1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
#![allow(warnings)]
use rustc_hir::def::DefKind;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_infer::infer::InferCtxt;
use rustc_middle::mir::abstract_const::{Node, NodeId};
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::{self, Rvalue, StatementKind, TerminatorKind};
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, TyCtxt, TypeFoldable};
use rustc_session::lint;
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_span::Span;
pub fn is_const_evaluatable<'cx, 'tcx>(
infcx: &InferCtxt<'cx, 'tcx>,
def: ty::WithOptConstParam<DefId>,
substs: SubstsRef<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> Result<(), ErrorHandled> {
debug!("is_const_evaluatable({:?}, {:?})", def, substs);
if infcx.tcx.features().const_evaluatable_checked {
if let Some(ct) = AbstractConst::new(infcx.tcx, def, substs) {
for pred in param_env.caller_bounds() {
match pred.skip_binders() {
ty::PredicateAtom::ConstEvaluatable(b_def, b_substs) => {
debug!("is_const_evaluatable: caller_bound={:?}, {:?}", b_def, b_substs);
if b_def == def && b_substs == substs {
debug!("is_const_evaluatable: caller_bound ~~> ok");
return Ok(());
} else if AbstractConst::new(infcx.tcx, b_def, b_substs)
.map_or(false, |b_ct| try_unify(infcx.tcx, ct, b_ct))
{
debug!("is_const_evaluatable: abstract_const ~~> ok");
return Ok(());
}
}
_ => {} // don't care
}
}
}
}
let future_compat_lint = || {
if let Some(local_def_id) = def.did.as_local() {
infcx.tcx.struct_span_lint_hir(
lint::builtin::CONST_EVALUATABLE_UNCHECKED,
infcx.tcx.hir().local_def_id_to_hir_id(local_def_id),
span,
|err| {
err.build("cannot use constants which depend on generic parameters in types")
.emit();
},
);
}
};
// FIXME: We should only try to evaluate a given constant here if it is fully concrete
// as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`.
//
// We previously did not check this, so we only emit a future compat warning if
// const evaluation succeeds and the given constant is still polymorphic for now
// and hopefully soon change this to an error.
//
// See #74595 for more details about this.
let concrete = infcx.const_eval_resolve(param_env, def, substs, None, Some(span));
if concrete.is_ok() && substs.has_param_types_or_consts() {
match infcx.tcx.def_kind(def.did) {
DefKind::AnonConst => {
let mir_body = if let Some(def) = def.as_const_arg() {
infcx.tcx.optimized_mir_of_const_arg(def)
} else {
infcx.tcx.optimized_mir(def.did)
};
if mir_body.is_polymorphic {
future_compat_lint();
}
}
_ => future_compat_lint(),
}
}
debug!(?concrete, "is_const_evaluatable");
concrete.map(drop)
}
/// A tree representing an anonymous constant.
///
/// This is only able to represent a subset of `MIR`,
/// and should not leak any information about desugarings.
#[derive(Clone, Copy)]
pub struct AbstractConst<'tcx> {
// FIXME: Consider adding something like `IndexSlice`
// and use this here.
inner: &'tcx [Node<'tcx>],
substs: SubstsRef<'tcx>,
}
impl AbstractConst<'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
def: ty::WithOptConstParam<DefId>,
substs: SubstsRef<'tcx>,
) -> Option<AbstractConst<'tcx>> {
let inner = match (def.did.as_local(), def.const_param_did) {
(Some(did), Some(param_did)) => {
tcx.mir_abstract_const_of_const_arg((did, param_did))?
}
_ => tcx.mir_abstract_const(def.did)?,
};
Some(AbstractConst { inner, substs })
}
#[inline]
pub fn subtree(self, node: NodeId) -> AbstractConst<'tcx> {
AbstractConst { inner: &self.inner[..=node.index()], substs: self.substs }
}
#[inline]
pub fn root(self) -> Node<'tcx> {
self.inner.last().copied().unwrap()
}
}
struct AbstractConstBuilder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
body: &'a mir::Body<'tcx>,
nodes: IndexVec<NodeId, Node<'tcx>>,
locals: IndexVec<mir::Local, NodeId>,
checked_op_locals: BitSet<mir::Local>,
}
impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> {
fn new(tcx: TyCtxt<'tcx>, body: &'a mir::Body<'tcx>) -> Option<AbstractConstBuilder<'a, 'tcx>> {
if body.is_cfg_cyclic() {
return None;
}
Some(AbstractConstBuilder {
tcx,
body,
nodes: IndexVec::new(),
locals: IndexVec::from_elem(NodeId::MAX, &body.local_decls),
checked_op_locals: BitSet::new_empty(body.local_decls.len()),
})
}
fn operand_to_node(&mut self, op: &mir::Operand<'tcx>) -> Option<NodeId> {
debug!("operand_to_node: op={:?}", op);
const ZERO_FIELD: mir::Field = mir::Field::from_usize(0);
match op {
mir::Operand::Copy(p) | mir::Operand::Move(p) => {
if let Some(p) = p.as_local() {
debug_assert!(!self.checked_op_locals.contains(p));
Some(self.locals[p])
} else if let &[mir::ProjectionElem::Field(ZERO_FIELD, _)] = p.projection.as_ref() {
// Only allow field accesses on the result of checked operations.
if self.checked_op_locals.contains(p.local) {
Some(self.locals[p.local])
} else {
None
}
} else {
None
}
}
mir::Operand::Constant(ct) => Some(self.nodes.push(Node::Leaf(ct.literal))),
}
}
/// We do not allow all binary operations in abstract consts, so filter disallowed ones.
fn check_binop(op: mir::BinOp) -> bool {
use mir::BinOp::*;
match op {
Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le
| Ne | Ge | Gt => true,
Offset => false,
}
}
/// While we currently allow all unary operations, we still want to explicitly guard against
/// future changes here.
fn check_unop(op: mir::UnOp) -> bool {
use mir::UnOp::*;
match op {
Not | Neg => true,
}
}
fn build_statement(&mut self, stmt: &mir::Statement<'tcx>) -> Option<()> {
debug!("AbstractConstBuilder: stmt={:?}", stmt);
match stmt.kind {
StatementKind::Assign(box (ref place, ref rvalue)) => {
let local = place.as_local()?;
match *rvalue {
Rvalue::Use(ref operand) => {
self.locals[local] = self.operand_to_node(operand)?;
Some(())
}
Rvalue::BinaryOp(op, ref lhs, ref rhs) if Self::check_binop(op) => {
let lhs = self.operand_to_node(lhs)?;
let rhs = self.operand_to_node(rhs)?;
self.locals[local] = self.nodes.push(Node::Binop(op, lhs, rhs));
if op.is_checkable() {
bug!("unexpected unchecked checkable binary operation");
} else {
Some(())
}
}
Rvalue::CheckedBinaryOp(op, ref lhs, ref rhs) if Self::check_binop(op) => {
let lhs = self.operand_to_node(lhs)?;
let rhs = self.operand_to_node(rhs)?;
self.locals[local] = self.nodes.push(Node::Binop(op, lhs, rhs));
self.checked_op_locals.insert(local);
Some(())
}
Rvalue::UnaryOp(op, ref operand) if Self::check_unop(op) => {
let operand = self.operand_to_node(operand)?;
self.locals[local] = self.nodes.push(Node::UnaryOp(op, operand));
Some(())
}
_ => None,
}
}
// These are not actually relevant for us here, so we can ignore them.
StatementKind::StorageLive(_) | StatementKind::StorageDead(_) => Some(()),
_ => None,
}
}
fn build_terminator(
&mut self,
terminator: &mir::Terminator<'tcx>,
) -> Option<Option<mir::BasicBlock>> {
debug!("AbstractConstBuilder: terminator={:?}", terminator);
match terminator.kind {
TerminatorKind::Goto { target } => Some(Some(target)),
TerminatorKind::Return => Some(None),
TerminatorKind::Assert { ref cond, expected: false, target, .. } => {
let p = match cond {
mir::Operand::Copy(p) | mir::Operand::Move(p) => p,
mir::Operand::Constant(_) => bug!("Unexpected assert"),
};
const ONE_FIELD: mir::Field = mir::Field::from_usize(1);
debug!("proj: {:?}", p.projection);
if let &[mir::ProjectionElem::Field(ONE_FIELD, _)] = p.projection.as_ref() {
// Only allow asserts checking the result of a checked operation.
if self.checked_op_locals.contains(p.local) {
return Some(Some(target));
}
}
None
}
_ => None,
}
}
fn build(mut self) -> Option<&'tcx [Node<'tcx>]> {
let mut block = &self.body.basic_blocks()[mir::START_BLOCK];
loop {
debug!("AbstractConstBuilder: block={:?}", block);
for stmt in block.statements.iter() {
self.build_statement(stmt)?;
}
if let Some(next) = self.build_terminator(block.terminator())? {
block = &self.body.basic_blocks()[next];
} else {
return Some(self.tcx.arena.alloc_from_iter(self.nodes));
}
}
}
}
/// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead.
pub(super) fn mir_abstract_const<'tcx>(
tcx: TyCtxt<'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
) -> Option<&'tcx [Node<'tcx>]> {
if tcx.features().const_evaluatable_checked {
let body = tcx.mir_const(def).borrow();
AbstractConstBuilder::new(tcx, &body)?.build()
} else {
None
}
}
pub(super) fn try_unify_abstract_consts<'tcx>(
tcx: TyCtxt<'tcx>,
((a, a_substs), (b, b_substs)): (
(ty::WithOptConstParam<DefId>, SubstsRef<'tcx>),
(ty::WithOptConstParam<DefId>, SubstsRef<'tcx>),
),
) -> bool {
if let Some(a) = AbstractConst::new(tcx, a, a_substs) {
if let Some(b) = AbstractConst::new(tcx, b, b_substs) {
return try_unify(tcx, a, b);
}
}
false
}
pub(super) fn try_unify<'tcx>(
tcx: TyCtxt<'tcx>,
a: AbstractConst<'tcx>,
b: AbstractConst<'tcx>,
) -> bool {
match (a.root(), b.root()) {
(Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
let a_ct = a_ct.subst(tcx, a.substs);
let b_ct = b_ct.subst(tcx, b.substs);
match (a_ct.val, b_ct.val) {
(ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
a_param == b_param
}
(ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
// If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
// we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
// means that we can't do anything with inference variables here.
(ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => false,
// FIXME(const_evaluatable_checked): We may want to either actually try
// to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like
// this, for now we just return false here.
_ => false,
}
}
(Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
try_unify(tcx, a.subtree(al), b.subtree(bl))
&& try_unify(tcx, a.subtree(ar), b.subtree(br))
}
(Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
try_unify(tcx, a.subtree(av), b.subtree(bv))
}
(Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
if a_args.len() == b_args.len() =>
{
try_unify(tcx, a.subtree(a_f), b.subtree(b_f))
&& a_args
.iter()
.zip(b_args)
.all(|(&an, &bn)| try_unify(tcx, a.subtree(an), b.subtree(bn)))
}
_ => false,
}
}
|