1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
use std::marker::PhantomData;
use std::mem;
use std::ops::ControlFlow;
use rustc_data_structures::thinvec::ExtractIf;
use rustc_hir::def_id::LocalDefId;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::{
FromSolverError, PredicateObligation, PredicateObligations, TraitEngine,
};
use rustc_middle::ty::{
self, DelayedSet, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor,
TypingMode,
};
use rustc_next_trait_solver::delegate::SolverDelegate as _;
use rustc_next_trait_solver::solve::{
GoalEvaluation, GoalStalledOn, HasChanged, SolverDelegateEvalExt as _,
};
use rustc_span::Span;
use thin_vec::ThinVec;
use tracing::instrument;
use self::derive_errors::*;
use super::Certainty;
use super::delegate::SolverDelegate;
use super::inspect::{self, ProofTreeInferCtxtExt};
use crate::traits::{FulfillmentError, ScrubbedTraitError};
mod derive_errors;
// FIXME: Do we need to use a `ThinVec` here?
type PendingObligations<'tcx> =
ThinVec<(PredicateObligation<'tcx>, Option<GoalStalledOn<TyCtxt<'tcx>>>)>;
/// A trait engine using the new trait solver.
///
/// This is mostly identical to how `evaluate_all` works inside of the
/// solver, except that the requirements are slightly different.
///
/// Unlike `evaluate_all` it is possible to add new obligations later on
/// and we also have to track diagnostics information by using `Obligation`
/// instead of `Goal`.
///
/// It is also likely that we want to use slightly different datastructures
/// here as this will have to deal with far more root goals than `evaluate_all`.
pub struct FulfillmentCtxt<'tcx, E: 'tcx> {
obligations: ObligationStorage<'tcx>,
/// The snapshot in which this context was created. Using the context
/// outside of this snapshot leads to subtle bugs if the snapshot
/// gets rolled back. Because of this we explicitly check that we only
/// use the context in exactly this snapshot.
usable_in_snapshot: usize,
_errors: PhantomData<E>,
}
#[derive(Default, Debug)]
struct ObligationStorage<'tcx> {
/// Obligations which resulted in an overflow in fulfillment itself.
///
/// We cannot eagerly return these as error so we instead store them here
/// to avoid recomputing them each time `select_where_possible` is called.
/// This also allows us to return the correct `FulfillmentError` for them.
overflowed: Vec<PredicateObligation<'tcx>>,
pending: PendingObligations<'tcx>,
}
impl<'tcx> ObligationStorage<'tcx> {
fn register(
&mut self,
obligation: PredicateObligation<'tcx>,
stalled_on: Option<GoalStalledOn<TyCtxt<'tcx>>>,
) {
self.pending.push((obligation, stalled_on));
}
fn has_pending_obligations(&self) -> bool {
!self.pending.is_empty() || !self.overflowed.is_empty()
}
fn clone_pending(&self) -> PredicateObligations<'tcx> {
let mut obligations: PredicateObligations<'tcx> =
self.pending.iter().map(|(o, _)| o.clone()).collect();
obligations.extend(self.overflowed.iter().cloned());
obligations
}
fn drain_pending(
&mut self,
cond: impl Fn(&PredicateObligation<'tcx>) -> bool,
) -> PendingObligations<'tcx> {
let (unstalled, pending) =
mem::take(&mut self.pending).into_iter().partition(|(o, _)| cond(o));
self.pending = pending;
unstalled
}
fn on_fulfillment_overflow(&mut self, infcx: &InferCtxt<'tcx>) {
infcx.probe(|_| {
// IMPORTANT: we must not use solve any inference variables in the obligations
// as this is all happening inside of a probe. We use a probe to make sure
// we get all obligations involved in the overflow. We pretty much check: if
// we were to do another step of `select_where_possible`, which goals would
// change.
// FIXME: <https://github.com/Gankra/thin-vec/pull/66> is merged, this can be removed.
self.overflowed.extend(
ExtractIf::new(&mut self.pending, |(o, stalled_on)| {
let goal = o.as_goal();
let result = <&SolverDelegate<'tcx>>::from(infcx).evaluate_root_goal(
goal,
o.cause.span,
stalled_on.take(),
);
matches!(result, Ok(GoalEvaluation { has_changed: HasChanged::Yes, .. }))
})
.map(|(o, _)| o),
);
})
}
}
impl<'tcx, E: 'tcx> FulfillmentCtxt<'tcx, E> {
pub fn new(infcx: &InferCtxt<'tcx>) -> FulfillmentCtxt<'tcx, E> {
assert!(
infcx.next_trait_solver(),
"new trait solver fulfillment context created when \
infcx is set up for old trait solver"
);
FulfillmentCtxt {
obligations: Default::default(),
usable_in_snapshot: infcx.num_open_snapshots(),
_errors: PhantomData,
}
}
fn inspect_evaluated_obligation(
&self,
infcx: &InferCtxt<'tcx>,
obligation: &PredicateObligation<'tcx>,
result: &Result<GoalEvaluation<TyCtxt<'tcx>>, NoSolution>,
) {
if let Some(inspector) = infcx.obligation_inspector.get() {
let result = match result {
Ok(GoalEvaluation { certainty, .. }) => Ok(*certainty),
Err(NoSolution) => Err(NoSolution),
};
(inspector)(infcx, &obligation, result);
}
}
}
impl<'tcx, E> TraitEngine<'tcx, E> for FulfillmentCtxt<'tcx, E>
where
E: FromSolverError<'tcx, NextSolverError<'tcx>>,
{
#[instrument(level = "trace", skip(self, infcx))]
fn register_predicate_obligation(
&mut self,
infcx: &InferCtxt<'tcx>,
obligation: PredicateObligation<'tcx>,
) {
assert_eq!(self.usable_in_snapshot, infcx.num_open_snapshots());
self.obligations.register(obligation, None);
}
fn collect_remaining_errors(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<E> {
self.obligations
.pending
.drain(..)
.map(|(obligation, _)| NextSolverError::Ambiguity(obligation))
.chain(
self.obligations
.overflowed
.drain(..)
.map(|obligation| NextSolverError::Overflow(obligation)),
)
.map(|e| E::from_solver_error(infcx, e))
.collect()
}
fn select_where_possible(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<E> {
assert_eq!(self.usable_in_snapshot, infcx.num_open_snapshots());
let mut errors = Vec::new();
loop {
let mut any_changed = false;
for (mut obligation, stalled_on) in self.obligations.drain_pending(|_| true) {
if !infcx.tcx.recursion_limit().value_within_limit(obligation.recursion_depth) {
self.obligations.on_fulfillment_overflow(infcx);
// Only return true errors that we have accumulated while processing.
return errors;
}
let goal = obligation.as_goal();
let delegate = <&SolverDelegate<'tcx>>::from(infcx);
if let Some(certainty) =
delegate.compute_goal_fast_path(goal, obligation.cause.span)
{
match certainty {
// This fast path doesn't depend on region identity so it doesn't
// matter if the goal contains inference variables or not, so we
// don't need to call `push_hir_typeck_potentially_region_dependent_goal`
// here.
//
// Only goals proven via the trait solver should be region dependent.
Certainty::Yes => {}
Certainty::Maybe(_) => {
self.obligations.register(obligation, None);
}
}
continue;
}
let result = delegate.evaluate_root_goal(goal, obligation.cause.span, stalled_on);
self.inspect_evaluated_obligation(infcx, &obligation, &result);
let GoalEvaluation { goal, certainty, has_changed, stalled_on } = match result {
Ok(result) => result,
Err(NoSolution) => {
errors.push(E::from_solver_error(
infcx,
NextSolverError::TrueError(obligation),
));
continue;
}
};
// We've resolved the goal in `evaluate_root_goal`, avoid redoing this work
// in the next iteration. This does not resolve the inference variables
// constrained by evaluating the goal.
obligation.predicate = goal.predicate;
if has_changed == HasChanged::Yes {
// We increment the recursion depth here to track the number of times
// this goal has resulted in inference progress. This doesn't precisely
// model the way that we track recursion depth in the old solver due
// to the fact that we only process root obligations, but it is a good
// approximation and should only result in fulfillment overflow in
// pathological cases.
obligation.recursion_depth += 1;
any_changed = true;
}
match certainty {
Certainty::Yes => {
// Goals may depend on structural identity. Region uniquification at the
// start of MIR borrowck may cause things to no longer be so, potentially
// causing an ICE.
//
// While we uniquify root goals in HIR this does not handle cases where
// regions are hidden inside of a type or const inference variable.
//
// FIXME(-Znext-solver): This does not handle inference variables hidden
// inside of an opaque type, e.g. if there's `Opaque = (?x, ?x)` in the
// storage, we can also rely on structural identity of `?x` even if we
// later uniquify it in MIR borrowck.
if infcx.in_hir_typeck && obligation.has_non_region_infer() {
infcx.push_hir_typeck_potentially_region_dependent_goal(obligation);
}
}
Certainty::Maybe(_) => self.obligations.register(obligation, stalled_on),
}
}
if !any_changed {
break;
}
}
errors
}
fn has_pending_obligations(&self) -> bool {
self.obligations.has_pending_obligations()
}
fn pending_obligations(&self) -> PredicateObligations<'tcx> {
self.obligations.clone_pending()
}
fn drain_stalled_obligations_for_coroutines(
&mut self,
infcx: &InferCtxt<'tcx>,
) -> PredicateObligations<'tcx> {
let stalled_coroutines = match infcx.typing_mode() {
TypingMode::Analysis { defining_opaque_types_and_generators } => {
defining_opaque_types_and_generators
}
TypingMode::Coherence
| TypingMode::Borrowck { defining_opaque_types: _ }
| TypingMode::PostBorrowckAnalysis { defined_opaque_types: _ }
| TypingMode::PostAnalysis => return Default::default(),
};
if stalled_coroutines.is_empty() {
return Default::default();
}
self.obligations
.drain_pending(|obl| {
infcx.probe(|_| {
infcx
.visit_proof_tree(
obl.as_goal(),
&mut StalledOnCoroutines {
stalled_coroutines,
span: obl.cause.span,
cache: Default::default(),
},
)
.is_break()
})
})
.into_iter()
.map(|(o, _)| o)
.collect()
}
}
/// Detect if a goal is stalled on a coroutine that is owned by the current typeck root.
///
/// This function can (erroneously) fail to detect a predicate, i.e. it doesn't need to
/// be complete. However, this will lead to ambiguity errors, so we want to make it
/// accurate.
///
/// This function can be also return false positives, which will lead to poor diagnostics
/// so we want to keep this visitor *precise* too.
pub struct StalledOnCoroutines<'tcx> {
pub stalled_coroutines: &'tcx ty::List<LocalDefId>,
pub span: Span,
pub cache: DelayedSet<Ty<'tcx>>,
}
impl<'tcx> inspect::ProofTreeVisitor<'tcx> for StalledOnCoroutines<'tcx> {
type Result = ControlFlow<()>;
fn span(&self) -> rustc_span::Span {
self.span
}
fn visit_goal(&mut self, inspect_goal: &super::inspect::InspectGoal<'_, 'tcx>) -> Self::Result {
inspect_goal.goal().predicate.visit_with(self)?;
if let Some(candidate) = inspect_goal.unique_applicable_candidate() {
candidate.visit_nested_no_probe(self)
} else {
ControlFlow::Continue(())
}
}
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for StalledOnCoroutines<'tcx> {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
if !self.cache.insert(ty) {
return ControlFlow::Continue(());
}
if let ty::CoroutineWitness(def_id, _) = *ty.kind()
&& def_id.as_local().is_some_and(|def_id| self.stalled_coroutines.contains(&def_id))
{
ControlFlow::Break(())
} else if ty.has_coroutines() {
ty.super_visit_with(self)
} else {
ControlFlow::Continue(())
}
}
}
pub enum NextSolverError<'tcx> {
TrueError(PredicateObligation<'tcx>),
Ambiguity(PredicateObligation<'tcx>),
Overflow(PredicateObligation<'tcx>),
}
impl<'tcx> FromSolverError<'tcx, NextSolverError<'tcx>> for FulfillmentError<'tcx> {
fn from_solver_error(infcx: &InferCtxt<'tcx>, error: NextSolverError<'tcx>) -> Self {
match error {
NextSolverError::TrueError(obligation) => {
fulfillment_error_for_no_solution(infcx, obligation)
}
NextSolverError::Ambiguity(obligation) => {
fulfillment_error_for_stalled(infcx, obligation)
}
NextSolverError::Overflow(obligation) => {
fulfillment_error_for_overflow(infcx, obligation)
}
}
}
}
impl<'tcx> FromSolverError<'tcx, NextSolverError<'tcx>> for ScrubbedTraitError<'tcx> {
fn from_solver_error(_infcx: &InferCtxt<'tcx>, error: NextSolverError<'tcx>) -> Self {
match error {
NextSolverError::TrueError(_) => ScrubbedTraitError::TrueError,
NextSolverError::Ambiguity(_) | NextSolverError::Overflow(_) => {
ScrubbedTraitError::Ambiguity
}
}
}
}
|