about summary refs log tree commit diff
path: root/compiler/rustc_session/src/filesearch.rs
blob: f64fa86948c8d05bcc2b85e01658a8c469c5e5cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//! A module for searching for libraries

use std::path::{Path, PathBuf};
use std::{env, fs};

use rustc_fs_util::try_canonicalize;
use rustc_target::spec::Target;

use crate::search_paths::{PathKind, SearchPath};

#[derive(Clone)]
pub struct FileSearch {
    cli_search_paths: Vec<SearchPath>,
    tlib_path: SearchPath,
}

impl FileSearch {
    pub fn cli_search_paths<'b>(&'b self, kind: PathKind) -> impl Iterator<Item = &'b SearchPath> {
        self.cli_search_paths.iter().filter(move |sp| sp.kind.matches(kind))
    }

    pub fn search_paths<'b>(&'b self, kind: PathKind) -> impl Iterator<Item = &'b SearchPath> {
        self.cli_search_paths
            .iter()
            .filter(move |sp| sp.kind.matches(kind))
            .chain(std::iter::once(&self.tlib_path))
    }

    pub fn new(cli_search_paths: &[SearchPath], tlib_path: &SearchPath, target: &Target) -> Self {
        let this = FileSearch {
            cli_search_paths: cli_search_paths.to_owned(),
            tlib_path: tlib_path.clone(),
        };
        this.refine(&["lib", &target.staticlib_prefix, &target.dll_prefix])
    }
    // Produce a new file search from this search that has a smaller set of candidates.
    fn refine(mut self, allowed_prefixes: &[&str]) -> FileSearch {
        self.cli_search_paths
            .iter_mut()
            .for_each(|search_paths| search_paths.files.retain(allowed_prefixes));
        self.tlib_path.files.retain(allowed_prefixes);

        self
    }
}

pub fn make_target_lib_path(sysroot: &Path, target_triple: &str) -> PathBuf {
    let rustlib_path = rustc_target::relative_target_rustlib_path(sysroot, target_triple);
    sysroot.join(rustlib_path).join("lib")
}

/// Returns a path to the target's `bin` folder within its `rustlib` path in the sysroot. This is
/// where binaries are usually installed, e.g. the self-contained linkers, lld-wrappers, LLVM tools,
/// etc.
pub fn make_target_bin_path(sysroot: &Path, target_triple: &str) -> PathBuf {
    let rustlib_path = rustc_target::relative_target_rustlib_path(sysroot, target_triple);
    sysroot.join(rustlib_path).join("bin")
}

#[cfg(unix)]
fn current_dll_path() -> Result<PathBuf, String> {
    use std::sync::OnceLock;

    // This is somewhat expensive relative to other work when compiling `fn main() {}` as `dladdr`
    // needs to iterate over the symbol table of librustc_driver.so until it finds a match.
    // As such cache this to avoid recomputing if we try to get the sysroot in multiple places.
    static CURRENT_DLL_PATH: OnceLock<Result<PathBuf, String>> = OnceLock::new();
    CURRENT_DLL_PATH
        .get_or_init(|| {
            use std::ffi::{CStr, OsStr};
            use std::os::unix::prelude::*;

            #[cfg(not(target_os = "aix"))]
            unsafe {
                let addr = current_dll_path as usize as *mut _;
                let mut info = std::mem::zeroed();
                if libc::dladdr(addr, &mut info) == 0 {
                    return Err("dladdr failed".into());
                }
                #[cfg(target_os = "cygwin")]
                let fname_ptr = info.dli_fname.as_ptr();
                #[cfg(not(target_os = "cygwin"))]
                let fname_ptr = {
                    assert!(!info.dli_fname.is_null(), "dli_fname cannot be null");
                    info.dli_fname
                };
                let bytes = CStr::from_ptr(fname_ptr).to_bytes();
                let os = OsStr::from_bytes(bytes);
                try_canonicalize(Path::new(os)).map_err(|e| e.to_string())
            }

            #[cfg(target_os = "aix")]
            unsafe {
                // On AIX, the symbol `current_dll_path` references a function descriptor.
                // A function descriptor is consisted of (See https://reviews.llvm.org/D62532)
                // * The address of the entry point of the function.
                // * The TOC base address for the function.
                // * The environment pointer.
                // The function descriptor is in the data section.
                let addr = current_dll_path as u64;
                let mut buffer = vec![std::mem::zeroed::<libc::ld_info>(); 64];
                loop {
                    if libc::loadquery(
                        libc::L_GETINFO,
                        buffer.as_mut_ptr() as *mut u8,
                        (size_of::<libc::ld_info>() * buffer.len()) as u32,
                    ) >= 0
                    {
                        break;
                    } else {
                        if std::io::Error::last_os_error().raw_os_error().unwrap() != libc::ENOMEM {
                            return Err("loadquery failed".into());
                        }
                        buffer.resize(buffer.len() * 2, std::mem::zeroed::<libc::ld_info>());
                    }
                }
                let mut current = buffer.as_mut_ptr() as *mut libc::ld_info;
                loop {
                    let data_base = (*current).ldinfo_dataorg as u64;
                    let data_end = data_base + (*current).ldinfo_datasize;
                    if (data_base..data_end).contains(&addr) {
                        let bytes = CStr::from_ptr(&(*current).ldinfo_filename[0]).to_bytes();
                        let os = OsStr::from_bytes(bytes);
                        return try_canonicalize(Path::new(os)).map_err(|e| e.to_string());
                    }
                    if (*current).ldinfo_next == 0 {
                        break;
                    }
                    current = (current as *mut i8).offset((*current).ldinfo_next as isize)
                        as *mut libc::ld_info;
                }
                return Err(format!("current dll's address {} is not in the load map", addr));
            }
        })
        .clone()
}

#[cfg(windows)]
fn current_dll_path() -> Result<PathBuf, String> {
    use std::ffi::OsString;
    use std::io;
    use std::os::windows::prelude::*;

    use windows::Win32::Foundation::HMODULE;
    use windows::Win32::System::LibraryLoader::{
        GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, GetModuleFileNameW, GetModuleHandleExW,
    };
    use windows::core::PCWSTR;

    let mut module = HMODULE::default();
    unsafe {
        GetModuleHandleExW(
            GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
            PCWSTR(current_dll_path as *mut u16),
            &mut module,
        )
    }
    .map_err(|e| e.to_string())?;

    let mut filename = vec![0; 1024];
    let n = unsafe { GetModuleFileNameW(Some(module), &mut filename) } as usize;
    if n == 0 {
        return Err(format!("GetModuleFileNameW failed: {}", io::Error::last_os_error()));
    }
    if n >= filename.capacity() {
        return Err(format!("our buffer was too small? {}", io::Error::last_os_error()));
    }

    filename.truncate(n);

    let path = try_canonicalize(OsString::from_wide(&filename)).map_err(|e| e.to_string())?;

    // See comments on this target function, but the gist is that
    // gcc chokes on verbatim paths which fs::canonicalize generates
    // so we try to avoid those kinds of paths.
    Ok(rustc_fs_util::fix_windows_verbatim_for_gcc(&path))
}

#[cfg(target_os = "wasi")]
fn current_dll_path() -> Result<PathBuf, String> {
    Err("current_dll_path is not supported on WASI".to_string())
}

/// This function checks if sysroot is found using env::args().next(), and if it
/// is not found, finds sysroot from current rustc_driver dll.
pub(crate) fn default_sysroot() -> PathBuf {
    fn default_from_rustc_driver_dll() -> Result<PathBuf, String> {
        let dll = current_dll_path()?;

        // `dll` will be in one of the following two:
        // - compiler's libdir: $sysroot/lib/*.dll
        // - target's libdir: $sysroot/lib/rustlib/$target/lib/*.dll
        //
        // use `parent` twice to chop off the file name and then also the
        // directory containing the dll
        let dir = dll.parent().and_then(|p| p.parent()).ok_or_else(|| {
            format!("Could not move 2 levels upper using `parent()` on {}", dll.display())
        })?;

        // if `dir` points to target's dir, move up to the sysroot
        let mut sysroot_dir = if dir.ends_with(crate::config::host_tuple()) {
            dir.parent() // chop off `$target`
                .and_then(|p| p.parent()) // chop off `rustlib`
                .and_then(|p| p.parent()) // chop off `lib`
                .map(|s| s.to_owned())
                .ok_or_else(|| {
                    format!("Could not move 3 levels upper using `parent()` on {}", dir.display())
                })?
        } else {
            dir.to_owned()
        };

        // On multiarch linux systems, there will be multiarch directory named
        // with the architecture(e.g `x86_64-linux-gnu`) under the `lib` directory.
        // Which cause us to mistakenly end up in the lib directory instead of the sysroot directory.
        if sysroot_dir.ends_with("lib") {
            sysroot_dir =
                sysroot_dir.parent().map(|real_sysroot| real_sysroot.to_owned()).ok_or_else(
                    || format!("Could not move to parent path of {}", sysroot_dir.display()),
                )?
        }

        Ok(sysroot_dir)
    }

    // Use env::args().next() to get the path of the executable without
    // following symlinks/canonicalizing any component. This makes the rustc
    // binary able to locate Rust libraries in systems using content-addressable
    // storage (CAS).
    fn from_env_args_next() -> Option<PathBuf> {
        let mut p = PathBuf::from(env::args_os().next()?);

        // Check if sysroot is found using env::args().next() only if the rustc in argv[0]
        // is a symlink (see #79253). We might want to change/remove it to conform with
        // https://www.gnu.org/prep/standards/standards.html#Finding-Program-Files in the
        // future.
        if fs::read_link(&p).is_err() {
            // Path is not a symbolic link or does not exist.
            return None;
        }

        // Pop off `bin/rustc`, obtaining the suspected sysroot.
        p.pop();
        p.pop();
        // Look for the target rustlib directory in the suspected sysroot.
        let mut rustlib_path = rustc_target::relative_target_rustlib_path(&p, "dummy");
        rustlib_path.pop(); // pop off the dummy target.
        rustlib_path.exists().then_some(p)
    }

    from_env_args_next()
        .unwrap_or_else(|| default_from_rustc_driver_dll().expect("Failed finding sysroot"))
}