1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
//! The new trait solver, currently still WIP.
//!
//! As a user of the trait system, you can use `TyCtxt::evaluate_goal` to
//! interact with this solver.
//!
//! For a high-level overview of how this solver works, check out the relevant
//! section of the rustc-dev-guide.
//!
//! FIXME(@lcnr): Write that section. If you read this before then ask me
//! about it on zulip.
// FIXME: Instead of using `infcx.canonicalize_query` we have to add a new routine which
// preserves universes and creates a unique var (in the highest universe) for each
// appearance of a region.
// FIXME: `CanonicalVarValues` should be interned and `Copy`.
// FIXME: uses of `infcx.at` need to enable deferred projection equality once that's implemented.
use std::mem;
use rustc_infer::infer::canonical::OriginalQueryValues;
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::Obligation;
use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::ty::{RegionOutlivesPredicate, ToPredicate, TypeOutlivesPredicate};
use rustc_span::DUMMY_SP;
use self::infcx_ext::InferCtxtExt;
mod assembly;
mod cache;
mod fulfill;
mod infcx_ext;
mod overflow;
mod project_goals;
mod trait_goals;
pub use fulfill::FulfillmentCtxt;
/// A goal is a statement, i.e. `predicate`, we want to prove
/// given some assumptions, i.e. `param_env`.
///
/// Most of the time the `param_env` contains the `where`-bounds of the function
/// we're currently typechecking while the `predicate` is some trait bound.
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, TypeFoldable, TypeVisitable)]
pub struct Goal<'tcx, P> {
param_env: ty::ParamEnv<'tcx>,
predicate: P,
}
impl<'tcx, P> Goal<'tcx, P> {
pub fn new(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: impl ToPredicate<'tcx, P>,
) -> Goal<'tcx, P> {
Goal { param_env, predicate: predicate.to_predicate(tcx) }
}
/// Updates the goal to one with a different `predicate` but the same `param_env`.
fn with<Q>(self, tcx: TyCtxt<'tcx>, predicate: impl ToPredicate<'tcx, Q>) -> Goal<'tcx, Q> {
Goal { param_env: self.param_env, predicate: predicate.to_predicate(tcx) }
}
}
impl<'tcx, P> From<Obligation<'tcx, P>> for Goal<'tcx, P> {
fn from(obligation: Obligation<'tcx, P>) -> Goal<'tcx, P> {
Goal { param_env: obligation.param_env, predicate: obligation.predicate }
}
}
#[derive(Debug, PartialEq, Eq, Clone, Hash, TypeFoldable, TypeVisitable)]
pub struct Response<'tcx> {
pub var_values: CanonicalVarValues<'tcx>,
/// Additional constraints returned by this query.
pub external_constraints: ExternalConstraints<'tcx>,
pub certainty: Certainty,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, TypeFoldable, TypeVisitable)]
pub enum Certainty {
Yes,
Maybe(MaybeCause),
}
impl Certainty {
/// When proving multiple goals using **AND**, e.g. nested obligations for an impl,
/// use this function to unify the certainty of these goals
pub fn unify_and(self, other: Certainty) -> Certainty {
match (self, other) {
(Certainty::Yes, Certainty::Yes) => Certainty::Yes,
(Certainty::Yes, Certainty::Maybe(_)) => other,
(Certainty::Maybe(_), Certainty::Yes) => self,
(Certainty::Maybe(MaybeCause::Overflow), Certainty::Maybe(MaybeCause::Overflow)) => {
Certainty::Maybe(MaybeCause::Overflow)
}
// If at least one of the goals is ambiguous, hide the overflow as the ambiguous goal
// may still result in failure.
(Certainty::Maybe(MaybeCause::Ambiguity), Certainty::Maybe(_))
| (Certainty::Maybe(_), Certainty::Maybe(MaybeCause::Ambiguity)) => {
Certainty::Maybe(MaybeCause::Ambiguity)
}
}
}
}
/// Why we failed to evaluate a goal.
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, TypeFoldable, TypeVisitable)]
pub enum MaybeCause {
/// We failed due to ambiguity. This ambiguity can either
/// be a true ambiguity, i.e. there are multiple different answers,
/// or we hit a case where we just don't bother, e.g. `?x: Trait` goals.
Ambiguity,
/// We gave up due to an overflow, most often by hitting the recursion limit.
Overflow,
}
/// Additional constraints returned on success.
#[derive(Debug, PartialEq, Eq, Clone, Hash, TypeFoldable, TypeVisitable)]
pub struct ExternalConstraints<'tcx> {
// FIXME: implement this.
regions: (),
opaque_types: Vec<(Ty<'tcx>, Ty<'tcx>)>,
}
type CanonicalGoal<'tcx, T = ty::Predicate<'tcx>> = Canonical<'tcx, Goal<'tcx, T>>;
type CanonicalResponse<'tcx> = Canonical<'tcx, Response<'tcx>>;
/// The result of evaluating a canonical query.
///
/// FIXME: We use a different type than the existing canonical queries. This is because
/// we need to add a `Certainty` for `overflow` and may want to restructure this code without
/// having to worry about changes to currently used code. Once we've made progress on this
/// solver, merge the two responses again.
pub type QueryResult<'tcx> = Result<CanonicalResponse<'tcx>, NoSolution>;
pub trait TyCtxtExt<'tcx> {
fn evaluate_goal(self, goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx>;
}
impl<'tcx> TyCtxtExt<'tcx> for TyCtxt<'tcx> {
fn evaluate_goal(self, goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx> {
let mut cx = EvalCtxt::new(self);
cx.evaluate_canonical_goal(goal)
}
}
struct EvalCtxt<'tcx> {
tcx: TyCtxt<'tcx>,
provisional_cache: cache::ProvisionalCache<'tcx>,
overflow_data: overflow::OverflowData,
}
impl<'tcx> EvalCtxt<'tcx> {
fn new(tcx: TyCtxt<'tcx>) -> EvalCtxt<'tcx> {
EvalCtxt {
tcx,
provisional_cache: cache::ProvisionalCache::empty(),
overflow_data: overflow::OverflowData::new(tcx),
}
}
/// Recursively evaluates `goal`, returning whether any inference vars have
/// been constrained and the certainty of the result.
fn evaluate_goal(
&mut self,
infcx: &InferCtxt<'tcx>,
goal: Goal<'tcx, ty::Predicate<'tcx>>,
) -> Result<(bool, Certainty), NoSolution> {
let mut orig_values = OriginalQueryValues::default();
let canonical_goal = infcx.canonicalize_query(goal, &mut orig_values);
let canonical_response = self.evaluate_canonical_goal(canonical_goal)?;
Ok((
true, // FIXME: check whether `var_values` are an identity substitution.
fixme_instantiate_canonical_query_response(infcx, &orig_values, canonical_response),
))
}
fn evaluate_canonical_goal(&mut self, goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx> {
match self.try_push_stack(goal) {
Ok(()) => {}
// Our goal is already on the stack, eager return.
Err(response) => return response,
}
// We may have to repeatedly recompute the goal in case of coinductive cycles,
// check out the `cache` module for more information.
//
// FIXME: Similar to `evaluate_all`, this has to check for overflow.
loop {
let result = self.compute_goal(goal);
// FIXME: `Response` should be `Copy`
if self.try_finalize_goal(goal, result.clone()) {
return result;
}
}
}
fn compute_goal(&mut self, canonical_goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx> {
// WARNING: We're looking at a canonical value without instantiating it here.
//
// We have to be incredibly careful to not change the order of bound variables or
// remove any. As we go from `Goal<'tcx, Predicate>` to `Goal` with the variants
// of `PredicateKind` this is the case and it is and faster than instantiating and
// recanonicalizing.
let Goal { param_env, predicate } = canonical_goal.value;
if let Some(kind) = predicate.kind().no_bound_vars() {
match kind {
ty::PredicateKind::Clause(ty::Clause::Trait(predicate)) => self.compute_trait_goal(
canonical_goal.unchecked_rebind(Goal { param_env, predicate }),
),
ty::PredicateKind::Clause(ty::Clause::Projection(predicate)) => self
.compute_projection_goal(
canonical_goal.unchecked_rebind(Goal { param_env, predicate }),
),
ty::PredicateKind::Clause(ty::Clause::TypeOutlives(predicate)) => self
.compute_type_outlives_goal(
canonical_goal.unchecked_rebind(Goal { param_env, predicate }),
),
ty::PredicateKind::Clause(ty::Clause::RegionOutlives(predicate)) => self
.compute_region_outlives_goal(
canonical_goal.unchecked_rebind(Goal { param_env, predicate }),
),
// FIXME: implement these predicates :)
ty::PredicateKind::WellFormed(_)
| ty::PredicateKind::ObjectSafe(_)
| ty::PredicateKind::ClosureKind(_, _, _)
| ty::PredicateKind::Subtype(_)
| ty::PredicateKind::Coerce(_)
| ty::PredicateKind::ConstEvaluatable(_)
| ty::PredicateKind::ConstEquate(_, _)
| ty::PredicateKind::TypeWellFormedFromEnv(_)
| ty::PredicateKind::Ambiguous => unimplemented!(),
}
} else {
let (infcx, goal, var_values) =
self.tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &canonical_goal);
let kind = infcx.replace_bound_vars_with_placeholders(goal.predicate.kind());
let goal = goal.with(self.tcx, ty::Binder::dummy(kind));
let (_, certainty) = self.evaluate_goal(&infcx, goal)?;
infcx.make_canonical_response(var_values, certainty)
}
}
fn compute_type_outlives_goal(
&mut self,
_goal: CanonicalGoal<'tcx, TypeOutlivesPredicate<'tcx>>,
) -> QueryResult<'tcx> {
todo!()
}
fn compute_region_outlives_goal(
&mut self,
_goal: CanonicalGoal<'tcx, RegionOutlivesPredicate<'tcx>>,
) -> QueryResult<'tcx> {
todo!()
}
}
impl<'tcx> EvalCtxt<'tcx> {
fn evaluate_all(
&mut self,
infcx: &InferCtxt<'tcx>,
mut goals: Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
) -> Result<Certainty, NoSolution> {
let mut new_goals = Vec::new();
self.repeat_while_none(|this| {
let mut has_changed = Err(Certainty::Yes);
for goal in goals.drain(..) {
let (changed, certainty) = match this.evaluate_goal(infcx, goal) {
Ok(result) => result,
Err(NoSolution) => return Some(Err(NoSolution)),
};
if changed {
has_changed = Ok(());
}
match certainty {
Certainty::Yes => {}
Certainty::Maybe(_) => {
new_goals.push(goal);
has_changed = has_changed.map_err(|c| c.unify_and(certainty));
}
}
}
match has_changed {
Ok(()) => {
mem::swap(&mut new_goals, &mut goals);
None
}
Err(certainty) => Some(Ok(certainty)),
}
})
}
}
fn fixme_instantiate_canonical_query_response<'tcx>(
_: &InferCtxt<'tcx>,
_: &OriginalQueryValues<'tcx>,
_: CanonicalResponse<'tcx>,
) -> Certainty {
unimplemented!()
}
|