_index, edge_count);
Ok(())
})
})
})
}
}
/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code
/// generation time.
///
/// Each work product is associated with a dep-node, representing the
/// process that produced the work-product. If that dep-node is found
/// to be dirty when we load up, then we will delete the work-product
/// at load time. If the work-product is found to be clean, then we
/// will keep a record in the `previous_work_products` list.
///
/// In addition, work products have an associated hash. This hash is
/// an extra hash that can be used to decide if the work-product from
/// a previous compilation can be re-used (in addition to the dirty
/// edges check).
///
/// As the primary example, consider the object files we generate for
/// each partition. In the first run, we create partitions based on
/// the symbols that need to be compiled. For each partition P, we
/// hash the symbols in P and create a `WorkProduct` record associated
/// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols
/// in P.
///
/// The next time we compile, if the `DepNode::CodegenUnit(P)` is
/// judged to be clean (which means none of the things we read to
/// generate the partition were found to be dirty), it will be loaded
/// into previous work products. We will then regenerate the set of
/// symbols in the partition P and hash them (note that new symbols
/// may be added -- for example, new monomorphizations -- even if
/// nothing in P changed!). We will compare that hash against the
/// previous hash. If it matches up, we can reuse the object file.
#[derive(Clone, Debug, Encodable, Decodable)]
pub struct WorkProduct {
pub cgu_name: String,
/// Saved file associated with this CGU.
pub saved_file: Option<String>,
}
// The maximum value of the follow index types leaves the upper two bits unused
// so that we can store multiple index types in `CompressedHybridIndex`, and use
// those bits to encode which index type it contains.
// Index type for `NewDepNodeData`.
rustc_index::newtype_index! {
struct NewDepNodeIndex {
MAX = 0x7FFF_FFFF
}
}
// Index type for `RedDepNodeData`.
rustc_index::newtype_index! {
struct RedDepNodeIndex {
MAX = 0x7FFF_FFFF
}
}
// Index type for `LightGreenDepNodeData`.
rustc_index::newtype_index! {
struct LightGreenDepNodeIndex {
MAX = 0x7FFF_FFFF
}
}
/// Compressed representation of `HybridIndex` enum. Bits unused by the
/// contained index types are used to encode which index type it contains.
#[derive(Copy, Clone)]
struct CompressedHybridIndex(u32);
impl CompressedHybridIndex {
const NEW_TAG: u32 = 0b0000_0000_0000_0000_0000_0000_0000_0000;
const RED_TAG: u32 = 0b0100_0000_0000_0000_0000_0000_0000_0000;
const LIGHT_GREEN_TAG: u32 = 0b1000_0000_0000_0000_0000_0000_0000_0000;
const DARK_GREEN_TAG: u32 = 0b1100_0000_0000_0000_0000_0000_0000_0000;
const TAG_MASK: u32 = 0b1100_0000_0000_0000_0000_0000_0000_0000;
const INDEX_MASK: u32 = !Self::TAG_MASK;
}
impl From<NewDepNodeIndex> for CompressedHybridIndex {
#[inline]
fn from(index: NewDepNodeIndex) -> Self {
CompressedHybridIndex(Self::NEW_TAG | index.as_u32())
}
}
impl From<RedDepNodeIndex> for CompressedHybridIndex {
#[inline]
fn from(index: RedDepNodeIndex) -> Self {
CompressedHybridIndex(Self::RED_TAG | index.as_u32())
}
}
impl From<LightGreenDepNodeIndex> for CompressedHybridIndex {
#[inline]
fn from(index: LightGreenDepNodeIndex) -> Self {
CompressedHybridIndex(Self::LIGHT_GREEN_TAG | index.as_u32())
}
}
impl From<SerializedDepNodeIndex> for CompressedHybridIndex {
#[inline]
fn from(index: SerializedDepNodeIndex) -> Self {
CompressedHybridIndex(Self::DARK_GREEN_TAG | index.as_u32())
}
}
/// Contains an index into one of several node data collections. Elsewhere, we
/// store `CompressedHyridIndex` instead of this to save space, but convert to
/// this type during processing to take advantage of the enum match ergonomics.
enum HybridIndex {
New(NewDepNodeIndex),
Red(RedDepNodeIndex),
LightGreen(LightGreenDepNodeIndex),
DarkGreen(SerializedDepNodeIndex),
}
impl From<CompressedHybridIndex> for HybridIndex {
#[inline]
fn from(hybrid_index: CompressedHybridIndex) -> Self {
let index = hybrid_index.0 & CompressedHybridIndex::INDEX_MASK;
match hybrid_index.0 & CompressedHybridIndex::TAG_MASK {
CompressedHybridIndex::NEW_TAG => HybridIndex::New(NewDepNodeIndex::from_u32(index)),
CompressedHybridIndex::RED_TAG => HybridIndex::Red(RedDepNodeIndex::from_u32(index)),
CompressedHybridIndex::LIGHT_GREEN_TAG => {
HybridIndex::LightGreen(LightGreenDepNodeIndex::from_u32(index))
}
CompressedHybridIndex::DARK_GREEN_TAG => {
HybridIndex::DarkGreen(SerializedDepNodeIndex::from_u32(index))
}
_ => unreachable!(),
}
}
}
// Index type for `DepNodeData`'s edges.
rustc_index::newtype_index! {
struct EdgeIndex { .. }
}
/// Data for nodes in the current graph, divided into different collections
/// based on their presence in the previous graph, and if present, their color.
/// We divide nodes this way because different types of nodes are able to share
/// more or less data with the previous graph.
///
/// To enable more sharing, we distinguish between two kinds of green nodes.
/// Light green nodes are nodes in the previous graph that have been marked
/// green because we re-executed their queries and the results were the same as
/// in the previous session. Dark green nodes are nodes in the previous graph
/// that have been marked green because we were able to mark all of their
/// dependencies green.
///
/// Both light and dark green nodes can share the dep node and fingerprint with
/// the previous graph, but for light green nodes, we can't be sure that the
/// edges may be shared without comparing them against the previous edges, so we
/// store them directly (an approach in which we compare edges with the previous
/// edges to see if they can be shared was evaluated, but was not found to be
/// very profitable).
///
/// For dark green nodes, we can share everything with the previous graph, which
/// is why the `HybridIndex::DarkGreen` enum variant contains the index of the
/// node in the previous graph, and why we don't have a separate collection for
/// dark green node data--the collection is the `PreviousDepGraph` itself.
///
/// (Note that for dark green nodes, the edges in the previous graph
/// (`SerializedDepNodeIndex`s) must be converted to edges in the current graph
/// (`DepNodeIndex`s). `CurrentDepGraph` contains `prev_index_to_index`, which
/// can perform this conversion. It should always be possible, as by definition,
/// a dark green node is one whose dependencies from the previous session have
/// all been marked green--which means `prev_index_to_index` contains them.)
///
/// Node data is stored in parallel vectors to eliminate the padding between
/// elements that would be needed to satisfy alignment requirements of the
/// structure that would contain all of a node's data. We could group tightly
/// packing subsets of node data together and use fewer vectors, but for
/// consistency's sake, we use separate vectors for each piece of data.
struct DepNodeData<K> {
/// Data for nodes not in previous graph.
new: NewDepNodeData<K>,
/// Data for nodes in previous graph that have been marked red.
red: RedDepNodeData,
/// Data for nodes in previous graph that have been marked light green.
light_green: LightGreenDepNodeData,
// Edges for all nodes other than dark-green ones. Edges for each node
// occupy a contiguous region of this collection, which a node can reference
// using two indices. Storing edges this way rather than using an `EdgesVec`
// for each node reduces memory consumption by a not insignificant amount
// when compiling large crates. The downside is that we have to copy into
// this collection the edges from the `EdgesVec`s that are built up during
// query execution. But this is mostly balanced out by the more efficient
// implementation of `DepGraph::serialize` enabled by this representation.
unshared_edges: IndexVec<EdgeIndex, DepNodeIndex>,
/// Mapping from `DepNodeIndex` to an index into a collection above.
/// Indicates which of the above collections contains a node's data.
///
/// This collection is wasteful in time and space during incr-full builds,
/// because for those, all nodes are new. However, the waste is relatively
/// small, and the maintenance cost of avoiding using this for incr-full
/// builds is somewhat high and prone to bugginess. It does not seem worth
/// it at the time of this writing, but we may want to revisit the idea.
hybrid_indices: IndexVec<DepNodeIndex, CompressedHybridIndex>,
}
/// Data for nodes not in previous graph. Since we cannot share any data with
/// the previous graph, so we must store all of such a node's data here.
struct NewDepNodeData<K> {
nodes: IndexVec<NewDepNodeIndex, DepNode<K>>,
edges: IndexVec<NewDepNodeIndex, Range<EdgeIndex>>,
fingerprints: IndexVec<NewDepNodeIndex, Fingerprint>,
}
/// Data for nodes in previous graph that have been marked red. We can share the
/// dep node with the previous graph, but the edges may be different, and the
/// fingerprint is known to be different, so we store the latter two directly.
struct RedDepNodeData {
node_indices: IndexVec<RedDepNodeIndex, SerializedDepNodeIndex>,
edges: IndexVec<RedDepNodeIndex, Range<EdgeIndex>>,
fingerprints: IndexVec<RedDepNodeIndex, Fingerprint>,
}
/// Data for nodes in previous graph that have been marked green because we
/// re-executed their queries and the results were the same as in the previous
/// session. We can share the dep node and the fingerprint with the previous
/// graph, but the edges may be different, so we store them directly.
struct LightGreenDepNodeData {
node_indices: IndexVec<LightGreenDepNodeIndex, SerializedDepNodeIndex>,
edges: IndexVec<LightGreenDepNodeIndex, Range<EdgeIndex>>,
}
/// `CurrentDepGraph` stores the dependency graph for the current session. It
/// will be populated as we run queries or tasks. We never remove nodes from the
/// graph: they are only added.
///
/// The nodes in it are identified by a `DepNodeIndex`. Internally, this maps to
/// a `HybridIndex`, which identifies which collection in the `data` field
/// contains a node's data. Which collection is used for a node depends on
/// whether the node was present in the `PreviousDepGraph`, and if so, the color
/// of the node. Each type of node can share more or less data with the previous
/// graph. When possible, we can store just the index of the node in the
/// previous graph, rather than duplicating its data in our own collections.
/// This is important, because these graph structures are some of the largest in
/// the compiler.
///
/// For the same reason, we also avoid storing `DepNode`s more than once as map
/// keys. The `new_node_to_index` map only contains nodes not in the previous
/// graph, and we map nodes in the previous graph to indices via a two-step
/// mapping. `PreviousDepGraph` maps from `DepNode` to `SerializedDepNodeIndex`,
/// and the `prev_index_to_index` vector (which is more compact and faster than
/// using a map) maps from `SerializedDepNodeIndex` to `DepNodeIndex`.
///
/// This struct uses three locks internally. The `data`, `new_node_to_index`,
/// and `prev_index_to_index` fields are locked separately. Operations that take
/// a `DepNodeIndex` typically just access the `data` field.
///
/// We only need to manipulate at most two locks simultaneously:
/// `new_node_to_index` and `data`, or `prev_index_to_index` and `data`. When
/// manipulating both, we acquire `new_node_to_index` or `prev_index_to_index`
/// first, and `data` second.
pub(super) struct CurrentDepGraph<K> {
data: Lock<DepNodeData<K>>,
new_node_to_index: Sharded<FxHashMap<DepNode<K>, DepNodeIndex>>,
prev_index_to_index: Lock<IndexVec<SerializedDepNodeIndex, Option<DepNodeIndex>>>,
/// Used to trap when a specific edge is added to the graph.
/// This is used for debug purposes and is only active with `debug_assertions`.
#[allow(dead_code)]
forbidden_edge: Option<EdgeFilter>,
/// Anonymous `DepNode`s are nodes whose IDs we compute from the list of
/// their edges. This has the beneficial side-effect that multiple anonymous
/// nodes can be coalesced into one without changing the semantics of the
/// dependency graph. However, the merging of nodes can lead to a subtle
/// problem during red-green marking: The color of an anonymous node from
/// the current session might "shadow" the color of the node with the same
/// ID from the previous session. In order to side-step this problem, we make
/// sure that anonymous `NodeId`s allocated in different sessions don't overlap.
/// This is implemented by mixing a session-key into the ID fingerprint of
/// each anon node. The session-key is just a random number generated when
/// the `DepGraph` is created.
anon_id_seed: Fingerprint,
/// These are simple counters that are for profiling and
/// debugging and only active with `debug_assertions`.
total_read_count: AtomicU64,
total_duplicate_read_count: AtomicU64,
}
impl<K: DepKind> CurrentDepGraph<K> {
fn new(prev_graph_node_count: usize) -> CurrentDepGraph<K> {
use std::time::{SystemTime, UNIX_EPOCH};
let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let nanos = duration.as_secs() * 1_000_000_000 + duration.subsec_nanos() as u64;
let mut stable_hasher = StableHasher::new();
nanos.hash(&mut stable_hasher);
let forbidden_edge = if cfg!(debug_assertions) {
match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
Ok(s) => match EdgeFilter::new(&s) {
Ok(f) => Some(f),
Err(err) => panic!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
},
Err(_) => None,
}
} else {
None
};
// Pre-allocate the dep node structures. We over-allocate a little so
// that we hopefully don't have to re-allocate during this compilation
// session. The over-allocation for new nodes is 2% plus a small
// constant to account for the fact that in very small crates 2% might
// not be enough. The allocation for red and green node data doesn't
// include a constant, as we don't want to allocate anything for these
// structures during full incremental builds, where they aren't used.
//
// These estimates are based on the distribution of node and edge counts
// seen in rustc-perf benchmarks, adjusted somewhat to account for the
// fact that these benchmarks aren't perfectly representative.
//
// FIXME Use a collection type that doesn't copy node and edge data and
// grow multiplicatively on reallocation. Without such a collection or
// solution having the same effect, there is a performance hazard here
// in both time and space, as growing these collections means copying a
// large amount of data and doubling already large buffer capacities. A
// solution for this will also mean that it's less important to get
// these estimates right.
let new_node_count_estimate = (prev_graph_node_count * 2) / 100 + 200;
let red_node_count_estimate = (prev_graph_node_count * 3) / 100;
let light_green_node_count_estimate = (prev_graph_node_count * 25) / 100;
let total_node_count_estimate = prev_graph_node_count + new_node_count_estimate;
let average_edges_per_node_estimate = 6;
let unshared_edge_count_estimate = average_edges_per_node_estimate
* (new_node_count_estimate + red_node_count_estimate + light_green_node_count_estimate);
// We store a large collection of these in `prev_index_to_index` during
// non-full incremental builds, and want to ensure that the element size
// doesn't inadvertently increase.
static_assert_size!(Option<DepNodeIndex>, 4);
CurrentDepGraph {
data: Lock::new(DepNodeData {
new: NewDepNodeData {
nodes: IndexVec::with_capacity(new_node_count_estimate),
edges: IndexVec::with_capacity(new_node_count_estimate),
fingerprints: IndexVec::with_capacity(new_node_count_estimate),
},
red: RedDepNodeData {
node_indices: IndexVec::with_capacity(red_node_count_estimate),
edges: IndexVec::with_capacity(red_node_count_estimate),
fingerprints: IndexVec::with_capacity(red_node_count_estimate),
},
light_green: LightGreenDepNodeData {
node_indices: IndexVec::with_capacity(light_green_node_count_estimate),
edges: IndexVec::with_capacity(light_green_node_count_estimate),
},
unshared_edges: IndexVec::with_capacity(unshared_edge_count_estimate),
hybrid_indices: IndexVec::with_capacity(total_node_count_estimate),
}),
new_node_to_index: Sharded::new(|| {
FxHashMap::with_capacity_and_hasher(
new_node_count_estimate / sharded::SHARDS,
Default::default(),
)
}),
prev_index_to_index: Lock::new(IndexVec::from_elem_n(None, prev_graph_node_count)),
anon_id_seed: stable_hasher.finish(),
forbidden_edge,
total_read_count: AtomicU64::new(0),
total_duplicate_read_count: AtomicU64::new(0),
}
}
fn intern_new_node(
&self,
prev_graph: &PreviousDepGraph<K>,
dep_node: DepNode<K>,
edges: EdgesVec,
fingerprint: Fingerprint,
) -> DepNodeIndex {
debug_assert!(
prev_graph.node_to_index_opt(&dep_node).is_none(),
"node in previous graph should be interned using one \
of `intern_red_node`, `intern_light_green_node`, etc."
);
match self.new_node_to_index.get_shard_by_value(&dep_node).lock().entry(dep_node) {
Entry::Occupied(entry) => *entry.get(),
Entry::Vacant(entry) => {
let data = &mut *self.data.lock();
let new_index = data.new.nodes.push(dep_node);
add_edges(&mut data.unshared_edges, &mut data.new.edges, edges);
data.new.fingerprints.push(fingerprint);
let dep_node_index = data.hybrid_indices.push(new_index.into());
entry.insert(dep_node_index);
dep_node_index
}
}
}
fn intern_red_node(
&self,
prev_graph: &PreviousDepGraph<K>,
prev_index: SerializedDepNodeIndex,
edges: EdgesVec,
fingerprint: Fingerprint,
) -> DepNodeIndex {
self.debug_assert_not_in_new_nodes(prev_graph, prev_index);
let mut prev_index_to_index = self.prev_index_to_index.lock();
match prev_index_to_index[prev_index] {
Some(dep_node_index) => dep_node_index,
None => {
let data = &mut *self.data.lock();
let red_index = data.red.node_indices.push(prev_index);
add_edges(&mut data.unshared_edges, &mut data.red.edges, edges);
data.red.fingerprints.push(fingerprint);
let dep_node_index = data.hybrid_indices.push(red_index.into());
prev_index_to_index[prev_index] = Some(dep_node_index);
dep_node_index
}
}
}
fn intern_light_green_node(
&self,
prev_graph: &PreviousDepGraph<K>,
prev_index: SerializedDepNodeIndex,
edges: EdgesVec,
) -> DepNodeIndex {
self.debug_assert_not_in_new_nodes(prev_graph, prev_index);
let mut prev_index_to_index = self.prev_index_to_index.lock();
match prev_index_to_index[prev_index] {
Some(dep_node_index) => dep_node_index,
None => {
let data = &mut *self.data.lock();
let light_green_index = data.light_green.node_indices.push(prev_index);
add_edges(&mut data.unshared_edges, &mut data.light_green.edges, edges);
let dep_node_index = data.hybrid_indices.push(light_green_index.into());
prev_index_to_index[prev_index] = Some(dep_node_index);
dep_node_index
}
}
}
fn intern_dark_green_node(
&self,
prev_graph: &PreviousDepGraph<K>,
prev_index: SerializedDepNodeIndex,
) -> DepNodeIndex {
self.debug_assert_not_in_new_nodes(prev_graph, prev_index);
let mut prev_index_to_index = self.prev_index_to_index.lock();
match prev_index_to_index[prev_index] {
Some(dep_node_index) => dep_node_index,
None => {
let mut data = self.data.lock();
let dep_node_index = data.hybrid_indices.push(prev_index.into());
prev_index_to_index[prev_index] = Some(dep_node_index);
dep_node_index
}
}
}
#[inline]
fn debug_assert_not_in_new_nodes(
&self,
prev_graph: &PreviousDepGraph<K>,
prev_index: SerializedDepNodeIndex,
) {
let node = &prev_graph.index_to_node(prev_index);
debug_assert!(
!self.new_node_to_index.get_shard_by_value(node).lock().contains_key(node),
"node from previous graph present in new node collection"
);
}
}
#[inline]
fn add_edges<I: Idx>(
edges: &mut IndexVec<EdgeIndex, DepNodeIndex>,
edge_indices: &mut IndexVec<I, Range<EdgeIndex>>,
new_edges: EdgesVec,
) {
let start = edges.next_index();
edges.extend(new_edges);
let end = edges.next_index();
edge_indices.push(start..end);
}
/// The capacity of the `reads` field `SmallVec`
const TASK_DEPS_READS_CAP: usize = 8;
type EdgesVec = SmallVec<[DepNodeIndex; TASK_DEPS_READS_CAP]>;
pub struct TaskDeps<K> {
#[cfg(debug_assertions)]
node: Option<DepNode<K>>,
reads: EdgesVec,
read_set: FxHashSet<DepNodeIndex>,
phantom_data: PhantomData<DepNode<K>>,
}
impl<K> Default for TaskDeps<K> {
fn default() -> Self {
Self {
#[cfg(debug_assertions)]
node: None,
reads: EdgesVec::new(),
read_set: FxHashSet::default(),
phantom_data: PhantomData,
}
}
}
// A data structure that stores Option<DepNodeColor> values as a contiguous
// array, using one u32 per entry.
struct DepNodeColorMap {
values: IndexVec<SerializedDepNodeIndex, AtomicU32>,
}
const COMPRESSED_NONE: u32 = 0;
const COMPRESSED_RED: u32 = 1;
const COMPRESSED_FIRST_GREEN: u32 = 2;
impl DepNodeColorMap {
fn new(size: usize) -> DepNodeColorMap {
DepNodeColorMap { values: (0..size).map(|_| AtomicU32::new(COMPRESSED_NONE)).collect() }
}
#[inline]
fn get(&self, index: SerializedDepNodeIndex) -> Option<DepNodeColor> {
match self.values[index].load(Ordering::Acquire) {
COMPRESSED_NONE => None,
COMPRESSED_RED => Some(DepNodeColor::Red),
value => {
Some(DepNodeColor::Green(DepNodeIndex::from_u32(value - COMPRESSED_FIRST_GREEN)))
}
}
}
fn insert(&self, index: SerializedDepNodeIndex, color: DepNodeColor) {
self.values[index].store(
match color {
DepNodeColor::Red => COMPRESSED_RED,
DepNodeColor::Green(index) => index.as_u32() + COMPRESSED_FIRST_GREEN,
},
Ordering::Release,
)
}
}
|