about summary refs log tree commit diff
path: root/compiler/rustc_resolve/src/late.rs
blob: 2c678e71ae179de0defee914d8f3e454bd9f319a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
//! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
//! It runs when the crate is fully expanded and its module structure is fully built.
//! So it just walks through the crate and resolves all the expressions, types, etc.
//!
//! If you wonder why there's no `early.rs`, that's because it's split into three files -
//! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.

use RibKind::*;

use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
use crate::{Module, ModuleOrUniformRoot, ParentScope, PathResult};
use crate::{ResolutionError, Resolver, Segment, UseError};

use rustc_ast::ptr::P;
use rustc_ast::visit::{self, AssocCtxt, FnCtxt, FnKind, Visitor};
use rustc_ast::*;
use rustc_ast_lowering::ResolverAstLowering;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::DiagnosticId;
use rustc_hir::def::Namespace::{self, *};
use rustc_hir::def::{self, CtorKind, DefKind, PartialRes, PerNS};
use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
use rustc_hir::{PrimTy, TraitCandidate};
use rustc_middle::{bug, span_bug};
use rustc_session::lint;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::Span;
use smallvec::{smallvec, SmallVec};

use rustc_span::source_map::{respan, Spanned};
use std::collections::{hash_map::Entry, BTreeSet};
use std::mem::{replace, take};
use tracing::debug;

mod diagnostics;
crate mod lifetimes;

type Res = def::Res<NodeId>;

type IdentMap<T> = FxHashMap<Ident, T>;

/// Map from the name in a pattern to its binding mode.
type BindingMap = IdentMap<BindingInfo>;

#[derive(Copy, Clone, Debug)]
struct BindingInfo {
    span: Span,
    binding_mode: BindingMode,
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum PatternSource {
    Match,
    Let,
    For,
    FnParam,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum IsRepeatExpr {
    No,
    Yes,
}

impl PatternSource {
    fn descr(self) -> &'static str {
        match self {
            PatternSource::Match => "match binding",
            PatternSource::Let => "let binding",
            PatternSource::For => "for binding",
            PatternSource::FnParam => "function parameter",
        }
    }
}

/// Denotes whether the context for the set of already bound bindings is a `Product`
/// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
/// See those functions for more information.
#[derive(PartialEq)]
enum PatBoundCtx {
    /// A product pattern context, e.g., `Variant(a, b)`.
    Product,
    /// An or-pattern context, e.g., `p_0 | ... | p_n`.
    Or,
}

/// Does this the item (from the item rib scope) allow generic parameters?
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
crate enum HasGenericParams {
    Yes,
    No,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
crate enum ConstantItemKind {
    Const,
    Static,
}

/// The rib kind restricts certain accesses,
/// e.g. to a `Res::Local` of an outer item.
#[derive(Copy, Clone, Debug)]
crate enum RibKind<'a> {
    /// No restriction needs to be applied.
    NormalRibKind,

    /// We passed through an impl or trait and are now in one of its
    /// methods or associated types. Allow references to ty params that impl or trait
    /// binds. Disallow any other upvars (including other ty params that are
    /// upvars).
    AssocItemRibKind,

    /// We passed through a closure. Disallow labels.
    ClosureOrAsyncRibKind,

    /// We passed through a function definition. Disallow upvars.
    /// Permit only those const parameters that are specified in the function's generics.
    FnItemRibKind,

    /// We passed through an item scope. Disallow upvars.
    ItemRibKind(HasGenericParams),

    /// We're in a constant item. Can't refer to dynamic stuff.
    ///
    /// The `bool` indicates if this constant may reference generic parameters
    /// and is used to only allow generic parameters to be used in trivial constant expressions.
    ConstantItemRibKind(bool, Option<(Ident, ConstantItemKind)>),

    /// We passed through a module.
    ModuleRibKind(Module<'a>),

    /// We passed through a `macro_rules!` statement
    MacroDefinition(DefId),

    /// All bindings in this rib are generic parameters that can't be used
    /// from the default of a generic parameter because they're not declared
    /// before said generic parameter. Also see the `visit_generics` override.
    ForwardGenericParamBanRibKind,

    /// We are inside of the type of a const parameter. Can't refer to any
    /// parameters.
    ConstParamTyRibKind,
}

impl RibKind<'_> {
    /// Whether this rib kind contains generic parameters, as opposed to local
    /// variables.
    crate fn contains_params(&self) -> bool {
        match self {
            NormalRibKind
            | ClosureOrAsyncRibKind
            | FnItemRibKind
            | ConstantItemRibKind(..)
            | ModuleRibKind(_)
            | MacroDefinition(_)
            | ConstParamTyRibKind => false,
            AssocItemRibKind | ItemRibKind(_) | ForwardGenericParamBanRibKind => true,
        }
    }
}

/// A single local scope.
///
/// A rib represents a scope names can live in. Note that these appear in many places, not just
/// around braces. At any place where the list of accessible names (of the given namespace)
/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
/// etc.
///
/// Different [rib kinds](enum.RibKind) are transparent for different names.
///
/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
/// resolving, the name is looked up from inside out.
#[derive(Debug)]
crate struct Rib<'a, R = Res> {
    pub bindings: IdentMap<R>,
    pub kind: RibKind<'a>,
}

impl<'a, R> Rib<'a, R> {
    fn new(kind: RibKind<'a>) -> Rib<'a, R> {
        Rib { bindings: Default::default(), kind }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
crate enum AliasPossibility {
    No,
    Maybe,
}

#[derive(Copy, Clone, Debug)]
crate enum PathSource<'a> {
    // Type paths `Path`.
    Type,
    // Trait paths in bounds or impls.
    Trait(AliasPossibility),
    // Expression paths `path`, with optional parent context.
    Expr(Option<&'a Expr>),
    // Paths in path patterns `Path`.
    Pat,
    // Paths in struct expressions and patterns `Path { .. }`.
    Struct,
    // Paths in tuple struct patterns `Path(..)`.
    TupleStruct(Span, &'a [Span]),
    // `m::A::B` in `<T as m::A>::B::C`.
    TraitItem(Namespace),
}

impl<'a> PathSource<'a> {
    fn namespace(self) -> Namespace {
        match self {
            PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
            PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS,
            PathSource::TraitItem(ns) => ns,
        }
    }

    fn defer_to_typeck(self) -> bool {
        match self {
            PathSource::Type
            | PathSource::Expr(..)
            | PathSource::Pat
            | PathSource::Struct
            | PathSource::TupleStruct(..) => true,
            PathSource::Trait(_) | PathSource::TraitItem(..) => false,
        }
    }

    fn descr_expected(self) -> &'static str {
        match &self {
            PathSource::Type => "type",
            PathSource::Trait(_) => "trait",
            PathSource::Pat => "unit struct, unit variant or constant",
            PathSource::Struct => "struct, variant or union type",
            PathSource::TupleStruct(..) => "tuple struct or tuple variant",
            PathSource::TraitItem(ns) => match ns {
                TypeNS => "associated type",
                ValueNS => "method or associated constant",
                MacroNS => bug!("associated macro"),
            },
            PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
                // "function" here means "anything callable" rather than `DefKind::Fn`,
                // this is not precise but usually more helpful than just "value".
                Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
                    // the case of `::some_crate()`
                    ExprKind::Path(_, path)
                        if path.segments.len() == 2
                            && path.segments[0].ident.name == kw::PathRoot =>
                    {
                        "external crate"
                    }
                    ExprKind::Path(_, path) => {
                        let mut msg = "function";
                        if let Some(segment) = path.segments.iter().last() {
                            if let Some(c) = segment.ident.to_string().chars().next() {
                                if c.is_uppercase() {
                                    msg = "function, tuple struct or tuple variant";
                                }
                            }
                        }
                        msg
                    }
                    _ => "function",
                },
                _ => "value",
            },
        }
    }

    fn is_call(self) -> bool {
        matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
    }

    crate fn is_expected(self, res: Res) -> bool {
        match self {
            PathSource::Type => matches!(
                res,
                Res::Def(
                    DefKind::Struct
                        | DefKind::Union
                        | DefKind::Enum
                        | DefKind::Trait
                        | DefKind::TraitAlias
                        | DefKind::TyAlias
                        | DefKind::AssocTy
                        | DefKind::TyParam
                        | DefKind::OpaqueTy
                        | DefKind::ForeignTy,
                    _,
                ) | Res::PrimTy(..)
                    | Res::SelfTy(..)
            ),
            PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
            PathSource::Trait(AliasPossibility::Maybe) => {
                matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
            }
            PathSource::Expr(..) => matches!(
                res,
                Res::Def(
                    DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
                        | DefKind::Const
                        | DefKind::Static
                        | DefKind::Fn
                        | DefKind::AssocFn
                        | DefKind::AssocConst
                        | DefKind::ConstParam,
                    _,
                ) | Res::Local(..)
                    | Res::SelfCtor(..)
            ),
            PathSource::Pat => matches!(
                res,
                Res::Def(
                    DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::AssocConst,
                    _,
                ) | Res::SelfCtor(..)
            ),
            PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
            PathSource::Struct => matches!(
                res,
                Res::Def(
                    DefKind::Struct
                        | DefKind::Union
                        | DefKind::Variant
                        | DefKind::TyAlias
                        | DefKind::AssocTy,
                    _,
                ) | Res::SelfTy(..)
            ),
            PathSource::TraitItem(ns) => match res {
                Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
                Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
                _ => false,
            },
        }
    }

    fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
        use rustc_errors::error_code;
        match (self, has_unexpected_resolution) {
            (PathSource::Trait(_), true) => error_code!(E0404),
            (PathSource::Trait(_), false) => error_code!(E0405),
            (PathSource::Type, true) => error_code!(E0573),
            (PathSource::Type, false) => error_code!(E0412),
            (PathSource::Struct, true) => error_code!(E0574),
            (PathSource::Struct, false) => error_code!(E0422),
            (PathSource::Expr(..), true) => error_code!(E0423),
            (PathSource::Expr(..), false) => error_code!(E0425),
            (PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532),
            (PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531),
            (PathSource::TraitItem(..), true) => error_code!(E0575),
            (PathSource::TraitItem(..), false) => error_code!(E0576),
        }
    }
}

#[derive(Default)]
struct DiagnosticMetadata<'ast> {
    /// The current trait's associated items' ident, used for diagnostic suggestions.
    current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,

    /// The current self type if inside an impl (used for better errors).
    current_self_type: Option<Ty>,

    /// The current self item if inside an ADT (used for better errors).
    current_self_item: Option<NodeId>,

    /// The current trait (used to suggest).
    current_item: Option<&'ast Item>,

    /// When processing generics and encountering a type not found, suggest introducing a type
    /// param.
    currently_processing_generics: bool,

    /// The current enclosing (non-closure) function (used for better errors).
    current_function: Option<(FnKind<'ast>, Span)>,

    /// A list of labels as of yet unused. Labels will be removed from this map when
    /// they are used (in a `break` or `continue` statement)
    unused_labels: FxHashMap<NodeId, Span>,

    /// Only used for better errors on `fn(): fn()`.
    current_type_ascription: Vec<Span>,

    /// Only used for better errors on `let x = { foo: bar };`.
    /// In the case of a parse error with `let x = { foo: bar, };`, this isn't needed, it's only
    /// needed for cases where this parses as a correct type ascription.
    current_block_could_be_bare_struct_literal: Option<Span>,

    /// Only used for better errors on `let <pat>: <expr, not type>;`.
    current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,

    /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
    in_if_condition: Option<&'ast Expr>,

    /// If we are currently in a trait object definition. Used to point at the bounds when
    /// encountering a struct or enum.
    current_trait_object: Option<&'ast [ast::GenericBound]>,

    /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
    current_where_predicate: Option<&'ast WherePredicate>,
}

struct LateResolutionVisitor<'a, 'b, 'ast> {
    r: &'b mut Resolver<'a>,

    /// The module that represents the current item scope.
    parent_scope: ParentScope<'a>,

    /// The current set of local scopes for types and values.
    /// FIXME #4948: Reuse ribs to avoid allocation.
    ribs: PerNS<Vec<Rib<'a>>>,

    /// The current set of local scopes, for labels.
    label_ribs: Vec<Rib<'a, NodeId>>,

    /// The trait that the current context can refer to.
    current_trait_ref: Option<(Module<'a>, TraitRef)>,

    /// Fields used to add information to diagnostic errors.
    diagnostic_metadata: DiagnosticMetadata<'ast>,

    /// State used to know whether to ignore resolution errors for function bodies.
    ///
    /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
    /// In most cases this will be `None`, in which case errors will always be reported.
    /// If it is `true`, then it will be updated when entering a nested function or trait body.
    in_func_body: bool,
}

/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
    fn visit_attribute(&mut self, _: &'ast Attribute) {
        // We do not want to resolve expressions that appear in attributes,
        // as they do not correspond to actual code.
    }
    fn visit_item(&mut self, item: &'ast Item) {
        let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
        // Always report errors in items we just entered.
        let old_ignore = replace(&mut self.in_func_body, false);
        self.resolve_item(item);
        self.in_func_body = old_ignore;
        self.diagnostic_metadata.current_item = prev;
    }
    fn visit_arm(&mut self, arm: &'ast Arm) {
        self.resolve_arm(arm);
    }
    fn visit_block(&mut self, block: &'ast Block) {
        self.resolve_block(block);
    }
    fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
        // We deal with repeat expressions explicitly in `resolve_expr`.
        self.resolve_anon_const(constant, IsRepeatExpr::No);
    }
    fn visit_expr(&mut self, expr: &'ast Expr) {
        self.resolve_expr(expr, None);
    }
    fn visit_local(&mut self, local: &'ast Local) {
        let local_spans = match local.pat.kind {
            // We check for this to avoid tuple struct fields.
            PatKind::Wild => None,
            _ => Some((
                local.pat.span,
                local.ty.as_ref().map(|ty| ty.span),
                local.kind.init().map(|init| init.span),
            )),
        };
        let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
        self.resolve_local(local);
        self.diagnostic_metadata.current_let_binding = original;
    }
    fn visit_ty(&mut self, ty: &'ast Ty) {
        let prev = self.diagnostic_metadata.current_trait_object;
        match ty.kind {
            TyKind::Path(ref qself, ref path) => {
                self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
            }
            TyKind::ImplicitSelf => {
                let self_ty = Ident::with_dummy_span(kw::SelfUpper);
                let res = self
                    .resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
                    .map_or(Res::Err, |d| d.res());
                self.r.record_partial_res(ty.id, PartialRes::new(res));
            }
            TyKind::TraitObject(ref bounds, ..) => {
                self.diagnostic_metadata.current_trait_object = Some(&bounds[..]);
            }
            _ => (),
        }
        visit::walk_ty(self, ty);
        self.diagnostic_metadata.current_trait_object = prev;
    }
    fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, m: &'ast TraitBoundModifier) {
        self.smart_resolve_path(
            tref.trait_ref.ref_id,
            None,
            &tref.trait_ref.path,
            PathSource::Trait(AliasPossibility::Maybe),
        );
        visit::walk_poly_trait_ref(self, tref, m);
    }
    fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
        match foreign_item.kind {
            ForeignItemKind::Fn(box Fn { ref generics, .. })
            | ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
                self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
                    visit::walk_foreign_item(this, foreign_item);
                });
            }
            ForeignItemKind::Static(..) => {
                self.with_item_rib(HasGenericParams::No, |this| {
                    visit::walk_foreign_item(this, foreign_item);
                });
            }
            ForeignItemKind::MacCall(..) => {
                visit::walk_foreign_item(self, foreign_item);
            }
        }
    }
    fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, _: NodeId) {
        let rib_kind = match fn_kind {
            // Bail if the function is foreign, and thus cannot validly have
            // a body, or if there's no body for some other reason.
            FnKind::Fn(FnCtxt::Foreign, _, sig, ..) | FnKind::Fn(_, _, sig, .., None) => {
                // We don't need to deal with patterns in parameters, because
                // they are not possible for foreign or bodiless functions.
                self.visit_fn_header(&sig.header);
                visit::walk_fn_decl(self, &sig.decl);
                return;
            }
            FnKind::Fn(FnCtxt::Free, ..) => FnItemRibKind,
            FnKind::Fn(FnCtxt::Assoc(_), ..) => NormalRibKind,
            FnKind::Closure(..) => ClosureOrAsyncRibKind,
        };
        let previous_value = self.diagnostic_metadata.current_function;
        if matches!(fn_kind, FnKind::Fn(..)) {
            self.diagnostic_metadata.current_function = Some((fn_kind, sp));
        }
        debug!("(resolving function) entering function");
        let declaration = fn_kind.decl();

        // Create a value rib for the function.
        self.with_rib(ValueNS, rib_kind, |this| {
            // Create a label rib for the function.
            this.with_label_rib(rib_kind, |this| {
                // Add each argument to the rib.
                this.resolve_params(&declaration.inputs);

                visit::walk_fn_ret_ty(this, &declaration.output);

                // Ignore errors in function bodies if this is rustdoc
                // Be sure not to set this until the function signature has been resolved.
                let previous_state = replace(&mut this.in_func_body, true);
                // Resolve the function body, potentially inside the body of an async closure
                match fn_kind {
                    FnKind::Fn(.., body) => walk_list!(this, visit_block, body),
                    FnKind::Closure(_, body) => this.visit_expr(body),
                };

                debug!("(resolving function) leaving function");
                this.in_func_body = previous_state;
            })
        });
        self.diagnostic_metadata.current_function = previous_value;
    }

    fn visit_generics(&mut self, generics: &'ast Generics) {
        // For type parameter defaults, we have to ban access
        // to following type parameters, as the InternalSubsts can only
        // provide previous type parameters as they're built. We
        // put all the parameters on the ban list and then remove
        // them one by one as they are processed and become available.
        let mut forward_ty_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
        let mut forward_const_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
        for param in generics.params.iter() {
            match param.kind {
                GenericParamKind::Type { .. } => {
                    forward_ty_ban_rib
                        .bindings
                        .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
                }
                GenericParamKind::Const { .. } => {
                    forward_const_ban_rib
                        .bindings
                        .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
                }
                GenericParamKind::Lifetime => {}
            }
        }

        // rust-lang/rust#61631: The type `Self` is essentially
        // another type parameter. For ADTs, we consider it
        // well-defined only after all of the ADT type parameters have
        // been provided. Therefore, we do not allow use of `Self`
        // anywhere in ADT type parameter defaults.
        //
        // (We however cannot ban `Self` for defaults on *all* generic
        // lists; e.g. trait generics can usefully refer to `Self`,
        // such as in the case of `trait Add<Rhs = Self>`.)
        if self.diagnostic_metadata.current_self_item.is_some() {
            // (`Some` if + only if we are in ADT's generics.)
            forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
        }

        for param in &generics.params {
            match param.kind {
                GenericParamKind::Lifetime => self.visit_generic_param(param),
                GenericParamKind::Type { ref default } => {
                    for bound in &param.bounds {
                        self.visit_param_bound(bound);
                    }

                    if let Some(ref ty) = default {
                        self.ribs[TypeNS].push(forward_ty_ban_rib);
                        self.ribs[ValueNS].push(forward_const_ban_rib);
                        self.visit_ty(ty);
                        forward_const_ban_rib = self.ribs[ValueNS].pop().unwrap();
                        forward_ty_ban_rib = self.ribs[TypeNS].pop().unwrap();
                    }

                    // Allow all following defaults to refer to this type parameter.
                    forward_ty_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
                }
                GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
                    // Const parameters can't have param bounds.
                    assert!(param.bounds.is_empty());

                    self.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind));
                    self.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind));
                    self.visit_ty(ty);
                    self.ribs[TypeNS].pop().unwrap();
                    self.ribs[ValueNS].pop().unwrap();

                    if let Some(ref expr) = default {
                        self.ribs[TypeNS].push(forward_ty_ban_rib);
                        self.ribs[ValueNS].push(forward_const_ban_rib);
                        self.visit_anon_const(expr);
                        forward_const_ban_rib = self.ribs[ValueNS].pop().unwrap();
                        forward_ty_ban_rib = self.ribs[TypeNS].pop().unwrap();
                    }

                    // Allow all following defaults to refer to this const parameter.
                    forward_const_ban_rib
                        .bindings
                        .remove(&Ident::with_dummy_span(param.ident.name));
                }
            }
        }
        for p in &generics.where_clause.predicates {
            self.visit_where_predicate(p);
        }
    }

    fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
        debug!("visit_generic_arg({:?})", arg);
        let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
        match arg {
            GenericArg::Type(ref ty) => {
                // We parse const arguments as path types as we cannot distinguish them during
                // parsing. We try to resolve that ambiguity by attempting resolution the type
                // namespace first, and if that fails we try again in the value namespace. If
                // resolution in the value namespace succeeds, we have an generic const argument on
                // our hands.
                if let TyKind::Path(ref qself, ref path) = ty.kind {
                    // We cannot disambiguate multi-segment paths right now as that requires type
                    // checking.
                    if path.segments.len() == 1 && path.segments[0].args.is_none() {
                        let mut check_ns = |ns| {
                            self.resolve_ident_in_lexical_scope(
                                path.segments[0].ident,
                                ns,
                                None,
                                path.span,
                            )
                            .is_some()
                        };
                        if !check_ns(TypeNS) && check_ns(ValueNS) {
                            // This must be equivalent to `visit_anon_const`, but we cannot call it
                            // directly due to visitor lifetimes so we have to copy-paste some code.
                            //
                            // Note that we might not be inside of an repeat expression here,
                            // but considering that `IsRepeatExpr` is only relevant for
                            // non-trivial constants this is doesn't matter.
                            self.with_constant_rib(IsRepeatExpr::No, true, None, |this| {
                                this.smart_resolve_path(
                                    ty.id,
                                    qself.as_ref(),
                                    path,
                                    PathSource::Expr(None),
                                );

                                if let Some(ref qself) = *qself {
                                    this.visit_ty(&qself.ty);
                                }
                                this.visit_path(path, ty.id);
                            });

                            self.diagnostic_metadata.currently_processing_generics = prev;
                            return;
                        }
                    }
                }

                self.visit_ty(ty);
            }
            GenericArg::Lifetime(lt) => self.visit_lifetime(lt),
            GenericArg::Const(ct) => self.visit_anon_const(ct),
        }
        self.diagnostic_metadata.currently_processing_generics = prev;
    }

    fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
        debug!("visit_where_predicate {:?}", p);
        let previous_value =
            replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p));
        visit::walk_where_predicate(self, p);
        self.diagnostic_metadata.current_where_predicate = previous_value;
    }
}

impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
    fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
        // During late resolution we only track the module component of the parent scope,
        // although it may be useful to track other components as well for diagnostics.
        let graph_root = resolver.graph_root;
        let parent_scope = ParentScope::module(graph_root, resolver);
        let start_rib_kind = ModuleRibKind(graph_root);
        LateResolutionVisitor {
            r: resolver,
            parent_scope,
            ribs: PerNS {
                value_ns: vec![Rib::new(start_rib_kind)],
                type_ns: vec![Rib::new(start_rib_kind)],
                macro_ns: vec![Rib::new(start_rib_kind)],
            },
            label_ribs: Vec::new(),
            current_trait_ref: None,
            diagnostic_metadata: DiagnosticMetadata::default(),
            // errors at module scope should always be reported
            in_func_body: false,
        }
    }

    fn resolve_ident_in_lexical_scope(
        &mut self,
        ident: Ident,
        ns: Namespace,
        record_used_id: Option<NodeId>,
        path_span: Span,
    ) -> Option<LexicalScopeBinding<'a>> {
        self.r.resolve_ident_in_lexical_scope(
            ident,
            ns,
            &self.parent_scope,
            record_used_id,
            path_span,
            &self.ribs[ns],
        )
    }

    fn resolve_path(
        &mut self,
        path: &[Segment],
        opt_ns: Option<Namespace>, // `None` indicates a module path in import
        record_used: bool,
        path_span: Span,
        crate_lint: CrateLint,
    ) -> PathResult<'a> {
        self.r.resolve_path_with_ribs(
            path,
            opt_ns,
            &self.parent_scope,
            record_used,
            path_span,
            crate_lint,
            Some(&self.ribs),
        )
    }

    // AST resolution
    //
    // We maintain a list of value ribs and type ribs.
    //
    // Simultaneously, we keep track of the current position in the module
    // graph in the `parent_scope.module` pointer. When we go to resolve a name in
    // the value or type namespaces, we first look through all the ribs and
    // then query the module graph. When we resolve a name in the module
    // namespace, we can skip all the ribs (since nested modules are not
    // allowed within blocks in Rust) and jump straight to the current module
    // graph node.
    //
    // Named implementations are handled separately. When we find a method
    // call, we consult the module node to find all of the implementations in
    // scope. This information is lazily cached in the module node. We then
    // generate a fake "implementation scope" containing all the
    // implementations thus found, for compatibility with old resolve pass.

    /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
    fn with_rib<T>(
        &mut self,
        ns: Namespace,
        kind: RibKind<'a>,
        work: impl FnOnce(&mut Self) -> T,
    ) -> T {
        self.ribs[ns].push(Rib::new(kind));
        let ret = work(self);
        self.ribs[ns].pop();
        ret
    }

    fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
        if let Some(module) = self.r.get_module(self.r.local_def_id(id).to_def_id()) {
            // Move down in the graph.
            let orig_module = replace(&mut self.parent_scope.module, module);
            self.with_rib(ValueNS, ModuleRibKind(module), |this| {
                this.with_rib(TypeNS, ModuleRibKind(module), |this| {
                    let ret = f(this);
                    this.parent_scope.module = orig_module;
                    ret
                })
            })
        } else {
            f(self)
        }
    }

    /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
    /// label and reports an error if the label is not found or is unreachable.
    fn resolve_label(&self, mut label: Ident) -> Option<NodeId> {
        let mut suggestion = None;

        // Preserve the original span so that errors contain "in this macro invocation"
        // information.
        let original_span = label.span;

        for i in (0..self.label_ribs.len()).rev() {
            let rib = &self.label_ribs[i];

            if let MacroDefinition(def) = rib.kind {
                // If an invocation of this macro created `ident`, give up on `ident`
                // and switch to `ident`'s source from the macro definition.
                if def == self.r.macro_def(label.span.ctxt()) {
                    label.span.remove_mark();
                }
            }

            let ident = label.normalize_to_macro_rules();
            if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
                return if self.is_label_valid_from_rib(i) {
                    Some(*id)
                } else {
                    self.report_error(
                        original_span,
                        ResolutionError::UnreachableLabel {
                            name: label.name,
                            definition_span: ident.span,
                            suggestion,
                        },
                    );

                    None
                };
            }

            // Diagnostics: Check if this rib contains a label with a similar name, keep track of
            // the first such label that is encountered.
            suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
        }

        self.report_error(
            original_span,
            ResolutionError::UndeclaredLabel { name: label.name, suggestion },
        );
        None
    }

    /// Determine whether or not a label from the `rib_index`th label rib is reachable.
    fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
        let ribs = &self.label_ribs[rib_index + 1..];

        for rib in ribs {
            match rib.kind {
                NormalRibKind | MacroDefinition(..) => {
                    // Nothing to do. Continue.
                }

                AssocItemRibKind
                | ClosureOrAsyncRibKind
                | FnItemRibKind
                | ItemRibKind(..)
                | ConstantItemRibKind(..)
                | ModuleRibKind(..)
                | ForwardGenericParamBanRibKind
                | ConstParamTyRibKind => {
                    return false;
                }
            }
        }

        true
    }

    fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
        debug!("resolve_adt");
        self.with_current_self_item(item, |this| {
            this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
                let item_def_id = this.r.local_def_id(item.id).to_def_id();
                this.with_self_rib(Res::SelfTy(None, Some((item_def_id, false))), |this| {
                    visit::walk_item(this, item);
                });
            });
        });
    }

    fn future_proof_import(&mut self, use_tree: &UseTree) {
        let segments = &use_tree.prefix.segments;
        if !segments.is_empty() {
            let ident = segments[0].ident;
            if ident.is_path_segment_keyword() || ident.span.rust_2015() {
                return;
            }

            let nss = match use_tree.kind {
                UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
                _ => &[TypeNS],
            };
            let report_error = |this: &Self, ns| {
                let what = if ns == TypeNS { "type parameters" } else { "local variables" };
                if this.should_report_errs() {
                    this.r
                        .session
                        .span_err(ident.span, &format!("imports cannot refer to {}", what));
                }
            };

            for &ns in nss {
                match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
                    Some(LexicalScopeBinding::Res(..)) => {
                        report_error(self, ns);
                    }
                    Some(LexicalScopeBinding::Item(binding)) => {
                        let orig_unusable_binding =
                            replace(&mut self.r.unusable_binding, Some(binding));
                        if let Some(LexicalScopeBinding::Res(..)) = self
                            .resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span)
                        {
                            report_error(self, ns);
                        }
                        self.r.unusable_binding = orig_unusable_binding;
                    }
                    None => {}
                }
            }
        } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
            for (use_tree, _) in use_trees {
                self.future_proof_import(use_tree);
            }
        }
    }

    fn resolve_item(&mut self, item: &'ast Item) {
        let name = item.ident.name;
        debug!("(resolving item) resolving {} ({:?})", name, item.kind);

        match item.kind {
            ItemKind::TyAlias(box TyAlias { ref generics, .. })
            | ItemKind::Fn(box Fn { ref generics, .. }) => {
                self.compute_num_lifetime_params(item.id, generics);
                self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
                    visit::walk_item(this, item)
                });
            }

            ItemKind::Enum(_, ref generics)
            | ItemKind::Struct(_, ref generics)
            | ItemKind::Union(_, ref generics) => {
                self.compute_num_lifetime_params(item.id, generics);
                self.resolve_adt(item, generics);
            }

            ItemKind::Impl(box Impl {
                ref generics,
                ref of_trait,
                ref self_ty,
                items: ref impl_items,
                ..
            }) => {
                self.compute_num_lifetime_params(item.id, generics);
                self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
            }

            ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => {
                self.compute_num_lifetime_params(item.id, generics);
                // Create a new rib for the trait-wide type parameters.
                self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
                    let local_def_id = this.r.local_def_id(item.id).to_def_id();
                    this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
                        this.visit_generics(generics);
                        walk_list!(this, visit_param_bound, bounds);

                        let walk_assoc_item = |this: &mut Self, generics, item| {
                            this.with_generic_param_rib(generics, AssocItemRibKind, |this| {
                                visit::walk_assoc_item(this, item, AssocCtxt::Trait)
                            });
                        };

                        this.with_trait_items(items, |this| {
                            for item in items {
                                match &item.kind {
                                    AssocItemKind::Const(_, ty, default) => {
                                        this.visit_ty(ty);
                                        // Only impose the restrictions of `ConstRibKind` for an
                                        // actual constant expression in a provided default.
                                        if let Some(expr) = default {
                                            // We allow arbitrary const expressions inside of associated consts,
                                            // even if they are potentially not const evaluatable.
                                            //
                                            // Type parameters can already be used and as associated consts are
                                            // not used as part of the type system, this is far less surprising.
                                            this.with_constant_rib(
                                                IsRepeatExpr::No,
                                                true,
                                                None,
                                                |this| this.visit_expr(expr),
                                            );
                                        }
                                    }
                                    AssocItemKind::Fn(box Fn { generics, .. }) => {
                                        walk_assoc_item(this, generics, item);
                                    }
                                    AssocItemKind::TyAlias(box TyAlias { generics, .. }) => {
                                        walk_assoc_item(this, generics, item);
                                    }
                                    AssocItemKind::MacCall(_) => {
                                        panic!("unexpanded macro in resolve!")
                                    }
                                };
                            }
                        });
                    });
                });
            }

            ItemKind::TraitAlias(ref generics, ref bounds) => {
                self.compute_num_lifetime_params(item.id, generics);
                // Create a new rib for the trait-wide type parameters.
                self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
                    let local_def_id = this.r.local_def_id(item.id).to_def_id();
                    this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
                        this.visit_generics(generics);
                        walk_list!(this, visit_param_bound, bounds);
                    });
                });
            }

            ItemKind::Mod(..) | ItemKind::ForeignMod(_) => {
                self.with_scope(item.id, |this| {
                    visit::walk_item(this, item);
                });
            }

            ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
                self.with_item_rib(HasGenericParams::No, |this| {
                    this.visit_ty(ty);
                    if let Some(expr) = expr {
                        let constant_item_kind = match item.kind {
                            ItemKind::Const(..) => ConstantItemKind::Const,
                            ItemKind::Static(..) => ConstantItemKind::Static,
                            _ => unreachable!(),
                        };
                        // We already forbid generic params because of the above item rib,
                        // so it doesn't matter whether this is a trivial constant.
                        this.with_constant_rib(
                            IsRepeatExpr::No,
                            true,
                            Some((item.ident, constant_item_kind)),
                            |this| this.visit_expr(expr),
                        );
                    }
                });
            }

            ItemKind::Use(ref use_tree) => {
                self.future_proof_import(use_tree);
            }

            ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) => {
                // do nothing, these are just around to be encoded
            }

            ItemKind::GlobalAsm(_) => {
                visit::walk_item(self, item);
            }

            ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"),
        }
    }

    fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
    where
        F: FnOnce(&mut Self),
    {
        debug!("with_generic_param_rib");
        let mut function_type_rib = Rib::new(kind);
        let mut function_value_rib = Rib::new(kind);
        let mut seen_bindings = FxHashMap::default();

        // We also can't shadow bindings from the parent item
        if let AssocItemRibKind = kind {
            let mut add_bindings_for_ns = |ns| {
                let parent_rib = self.ribs[ns]
                    .iter()
                    .rfind(|r| matches!(r.kind, ItemRibKind(_)))
                    .expect("associated item outside of an item");
                seen_bindings
                    .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
            };
            add_bindings_for_ns(ValueNS);
            add_bindings_for_ns(TypeNS);
        }

        for param in &generics.params {
            if let GenericParamKind::Lifetime { .. } = param.kind {
                continue;
            }

            let ident = param.ident.normalize_to_macros_2_0();
            debug!("with_generic_param_rib: {}", param.id);

            match seen_bindings.entry(ident) {
                Entry::Occupied(entry) => {
                    let span = *entry.get();
                    let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
                    self.report_error(param.ident.span, err);
                }
                Entry::Vacant(entry) => {
                    entry.insert(param.ident.span);
                }
            }

            // Plain insert (no renaming).
            let (rib, def_kind) = match param.kind {
                GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
                GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
                _ => unreachable!(),
            };
            let res = Res::Def(def_kind, self.r.local_def_id(param.id).to_def_id());
            self.r.record_partial_res(param.id, PartialRes::new(res));
            rib.bindings.insert(ident, res);
        }

        self.ribs[ValueNS].push(function_value_rib);
        self.ribs[TypeNS].push(function_type_rib);

        f(self);

        self.ribs[TypeNS].pop();
        self.ribs[ValueNS].pop();
    }

    fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
        self.label_ribs.push(Rib::new(kind));
        f(self);
        self.label_ribs.pop();
    }

    fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
        let kind = ItemRibKind(has_generic_params);
        self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
    }

    // HACK(min_const_generics,const_evaluatable_unchecked): We
    // want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
    // with a future compat lint for now. We do this by adding an
    // additional special case for repeat expressions.
    //
    // Note that we intentionally still forbid `[0; N + 1]` during
    // name resolution so that we don't extend the future
    // compat lint to new cases.
    fn with_constant_rib(
        &mut self,
        is_repeat: IsRepeatExpr,
        is_trivial: bool,
        item: Option<(Ident, ConstantItemKind)>,
        f: impl FnOnce(&mut Self),
    ) {
        debug!("with_constant_rib: is_repeat={:?} is_trivial={}", is_repeat, is_trivial);
        self.with_rib(ValueNS, ConstantItemRibKind(is_trivial, item), |this| {
            this.with_rib(
                TypeNS,
                ConstantItemRibKind(is_repeat == IsRepeatExpr::Yes || is_trivial, item),
                |this| {
                    this.with_label_rib(ConstantItemRibKind(is_trivial, item), f);
                },
            )
        });
    }

    fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
        // Handle nested impls (inside fn bodies)
        let previous_value =
            replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
        let result = f(self);
        self.diagnostic_metadata.current_self_type = previous_value;
        result
    }

    fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
        let previous_value =
            replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
        let result = f(self);
        self.diagnostic_metadata.current_self_item = previous_value;
        result
    }

    /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
    fn with_trait_items<T>(
        &mut self,
        trait_items: &'ast [P<AssocItem>],
        f: impl FnOnce(&mut Self) -> T,
    ) -> T {
        let trait_assoc_items =
            replace(&mut self.diagnostic_metadata.current_trait_assoc_items, Some(&trait_items));
        let result = f(self);
        self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items;
        result
    }

    /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
    fn with_optional_trait_ref<T>(
        &mut self,
        opt_trait_ref: Option<&TraitRef>,
        f: impl FnOnce(&mut Self, Option<DefId>) -> T,
    ) -> T {
        let mut new_val = None;
        let mut new_id = None;
        if let Some(trait_ref) = opt_trait_ref {
            let path: Vec<_> = Segment::from_path(&trait_ref.path);
            let res = self.smart_resolve_path_fragment(
                trait_ref.ref_id,
                None,
                &path,
                trait_ref.path.span,
                PathSource::Trait(AliasPossibility::No),
                CrateLint::SimplePath(trait_ref.ref_id),
            );
            let res = res.base_res();
            if res != Res::Err {
                if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = self.resolve_path(
                    &path,
                    Some(TypeNS),
                    true,
                    trait_ref.path.span,
                    CrateLint::SimplePath(trait_ref.ref_id),
                ) {
                    new_id = Some(res.def_id());
                    new_val = Some((module, trait_ref.clone()));
                }
            }
        }
        let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
        let result = f(self, new_id);
        self.current_trait_ref = original_trait_ref;
        result
    }

    fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
        let mut self_type_rib = Rib::new(NormalRibKind);

        // Plain insert (no renaming, since types are not currently hygienic)
        self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
        self.ribs[ns].push(self_type_rib);
        f(self);
        self.ribs[ns].pop();
    }

    fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
        self.with_self_rib_ns(TypeNS, self_res, f)
    }

    fn resolve_implementation(
        &mut self,
        generics: &'ast Generics,
        opt_trait_reference: &'ast Option<TraitRef>,
        self_type: &'ast Ty,
        item_id: NodeId,
        impl_items: &'ast [P<AssocItem>],
    ) {
        debug!("resolve_implementation");
        // If applicable, create a rib for the type parameters.
        self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
            // Dummy self type for better errors if `Self` is used in the trait path.
            this.with_self_rib(Res::SelfTy(None, None), |this| {
                // Resolve the trait reference, if necessary.
                this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
                    let item_def_id = this.r.local_def_id(item_id);

                    // Register the trait definitions from here.
                    if let Some(trait_id) = trait_id {
                        this.r.trait_impls.entry(trait_id).or_default().push(item_def_id);
                    }

                    let item_def_id = item_def_id.to_def_id();
                    this.with_self_rib(Res::SelfTy(trait_id, Some((item_def_id, false))), |this| {
                        if let Some(trait_ref) = opt_trait_reference.as_ref() {
                            // Resolve type arguments in the trait path.
                            visit::walk_trait_ref(this, trait_ref);
                        }
                        // Resolve the self type.
                        this.visit_ty(self_type);
                        // Resolve the generic parameters.
                        this.visit_generics(generics);
                        // Resolve the items within the impl.
                        this.with_current_self_type(self_type, |this| {
                            this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
                                debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
                                for item in impl_items {
                                    use crate::ResolutionError::*;
                                    match &item.kind {
                                        AssocItemKind::Const(_default, _ty, _expr) => {
                                            debug!("resolve_implementation AssocItemKind::Const");
                                            // If this is a trait impl, ensure the const
                                            // exists in trait
                                            this.check_trait_item(
                                                item.id,
                                                item.ident,
                                                &item.kind,
                                                ValueNS,
                                                item.span,
                                                |i, s, c| ConstNotMemberOfTrait(i, s, c),
                                            );

                                            // We allow arbitrary const expressions inside of associated consts,
                                            // even if they are potentially not const evaluatable.
                                            //
                                            // Type parameters can already be used and as associated consts are
                                            // not used as part of the type system, this is far less surprising.
                                            this.with_constant_rib(
                                                IsRepeatExpr::No,
                                                true,
                                                None,
                                                |this| {
                                                    visit::walk_assoc_item(
                                                        this,
                                                        item,
                                                        AssocCtxt::Impl,
                                                    )
                                                },
                                            );
                                        }
                                        AssocItemKind::Fn(box Fn { generics, .. }) => {
                                            debug!("resolve_implementation AssocItemKind::Fn");
                                            // We also need a new scope for the impl item type parameters.
                                            this.with_generic_param_rib(
                                                generics,
                                                AssocItemRibKind,
                                                |this| {
                                                    // If this is a trait impl, ensure the method
                                                    // exists in trait
                                                    this.check_trait_item(
                                                        item.id,
                                                        item.ident,
                                                        &item.kind,
                                                        ValueNS,
                                                        item.span,
                                                        |i, s, c| MethodNotMemberOfTrait(i, s, c),
                                                    );

                                                    visit::walk_assoc_item(
                                                        this,
                                                        item,
                                                        AssocCtxt::Impl,
                                                    )
                                                },
                                            );
                                        }
                                        AssocItemKind::TyAlias(box TyAlias {
                                            generics, ..
                                        }) => {
                                            debug!("resolve_implementation AssocItemKind::TyAlias");
                                            // We also need a new scope for the impl item type parameters.
                                            this.with_generic_param_rib(
                                                generics,
                                                AssocItemRibKind,
                                                |this| {
                                                    // If this is a trait impl, ensure the type
                                                    // exists in trait
                                                    this.check_trait_item(
                                                        item.id,
                                                        item.ident,
                                                        &item.kind,
                                                        TypeNS,
                                                        item.span,
                                                        |i, s, c| TypeNotMemberOfTrait(i, s, c),
                                                    );

                                                    visit::walk_assoc_item(
                                                        this,
                                                        item,
                                                        AssocCtxt::Impl,
                                                    )
                                                },
                                            );
                                        }
                                        AssocItemKind::MacCall(_) => {
                                            panic!("unexpanded macro in resolve!")
                                        }
                                    }
                                }
                            });
                        });
                    });
                });
            });
        });
    }

    fn check_trait_item<F>(
        &mut self,
        id: NodeId,
        mut ident: Ident,
        kind: &AssocItemKind,
        ns: Namespace,
        span: Span,
        err: F,
    ) where
        F: FnOnce(Ident, &str, Option<Symbol>) -> ResolutionError<'_>,
    {
        // If there is a TraitRef in scope for an impl, then the method must be in the trait.
        let Some((module, _)) = &self.current_trait_ref else { return; };
        ident.span.normalize_to_macros_2_0_and_adjust(module.expansion);
        let key = self.r.new_key(ident, ns);
        let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
        debug!(?binding);
        if binding.is_none() {
            // We could not find the trait item in the correct namespace.
            // Check the other namespace to report an error.
            let ns = match ns {
                ValueNS => TypeNS,
                TypeNS => ValueNS,
                _ => ns,
            };
            let key = self.r.new_key(ident, ns);
            binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
            debug!(?binding);
        }
        let Some(binding) = binding else {
            // We could not find the method: report an error.
            let candidate = self.find_similarly_named_assoc_item(ident.name, kind);
            let path = &self.current_trait_ref.as_ref().unwrap().1.path;
            self.report_error(span, err(ident, &path_names_to_string(path), candidate));
            return;
        };

        let res = binding.res();
        let Res::Def(def_kind, _) = res else { bug!() };
        match (def_kind, kind) {
            (DefKind::AssocTy, AssocItemKind::TyAlias(..))
            | (DefKind::AssocFn, AssocItemKind::Fn(..))
            | (DefKind::AssocConst, AssocItemKind::Const(..)) => {
                self.r.record_partial_res(id, PartialRes::new(res));
                return;
            }
            _ => {}
        }

        // The method kind does not correspond to what appeared in the trait, report.
        let path = &self.current_trait_ref.as_ref().unwrap().1.path;
        let (code, kind) = match kind {
            AssocItemKind::Const(..) => (rustc_errors::error_code!(E0323), "const"),
            AssocItemKind::Fn(..) => (rustc_errors::error_code!(E0324), "method"),
            AssocItemKind::TyAlias(..) => (rustc_errors::error_code!(E0325), "type"),
            AssocItemKind::MacCall(..) => span_bug!(span, "unexpanded macro"),
        };
        self.report_error(
            span,
            ResolutionError::TraitImplMismatch {
                name: ident.name,
                kind,
                code,
                trait_path: path_names_to_string(path),
                trait_item_span: binding.span,
            },
        );
    }

    fn resolve_params(&mut self, params: &'ast [Param]) {
        let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
        for Param { pat, ty, .. } in params {
            self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
            self.visit_ty(ty);
            debug!("(resolving function / closure) recorded parameter");
        }
    }

    fn resolve_local(&mut self, local: &'ast Local) {
        debug!("resolving local ({:?})", local);
        // Resolve the type.
        walk_list!(self, visit_ty, &local.ty);

        // Resolve the initializer.
        if let Some((init, els)) = local.kind.init_else_opt() {
            self.visit_expr(init);

            // Resolve the `else` block
            if let Some(els) = els {
                self.visit_block(els);
            }
        }

        // Resolve the pattern.
        self.resolve_pattern_top(&local.pat, PatternSource::Let);
    }

    /// build a map from pattern identifiers to binding-info's.
    /// this is done hygienically. This could arise for a macro
    /// that expands into an or-pattern where one 'x' was from the
    /// user and one 'x' came from the macro.
    fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
        let mut binding_map = FxHashMap::default();

        pat.walk(&mut |pat| {
            match pat.kind {
                PatKind::Ident(binding_mode, ident, ref sub_pat)
                    if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
                {
                    binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
                }
                PatKind::Or(ref ps) => {
                    // Check the consistency of this or-pattern and
                    // then add all bindings to the larger map.
                    for bm in self.check_consistent_bindings(ps) {
                        binding_map.extend(bm);
                    }
                    return false;
                }
                _ => {}
            }

            true
        });

        binding_map
    }

    fn is_base_res_local(&self, nid: NodeId) -> bool {
        matches!(self.r.partial_res_map.get(&nid).map(|res| res.base_res()), Some(Res::Local(..)))
    }

    /// Checks that all of the arms in an or-pattern have exactly the
    /// same set of bindings, with the same binding modes for each.
    fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
        let mut missing_vars = FxHashMap::default();
        let mut inconsistent_vars = FxHashMap::default();

        // 1) Compute the binding maps of all arms.
        let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();

        // 2) Record any missing bindings or binding mode inconsistencies.
        for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
            // Check against all arms except for the same pattern which is always self-consistent.
            let inners = pats
                .iter()
                .enumerate()
                .filter(|(_, pat)| pat.id != pat_outer.id)
                .flat_map(|(idx, _)| maps[idx].iter())
                .map(|(key, binding)| (key.name, map_outer.get(&key), binding));

            for (name, info, &binding_inner) in inners {
                match info {
                    None => {
                        // The inner binding is missing in the outer.
                        let binding_error =
                            missing_vars.entry(name).or_insert_with(|| BindingError {
                                name,
                                origin: BTreeSet::new(),
                                target: BTreeSet::new(),
                                could_be_path: name.as_str().starts_with(char::is_uppercase),
                            });
                        binding_error.origin.insert(binding_inner.span);
                        binding_error.target.insert(pat_outer.span);
                    }
                    Some(binding_outer) => {
                        if binding_outer.binding_mode != binding_inner.binding_mode {
                            // The binding modes in the outer and inner bindings differ.
                            inconsistent_vars
                                .entry(name)
                                .or_insert((binding_inner.span, binding_outer.span));
                        }
                    }
                }
            }
        }

        // 3) Report all missing variables we found.
        let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
        missing_vars.sort_by_key(|(sym, _err)| sym.as_str());

        for (name, mut v) in missing_vars {
            if inconsistent_vars.contains_key(name) {
                v.could_be_path = false;
            }
            self.report_error(
                *v.origin.iter().next().unwrap(),
                ResolutionError::VariableNotBoundInPattern(v),
            );
        }

        // 4) Report all inconsistencies in binding modes we found.
        let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
        inconsistent_vars.sort();
        for (name, v) in inconsistent_vars {
            self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
        }

        // 5) Finally bubble up all the binding maps.
        maps
    }

    /// Check the consistency of the outermost or-patterns.
    fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
        pat.walk(&mut |pat| match pat.kind {
            PatKind::Or(ref ps) => {
                self.check_consistent_bindings(ps);
                false
            }
            _ => true,
        })
    }

    fn resolve_arm(&mut self, arm: &'ast Arm) {
        self.with_rib(ValueNS, NormalRibKind, |this| {
            this.resolve_pattern_top(&arm.pat, PatternSource::Match);
            walk_list!(this, visit_expr, &arm.guard);
            this.visit_expr(&arm.body);
        });
    }

    /// Arising from `source`, resolve a top level pattern.
    fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
        let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
        self.resolve_pattern(pat, pat_src, &mut bindings);
    }

    fn resolve_pattern(
        &mut self,
        pat: &'ast Pat,
        pat_src: PatternSource,
        bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
    ) {
        // We walk the pattern before declaring the pattern's inner bindings,
        // so that we avoid resolving a literal expression to a binding defined
        // by the pattern.
        visit::walk_pat(self, pat);
        self.resolve_pattern_inner(pat, pat_src, bindings);
        // This has to happen *after* we determine which pat_idents are variants:
        self.check_consistent_bindings_top(pat);
    }

    /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
    ///
    /// ### `bindings`
    ///
    /// A stack of sets of bindings accumulated.
    ///
    /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
    /// be interpreted as re-binding an already bound binding. This results in an error.
    /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
    /// in reusing this binding rather than creating a fresh one.
    ///
    /// When called at the top level, the stack must have a single element
    /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
    /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
    /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
    /// When each `p_i` has been dealt with, the top set is merged with its parent.
    /// When a whole or-pattern has been dealt with, the thing happens.
    ///
    /// See the implementation and `fresh_binding` for more details.
    fn resolve_pattern_inner(
        &mut self,
        pat: &Pat,
        pat_src: PatternSource,
        bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
    ) {
        // Visit all direct subpatterns of this pattern.
        pat.walk(&mut |pat| {
            debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
            match pat.kind {
                PatKind::Ident(bmode, ident, ref sub) => {
                    // First try to resolve the identifier as some existing entity,
                    // then fall back to a fresh binding.
                    let has_sub = sub.is_some();
                    let res = self
                        .try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
                        .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
                    self.r.record_partial_res(pat.id, PartialRes::new(res));
                    self.r.record_pat_span(pat.id, pat.span);
                }
                PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
                    self.smart_resolve_path(
                        pat.id,
                        qself.as_ref(),
                        path,
                        PathSource::TupleStruct(
                            pat.span,
                            self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
                        ),
                    );
                }
                PatKind::Path(ref qself, ref path) => {
                    self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
                }
                PatKind::Struct(ref qself, ref path, ..) => {
                    self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Struct);
                }
                PatKind::Or(ref ps) => {
                    // Add a new set of bindings to the stack. `Or` here records that when a
                    // binding already exists in this set, it should not result in an error because
                    // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
                    bindings.push((PatBoundCtx::Or, Default::default()));
                    for p in ps {
                        // Now we need to switch back to a product context so that each
                        // part of the or-pattern internally rejects already bound names.
                        // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
                        bindings.push((PatBoundCtx::Product, Default::default()));
                        self.resolve_pattern_inner(p, pat_src, bindings);
                        // Move up the non-overlapping bindings to the or-pattern.
                        // Existing bindings just get "merged".
                        let collected = bindings.pop().unwrap().1;
                        bindings.last_mut().unwrap().1.extend(collected);
                    }
                    // This or-pattern itself can itself be part of a product,
                    // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
                    // Both cases bind `a` again in a product pattern and must be rejected.
                    let collected = bindings.pop().unwrap().1;
                    bindings.last_mut().unwrap().1.extend(collected);

                    // Prevent visiting `ps` as we've already done so above.
                    return false;
                }
                _ => {}
            }
            true
        });
    }

    fn fresh_binding(
        &mut self,
        ident: Ident,
        pat_id: NodeId,
        pat_src: PatternSource,
        bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
    ) -> Res {
        // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
        // (We must not add it if it's in the bindings map because that breaks the assumptions
        // later passes make about or-patterns.)
        let ident = ident.normalize_to_macro_rules();

        let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
        // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
        let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
        // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
        // This is *required* for consistency which is checked later.
        let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);

        if already_bound_and {
            // Overlap in a product pattern somewhere; report an error.
            use ResolutionError::*;
            let error = match pat_src {
                // `fn f(a: u8, a: u8)`:
                PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
                // `Variant(a, a)`:
                _ => IdentifierBoundMoreThanOnceInSamePattern,
            };
            self.report_error(ident.span, error(ident.name));
        }

        // Record as bound if it's valid:
        let ident_valid = ident.name != kw::Empty;
        if ident_valid {
            bindings.last_mut().unwrap().1.insert(ident);
        }

        if already_bound_or {
            // `Variant1(a) | Variant2(a)`, ok
            // Reuse definition from the first `a`.
            self.innermost_rib_bindings(ValueNS)[&ident]
        } else {
            let res = Res::Local(pat_id);
            if ident_valid {
                // A completely fresh binding add to the set if it's valid.
                self.innermost_rib_bindings(ValueNS).insert(ident, res);
            }
            res
        }
    }

    fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
        &mut self.ribs[ns].last_mut().unwrap().bindings
    }

    fn try_resolve_as_non_binding(
        &mut self,
        pat_src: PatternSource,
        pat: &Pat,
        bm: BindingMode,
        ident: Ident,
        has_sub: bool,
    ) -> Option<Res> {
        // An immutable (no `mut`) by-value (no `ref`) binding pattern without
        // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
        // also be interpreted as a path to e.g. a constant, variant, etc.
        let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not);

        let ls_binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?;
        let (res, binding) = match ls_binding {
            LexicalScopeBinding::Item(binding)
                if is_syntactic_ambiguity && binding.is_ambiguity() =>
            {
                // For ambiguous bindings we don't know all their definitions and cannot check
                // whether they can be shadowed by fresh bindings or not, so force an error.
                // issues/33118#issuecomment-233962221 (see below) still applies here,
                // but we have to ignore it for backward compatibility.
                self.r.record_use(ident, binding, false);
                return None;
            }
            LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
            LexicalScopeBinding::Res(res) => (res, None),
        };

        match res {
            Res::SelfCtor(_) // See #70549.
            | Res::Def(
                DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
                _,
            ) if is_syntactic_ambiguity => {
                // Disambiguate in favor of a unit struct/variant or constant pattern.
                if let Some(binding) = binding {
                    self.r.record_use(ident, binding, false);
                }
                Some(res)
            }
            Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static, _) => {
                // This is unambiguously a fresh binding, either syntactically
                // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
                // to something unusable as a pattern (e.g., constructor function),
                // but we still conservatively report an error, see
                // issues/33118#issuecomment-233962221 for one reason why.
                let binding = binding.expect("no binding for a ctor or static");
                self.report_error(
                    ident.span,
                    ResolutionError::BindingShadowsSomethingUnacceptable {
                        shadowing_binding_descr: pat_src.descr(),
                        name: ident.name,
                        participle: if binding.is_import() { "imported" } else { "defined" },
                        article: binding.res().article(),
                        shadowed_binding_descr: binding.res().descr(),
                        shadowed_binding_span: binding.span,
                    },
                );
                None
            }
            Res::Def(DefKind::ConstParam, def_id) => {
                // Same as for DefKind::Const above, but here, `binding` is `None`, so we
                // have to construct the error differently
                self.report_error(
                    ident.span,
                    ResolutionError::BindingShadowsSomethingUnacceptable {
                        shadowing_binding_descr: pat_src.descr(),
                        name: ident.name,
                        participle: "defined",
                        article: res.article(),
                        shadowed_binding_descr: res.descr(),
                        shadowed_binding_span: self.r.opt_span(def_id).expect("const parameter defined outside of local crate"),
                    }
                );
                None
            }
            Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
                // These entities are explicitly allowed to be shadowed by fresh bindings.
                None
            }
            _ => span_bug!(
                ident.span,
                "unexpected resolution for an identifier in pattern: {:?}",
                res,
            ),
        }
    }

    // High-level and context dependent path resolution routine.
    // Resolves the path and records the resolution into definition map.
    // If resolution fails tries several techniques to find likely
    // resolution candidates, suggest imports or other help, and report
    // errors in user friendly way.
    fn smart_resolve_path(
        &mut self,
        id: NodeId,
        qself: Option<&QSelf>,
        path: &Path,
        source: PathSource<'ast>,
    ) {
        self.smart_resolve_path_fragment(
            id,
            qself,
            &Segment::from_path(path),
            path.span,
            source,
            CrateLint::SimplePath(id),
        );
    }

    fn smart_resolve_path_fragment(
        &mut self,
        id: NodeId,
        qself: Option<&QSelf>,
        path: &[Segment],
        span: Span,
        source: PathSource<'ast>,
        crate_lint: CrateLint,
    ) -> PartialRes {
        tracing::debug!(
            "smart_resolve_path_fragment(id={:?}, qself={:?}, path={:?})",
            id,
            qself,
            path
        );
        let ns = source.namespace();

        let report_errors = |this: &mut Self, res: Option<Res>| {
            if this.should_report_errs() {
                let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);

                let def_id = this.parent_scope.module.nearest_parent_mod();
                let instead = res.is_some();
                let suggestion =
                    if res.is_none() { this.report_missing_type_error(path) } else { None };
                // get_from_node_id

                this.r.use_injections.push(UseError {
                    err,
                    candidates,
                    def_id,
                    instead,
                    suggestion,
                });
            }

            PartialRes::new(Res::Err)
        };

        // For paths originating from calls (like in `HashMap::new()`), tries
        // to enrich the plain `failed to resolve: ...` message with hints
        // about possible missing imports.
        //
        // Similar thing, for types, happens in `report_errors` above.
        let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
            if !source.is_call() {
                return Some(parent_err);
            }

            // Before we start looking for candidates, we have to get our hands
            // on the type user is trying to perform invocation on; basically:
            // we're transforming `HashMap::new` into just `HashMap`.
            let path = match path.split_last() {
                Some((_, path)) if !path.is_empty() => path,
                _ => return Some(parent_err),
            };

            let (mut err, candidates) =
                this.smart_resolve_report_errors(path, span, PathSource::Type, None);

            if candidates.is_empty() {
                err.cancel();
                return Some(parent_err);
            }

            // There are two different error messages user might receive at
            // this point:
            // - E0412 cannot find type `{}` in this scope
            // - E0433 failed to resolve: use of undeclared type or module `{}`
            //
            // The first one is emitted for paths in type-position, and the
            // latter one - for paths in expression-position.
            //
            // Thus (since we're in expression-position at this point), not to
            // confuse the user, we want to keep the *message* from E0432 (so
            // `parent_err`), but we want *hints* from E0412 (so `err`).
            //
            // And that's what happens below - we're just mixing both messages
            // into a single one.
            let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);

            parent_err.cancel();

            err.message = take(&mut parent_err.message);
            err.code = take(&mut parent_err.code);
            err.children = take(&mut parent_err.children);

            drop(parent_err);

            let def_id = this.parent_scope.module.nearest_parent_mod();

            if this.should_report_errs() {
                this.r.use_injections.push(UseError {
                    err,
                    candidates,
                    def_id,
                    instead: false,
                    suggestion: None,
                });
            } else {
                err.cancel();
            }

            // We don't return `Some(parent_err)` here, because the error will
            // be already printed as part of the `use` injections
            None
        };

        let partial_res = match self.resolve_qpath_anywhere(
            id,
            qself,
            path,
            ns,
            span,
            source.defer_to_typeck(),
            crate_lint,
        ) {
            Ok(Some(partial_res)) if partial_res.unresolved_segments() == 0 => {
                if source.is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err
                {
                    partial_res
                } else {
                    report_errors(self, Some(partial_res.base_res()))
                }
            }

            Ok(Some(partial_res)) if source.defer_to_typeck() => {
                // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
                // or `<T>::A::B`. If `B` should be resolved in value namespace then
                // it needs to be added to the trait map.
                if ns == ValueNS {
                    let item_name = path.last().unwrap().ident;
                    let traits = self.traits_in_scope(item_name, ns);
                    self.r.trait_map.insert(id, traits);
                }

                if PrimTy::from_name(path[0].ident.name).is_some() {
                    let mut std_path = Vec::with_capacity(1 + path.len());

                    std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
                    std_path.extend(path);
                    if let PathResult::Module(_) | PathResult::NonModule(_) =
                        self.resolve_path(&std_path, Some(ns), false, span, CrateLint::No)
                    {
                        // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
                        let item_span =
                            path.iter().last().map_or(span, |segment| segment.ident.span);

                        self.r.confused_type_with_std_module.insert(item_span, span);
                        self.r.confused_type_with_std_module.insert(span, span);
                    }
                }

                partial_res
            }

            Err(err) => {
                if let Some(err) = report_errors_for_call(self, err) {
                    self.report_error(err.span, err.node);
                }

                PartialRes::new(Res::Err)
            }

            _ => report_errors(self, None),
        };

        if !matches!(source, PathSource::TraitItem(..)) {
            // Avoid recording definition of `A::B` in `<T as A>::B::C`.
            self.r.record_partial_res(id, partial_res);
        }

        partial_res
    }

    fn self_type_is_available(&mut self, span: Span) -> bool {
        let binding = self.resolve_ident_in_lexical_scope(
            Ident::with_dummy_span(kw::SelfUpper),
            TypeNS,
            None,
            span,
        );
        if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
    }

    fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
        let ident = Ident::new(kw::SelfLower, self_span);
        let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
        if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
    }

    /// A wrapper around [`Resolver::report_error`].
    ///
    /// This doesn't emit errors for function bodies if this is rustdoc.
    fn report_error(&self, span: Span, resolution_error: ResolutionError<'_>) {
        if self.should_report_errs() {
            self.r.report_error(span, resolution_error);
        }
    }

    #[inline]
    /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items.
    fn should_report_errs(&self) -> bool {
        !(self.r.session.opts.actually_rustdoc && self.in_func_body)
    }

    // Resolve in alternative namespaces if resolution in the primary namespace fails.
    fn resolve_qpath_anywhere(
        &mut self,
        id: NodeId,
        qself: Option<&QSelf>,
        path: &[Segment],
        primary_ns: Namespace,
        span: Span,
        defer_to_typeck: bool,
        crate_lint: CrateLint,
    ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
        let mut fin_res = None;

        for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
            if i == 0 || ns != primary_ns {
                match self.resolve_qpath(id, qself, path, ns, span, crate_lint)? {
                    Some(partial_res)
                        if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
                    {
                        return Ok(Some(partial_res));
                    }
                    partial_res => {
                        if fin_res.is_none() {
                            fin_res = partial_res;
                        }
                    }
                }
            }
        }

        assert!(primary_ns != MacroNS);

        if qself.is_none() {
            let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
            let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
            if let Ok((_, res)) =
                self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
            {
                return Ok(Some(PartialRes::new(res)));
            }
        }

        Ok(fin_res)
    }

    /// Handles paths that may refer to associated items.
    fn resolve_qpath(
        &mut self,
        id: NodeId,
        qself: Option<&QSelf>,
        path: &[Segment],
        ns: Namespace,
        span: Span,
        crate_lint: CrateLint,
    ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
        debug!(
            "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
            id, qself, path, ns, span,
        );

        if let Some(qself) = qself {
            if qself.position == 0 {
                // This is a case like `<T>::B`, where there is no
                // trait to resolve.  In that case, we leave the `B`
                // segment to be resolved by type-check.
                return Ok(Some(PartialRes::with_unresolved_segments(
                    Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)),
                    path.len(),
                )));
            }

            // Make sure `A::B` in `<T as A::B>::C` is a trait item.
            //
            // Currently, `path` names the full item (`A::B::C`, in
            // our example).  so we extract the prefix of that that is
            // the trait (the slice upto and including
            // `qself.position`). And then we recursively resolve that,
            // but with `qself` set to `None`.
            //
            // However, setting `qself` to none (but not changing the
            // span) loses the information about where this path
            // *actually* appears, so for the purposes of the crate
            // lint we pass along information that this is the trait
            // name from a fully qualified path, and this also
            // contains the full span (the `CrateLint::QPathTrait`).
            let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
            let partial_res = self.smart_resolve_path_fragment(
                id,
                None,
                &path[..=qself.position],
                span,
                PathSource::TraitItem(ns),
                CrateLint::QPathTrait { qpath_id: id, qpath_span: qself.path_span },
            );

            // The remaining segments (the `C` in our example) will
            // have to be resolved by type-check, since that requires doing
            // trait resolution.
            return Ok(Some(PartialRes::with_unresolved_segments(
                partial_res.base_res(),
                partial_res.unresolved_segments() + path.len() - qself.position - 1,
            )));
        }

        let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
            PathResult::NonModule(path_res) => path_res,
            PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
                PartialRes::new(module.res().unwrap())
            }
            // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
            // don't report an error right away, but try to fallback to a primitive type.
            // So, we are still able to successfully resolve something like
            //
            // use std::u8; // bring module u8 in scope
            // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
            //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
            //                     // not to non-existent std::u8::max_value
            // }
            //
            // Such behavior is required for backward compatibility.
            // The same fallback is used when `a` resolves to nothing.
            PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
                if (ns == TypeNS || path.len() > 1)
                    && PrimTy::from_name(path[0].ident.name).is_some() =>
            {
                let prim = PrimTy::from_name(path[0].ident.name).unwrap();
                PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
            }
            PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
                PartialRes::new(module.res().unwrap())
            }
            PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
                return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion }));
            }
            PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
            PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
        };

        if path.len() > 1
            && result.base_res() != Res::Err
            && path[0].ident.name != kw::PathRoot
            && path[0].ident.name != kw::DollarCrate
        {
            let unqualified_result = {
                match self.resolve_path(
                    &[*path.last().unwrap()],
                    Some(ns),
                    false,
                    span,
                    CrateLint::No,
                ) {
                    PathResult::NonModule(path_res) => path_res.base_res(),
                    PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
                        module.res().unwrap()
                    }
                    _ => return Ok(Some(result)),
                }
            };
            if result.base_res() == unqualified_result {
                let lint = lint::builtin::UNUSED_QUALIFICATIONS;
                self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
            }
        }

        Ok(Some(result))
    }

    fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
        if let Some(label) = label {
            if label.ident.as_str().as_bytes()[1] != b'_' {
                self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
            }
            self.with_label_rib(NormalRibKind, |this| {
                let ident = label.ident.normalize_to_macro_rules();
                this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
                f(this);
            });
        } else {
            f(self);
        }
    }

    fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
        self.with_resolved_label(label, id, |this| this.visit_block(block));
    }

    fn resolve_block(&mut self, block: &'ast Block) {
        debug!("(resolving block) entering block");
        // Move down in the graph, if there's an anonymous module rooted here.
        let orig_module = self.parent_scope.module;
        let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference

        let mut num_macro_definition_ribs = 0;
        if let Some(anonymous_module) = anonymous_module {
            debug!("(resolving block) found anonymous module, moving down");
            self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
            self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
            self.parent_scope.module = anonymous_module;
        } else {
            self.ribs[ValueNS].push(Rib::new(NormalRibKind));
        }

        let prev = self.diagnostic_metadata.current_block_could_be_bare_struct_literal.take();
        if let (true, [Stmt { kind: StmtKind::Expr(expr), .. }]) =
            (block.could_be_bare_literal, &block.stmts[..])
        {
            if let ExprKind::Type(..) = expr.kind {
                self.diagnostic_metadata.current_block_could_be_bare_struct_literal =
                    Some(block.span);
            }
        }
        // Descend into the block.
        for stmt in &block.stmts {
            if let StmtKind::Item(ref item) = stmt.kind {
                if let ItemKind::MacroDef(..) = item.kind {
                    num_macro_definition_ribs += 1;
                    let res = self.r.local_def_id(item.id).to_def_id();
                    self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
                    self.label_ribs.push(Rib::new(MacroDefinition(res)));
                }
            }

            self.visit_stmt(stmt);
        }
        self.diagnostic_metadata.current_block_could_be_bare_struct_literal = prev;

        // Move back up.
        self.parent_scope.module = orig_module;
        for _ in 0..num_macro_definition_ribs {
            self.ribs[ValueNS].pop();
            self.label_ribs.pop();
        }
        self.ribs[ValueNS].pop();
        if anonymous_module.is_some() {
            self.ribs[TypeNS].pop();
        }
        debug!("(resolving block) leaving block");
    }

    fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) {
        debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat);
        self.with_constant_rib(
            is_repeat,
            constant.value.is_potential_trivial_const_param(),
            None,
            |this| {
                visit::walk_anon_const(this, constant);
            },
        );
    }

    fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
        // First, record candidate traits for this expression if it could
        // result in the invocation of a method call.

        self.record_candidate_traits_for_expr_if_necessary(expr);

        // Next, resolve the node.
        match expr.kind {
            ExprKind::Path(ref qself, ref path) => {
                self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
                visit::walk_expr(self, expr);
            }

            ExprKind::Struct(ref se) => {
                self.smart_resolve_path(expr.id, se.qself.as_ref(), &se.path, PathSource::Struct);
                visit::walk_expr(self, expr);
            }

            ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
                if let Some(node_id) = self.resolve_label(label.ident) {
                    // Since this res is a label, it is never read.
                    self.r.label_res_map.insert(expr.id, node_id);
                    self.diagnostic_metadata.unused_labels.remove(&node_id);
                }

                // visit `break` argument if any
                visit::walk_expr(self, expr);
            }

            ExprKind::Break(None, Some(ref e)) => {
                // We use this instead of `visit::walk_expr` to keep the parent expr around for
                // better diagnostics.
                self.resolve_expr(e, Some(&expr));
            }

            ExprKind::Let(ref pat, ref scrutinee, _) => {
                self.visit_expr(scrutinee);
                self.resolve_pattern_top(pat, PatternSource::Let);
            }

            ExprKind::If(ref cond, ref then, ref opt_else) => {
                self.with_rib(ValueNS, NormalRibKind, |this| {
                    let old = this.diagnostic_metadata.in_if_condition.replace(cond);
                    this.visit_expr(cond);
                    this.diagnostic_metadata.in_if_condition = old;
                    this.visit_block(then);
                });
                if let Some(expr) = opt_else {
                    self.visit_expr(expr);
                }
            }

            ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),

            ExprKind::While(ref cond, ref block, label) => {
                self.with_resolved_label(label, expr.id, |this| {
                    this.with_rib(ValueNS, NormalRibKind, |this| {
                        let old = this.diagnostic_metadata.in_if_condition.replace(cond);
                        this.visit_expr(cond);
                        this.diagnostic_metadata.in_if_condition = old;
                        this.visit_block(block);
                    })
                });
            }

            ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
                self.visit_expr(iter_expr);
                self.with_rib(ValueNS, NormalRibKind, |this| {
                    this.resolve_pattern_top(pat, PatternSource::For);
                    this.resolve_labeled_block(label, expr.id, block);
                });
            }

            ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),

            // Equivalent to `visit::walk_expr` + passing some context to children.
            ExprKind::Field(ref subexpression, _) => {
                self.resolve_expr(subexpression, Some(expr));
            }
            ExprKind::MethodCall(ref segment, ref arguments, _) => {
                let mut arguments = arguments.iter();
                self.resolve_expr(arguments.next().unwrap(), Some(expr));
                for argument in arguments {
                    self.resolve_expr(argument, None);
                }
                self.visit_path_segment(expr.span, segment);
            }

            ExprKind::Call(ref callee, ref arguments) => {
                self.resolve_expr(callee, Some(expr));
                let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
                for (idx, argument) in arguments.iter().enumerate() {
                    // Constant arguments need to be treated as AnonConst since
                    // that is how they will be later lowered to HIR.
                    if const_args.contains(&idx) {
                        self.with_constant_rib(
                            IsRepeatExpr::No,
                            argument.is_potential_trivial_const_param(),
                            None,
                            |this| {
                                this.resolve_expr(argument, None);
                            },
                        );
                    } else {
                        self.resolve_expr(argument, None);
                    }
                }
            }
            ExprKind::Type(ref type_expr, ref ty) => {
                // `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in
                // type ascription. Here we are trying to retrieve the span of the colon token as
                // well, but only if it's written without spaces `expr:Ty` and therefore confusable
                // with `expr::Ty`, only in this case it will match the span from
                // `type_ascription_path_suggestions`.
                self.diagnostic_metadata
                    .current_type_ascription
                    .push(type_expr.span.between(ty.span));
                visit::walk_expr(self, expr);
                self.diagnostic_metadata.current_type_ascription.pop();
            }
            // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
            // resolve the arguments within the proper scopes so that usages of them inside the
            // closure are detected as upvars rather than normal closure arg usages.
            ExprKind::Closure(_, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
                self.with_rib(ValueNS, NormalRibKind, |this| {
                    this.with_label_rib(ClosureOrAsyncRibKind, |this| {
                        // Resolve arguments:
                        this.resolve_params(&fn_decl.inputs);
                        // No need to resolve return type --
                        // the outer closure return type is `FnRetTy::Default`.

                        // Now resolve the inner closure
                        {
                            // No need to resolve arguments: the inner closure has none.
                            // Resolve the return type:
                            visit::walk_fn_ret_ty(this, &fn_decl.output);
                            // Resolve the body
                            this.visit_expr(body);
                        }
                    })
                });
            }
            ExprKind::Async(..) | ExprKind::Closure(..) => {
                self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr));
            }
            ExprKind::Repeat(ref elem, ref ct) => {
                self.visit_expr(elem);
                self.resolve_anon_const(ct, IsRepeatExpr::Yes);
            }
            ExprKind::Index(ref elem, ref idx) => {
                self.resolve_expr(elem, Some(expr));
                self.visit_expr(idx);
            }
            _ => {
                visit::walk_expr(self, expr);
            }
        }
    }

    fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
        match expr.kind {
            ExprKind::Field(_, ident) => {
                // FIXME(#6890): Even though you can't treat a method like a
                // field, we need to add any trait methods we find that match
                // the field name so that we can do some nice error reporting
                // later on in typeck.
                let traits = self.traits_in_scope(ident, ValueNS);
                self.r.trait_map.insert(expr.id, traits);
            }
            ExprKind::MethodCall(ref segment, ..) => {
                debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
                let traits = self.traits_in_scope(segment.ident, ValueNS);
                self.r.trait_map.insert(expr.id, traits);
            }
            _ => {
                // Nothing to do.
            }
        }
    }

    fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
        self.r.traits_in_scope(
            self.current_trait_ref.as_ref().map(|(module, _)| *module),
            &self.parent_scope,
            ident.span.ctxt(),
            Some((ident.name, ns)),
        )
    }

    fn compute_num_lifetime_params(&mut self, id: NodeId, generics: &Generics) {
        let def_id = self.r.local_def_id(id);
        let count = generics
            .params
            .iter()
            .filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. }))
            .count();
        self.r.item_generics_num_lifetimes.insert(def_id, count);
    }
}

impl<'a> Resolver<'a> {
    pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
        let mut late_resolution_visitor = LateResolutionVisitor::new(self);
        visit::walk_crate(&mut late_resolution_visitor, krate);
        for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
            self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
        }
    }
}