1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
use std::collections::VecDeque;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
use rustc_hir::LangItem;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::PolyTraitObligation;
pub use rustc_infer::traits::util::*;
use rustc_middle::bug;
use rustc_middle::ty::fast_reject::DeepRejectCtxt;
use rustc_middle::ty::{
self, PolyTraitPredicate, SizedTraitKind, TraitPredicate, TraitRef, Ty, TyCtxt, TypeFoldable,
TypeFolder, TypeSuperFoldable, TypeVisitableExt,
};
pub use rustc_next_trait_solver::placeholder::BoundVarReplacer;
use rustc_span::Span;
use smallvec::{SmallVec, smallvec};
use tracing::debug;
/// Return the trait and projection predicates that come from eagerly expanding the
/// trait aliases in the list of clauses. For each trait predicate, record a stack
/// of spans that trace from the user-written trait alias bound. For projection predicates,
/// just record the span of the projection itself.
///
/// For trait aliases, we don't deduplicte the predicates, since we currently do not
/// consider duplicated traits as a single trait for the purposes of our "one trait principal"
/// restriction; however, for projections we do deduplicate them.
///
/// ```rust,ignore (fails)
/// trait Bar {}
/// trait Foo = Bar + Bar;
///
/// let dyn_incompatible: dyn Foo; // bad, two `Bar` principals.
/// ```
pub fn expand_trait_aliases<'tcx>(
tcx: TyCtxt<'tcx>,
clauses: impl IntoIterator<Item = (ty::Clause<'tcx>, Span)>,
) -> (
Vec<(ty::PolyTraitPredicate<'tcx>, SmallVec<[Span; 1]>)>,
Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>,
) {
let mut trait_preds = vec![];
let mut projection_preds = vec![];
let mut seen_projection_preds = FxHashSet::default();
let mut queue: VecDeque<_> = clauses.into_iter().map(|(p, s)| (p, smallvec![s])).collect();
while let Some((clause, spans)) = queue.pop_front() {
match clause.kind().skip_binder() {
ty::ClauseKind::Trait(trait_pred) => {
if tcx.is_trait_alias(trait_pred.def_id()) {
queue.extend(
tcx.explicit_super_predicates_of(trait_pred.def_id())
.iter_identity_copied()
.map(|(super_clause, span)| {
let mut spans = spans.clone();
spans.push(span);
(
super_clause.instantiate_supertrait(
tcx,
clause.kind().rebind(trait_pred.trait_ref),
),
spans,
)
}),
);
} else {
trait_preds.push((clause.kind().rebind(trait_pred), spans));
}
}
ty::ClauseKind::Projection(projection_pred) => {
let projection_pred = clause.kind().rebind(projection_pred);
if !seen_projection_preds.insert(tcx.anonymize_bound_vars(projection_pred)) {
continue;
}
projection_preds.push((projection_pred, *spans.last().unwrap()));
}
ty::ClauseKind::RegionOutlives(..)
| ty::ClauseKind::TypeOutlives(..)
| ty::ClauseKind::ConstArgHasType(_, _)
| ty::ClauseKind::WellFormed(_)
| ty::ClauseKind::ConstEvaluatable(_)
| ty::ClauseKind::HostEffect(..) => {}
}
}
(trait_preds, projection_preds)
}
///////////////////////////////////////////////////////////////////////////
// Other
///////////////////////////////////////////////////////////////////////////
/// Casts a trait reference into a reference to one of its super
/// traits; returns `None` if `target_trait_def_id` is not a
/// supertrait.
pub fn upcast_choices<'tcx>(
tcx: TyCtxt<'tcx>,
source_trait_ref: ty::PolyTraitRef<'tcx>,
target_trait_def_id: DefId,
) -> Vec<ty::PolyTraitRef<'tcx>> {
if source_trait_ref.def_id() == target_trait_def_id {
return vec![source_trait_ref]; // Shortcut the most common case.
}
supertraits(tcx, source_trait_ref).filter(|r| r.def_id() == target_trait_def_id).collect()
}
pub(crate) fn closure_trait_ref_and_return_type<'tcx>(
tcx: TyCtxt<'tcx>,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::PolyFnSig<'tcx>,
tuple_arguments: TupleArgumentsFlag,
) -> ty::Binder<'tcx, (ty::TraitRef<'tcx>, Ty<'tcx>)> {
assert!(!self_ty.has_escaping_bound_vars());
let arguments_tuple = match tuple_arguments {
TupleArgumentsFlag::No => sig.skip_binder().inputs()[0],
TupleArgumentsFlag::Yes => Ty::new_tup(tcx, sig.skip_binder().inputs()),
};
let trait_ref = ty::TraitRef::new(tcx, fn_trait_def_id, [self_ty, arguments_tuple]);
sig.map_bound(|sig| (trait_ref, sig.output()))
}
pub(crate) fn coroutine_trait_ref_and_outputs<'tcx>(
tcx: TyCtxt<'tcx>,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::GenSig<TyCtxt<'tcx>>,
) -> (ty::TraitRef<'tcx>, Ty<'tcx>, Ty<'tcx>) {
assert!(!self_ty.has_escaping_bound_vars());
let trait_ref = ty::TraitRef::new(tcx, fn_trait_def_id, [self_ty, sig.resume_ty]);
(trait_ref, sig.yield_ty, sig.return_ty)
}
pub(crate) fn future_trait_ref_and_outputs<'tcx>(
tcx: TyCtxt<'tcx>,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::GenSig<TyCtxt<'tcx>>,
) -> (ty::TraitRef<'tcx>, Ty<'tcx>) {
assert!(!self_ty.has_escaping_bound_vars());
let trait_ref = ty::TraitRef::new(tcx, fn_trait_def_id, [self_ty]);
(trait_ref, sig.return_ty)
}
pub(crate) fn iterator_trait_ref_and_outputs<'tcx>(
tcx: TyCtxt<'tcx>,
iterator_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::GenSig<TyCtxt<'tcx>>,
) -> (ty::TraitRef<'tcx>, Ty<'tcx>) {
assert!(!self_ty.has_escaping_bound_vars());
let trait_ref = ty::TraitRef::new(tcx, iterator_def_id, [self_ty]);
(trait_ref, sig.yield_ty)
}
pub(crate) fn async_iterator_trait_ref_and_outputs<'tcx>(
tcx: TyCtxt<'tcx>,
async_iterator_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::GenSig<TyCtxt<'tcx>>,
) -> (ty::TraitRef<'tcx>, Ty<'tcx>) {
assert!(!self_ty.has_escaping_bound_vars());
let trait_ref = ty::TraitRef::new(tcx, async_iterator_def_id, [self_ty]);
(trait_ref, sig.yield_ty)
}
pub fn impl_item_is_final(tcx: TyCtxt<'_>, assoc_item: &ty::AssocItem) -> bool {
assoc_item.defaultness(tcx).is_final()
&& tcx.defaultness(assoc_item.container_id(tcx)).is_final()
}
pub(crate) enum TupleArgumentsFlag {
Yes,
No,
}
/// Executes `f` on `value` after replacing all escaping bound variables with placeholders
/// and then replaces these placeholders with the original bound variables in the result.
///
/// In most places, bound variables should be replaced right when entering a binder, making
/// this function unnecessary. However, normalization currently does not do that, so we have
/// to do this lazily.
///
/// You should not add any additional uses of this function, at least not without first
/// discussing it with t-types.
///
/// FIXME(@lcnr): We may even consider experimenting with eagerly replacing bound vars during
/// normalization as well, at which point this function will be unnecessary and can be removed.
pub fn with_replaced_escaping_bound_vars<
'a,
'tcx,
T: TypeFoldable<TyCtxt<'tcx>>,
R: TypeFoldable<TyCtxt<'tcx>>,
>(
infcx: &'a InferCtxt<'tcx>,
universe_indices: &'a mut Vec<Option<ty::UniverseIndex>>,
value: T,
f: impl FnOnce(T) -> R,
) -> R {
if value.has_escaping_bound_vars() {
let (value, mapped_regions, mapped_types, mapped_consts) =
BoundVarReplacer::replace_bound_vars(infcx, universe_indices, value);
let result = f(value);
PlaceholderReplacer::replace_placeholders(
infcx,
mapped_regions,
mapped_types,
mapped_consts,
universe_indices,
result,
)
} else {
f(value)
}
}
/// The inverse of [`BoundVarReplacer`]: replaces placeholders with the bound vars from which they came.
pub struct PlaceholderReplacer<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
mapped_regions: FxIndexMap<ty::PlaceholderRegion, ty::BoundRegion>,
mapped_types: FxIndexMap<ty::PlaceholderType, ty::BoundTy>,
mapped_consts: FxIndexMap<ty::PlaceholderConst, ty::BoundVar>,
universe_indices: &'a [Option<ty::UniverseIndex>],
current_index: ty::DebruijnIndex,
}
impl<'a, 'tcx> PlaceholderReplacer<'a, 'tcx> {
pub fn replace_placeholders<T: TypeFoldable<TyCtxt<'tcx>>>(
infcx: &'a InferCtxt<'tcx>,
mapped_regions: FxIndexMap<ty::PlaceholderRegion, ty::BoundRegion>,
mapped_types: FxIndexMap<ty::PlaceholderType, ty::BoundTy>,
mapped_consts: FxIndexMap<ty::PlaceholderConst, ty::BoundVar>,
universe_indices: &'a [Option<ty::UniverseIndex>],
value: T,
) -> T {
let mut replacer = PlaceholderReplacer {
infcx,
mapped_regions,
mapped_types,
mapped_consts,
universe_indices,
current_index: ty::INNERMOST,
};
value.fold_with(&mut replacer)
}
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for PlaceholderReplacer<'_, 'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
&mut self,
t: ty::Binder<'tcx, T>,
) -> ty::Binder<'tcx, T> {
if !t.has_placeholders() && !t.has_infer() {
return t;
}
self.current_index.shift_in(1);
let t = t.super_fold_with(self);
self.current_index.shift_out(1);
t
}
fn fold_region(&mut self, r0: ty::Region<'tcx>) -> ty::Region<'tcx> {
let r1 = match r0.kind() {
ty::ReVar(vid) => self
.infcx
.inner
.borrow_mut()
.unwrap_region_constraints()
.opportunistic_resolve_var(self.infcx.tcx, vid),
_ => r0,
};
let r2 = match r1.kind() {
ty::RePlaceholder(p) => {
let replace_var = self.mapped_regions.get(&p);
match replace_var {
Some(replace_var) => {
let index = self
.universe_indices
.iter()
.position(|u| matches!(u, Some(pu) if *pu == p.universe))
.unwrap_or_else(|| bug!("Unexpected placeholder universe."));
let db = ty::DebruijnIndex::from_usize(
self.universe_indices.len() - index + self.current_index.as_usize() - 1,
);
ty::Region::new_bound(self.cx(), db, *replace_var)
}
None => r1,
}
}
_ => r1,
};
debug!(?r0, ?r1, ?r2, "fold_region");
r2
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
let ty = self.infcx.shallow_resolve(ty);
match *ty.kind() {
ty::Placeholder(p) => {
let replace_var = self.mapped_types.get(&p);
match replace_var {
Some(replace_var) => {
let index = self
.universe_indices
.iter()
.position(|u| matches!(u, Some(pu) if *pu == p.universe))
.unwrap_or_else(|| bug!("Unexpected placeholder universe."));
let db = ty::DebruijnIndex::from_usize(
self.universe_indices.len() - index + self.current_index.as_usize() - 1,
);
Ty::new_bound(self.infcx.tcx, db, *replace_var)
}
None => {
if ty.has_infer() {
ty.super_fold_with(self)
} else {
ty
}
}
}
}
_ if ty.has_placeholders() || ty.has_infer() => ty.super_fold_with(self),
_ => ty,
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
let ct = self.infcx.shallow_resolve_const(ct);
if let ty::ConstKind::Placeholder(p) = ct.kind() {
let replace_var = self.mapped_consts.get(&p);
match replace_var {
Some(replace_var) => {
let index = self
.universe_indices
.iter()
.position(|u| matches!(u, Some(pu) if *pu == p.universe))
.unwrap_or_else(|| bug!("Unexpected placeholder universe."));
let db = ty::DebruijnIndex::from_usize(
self.universe_indices.len() - index + self.current_index.as_usize() - 1,
);
ty::Const::new_bound(self.infcx.tcx, db, *replace_var)
}
None => {
if ct.has_infer() {
ct.super_fold_with(self)
} else {
ct
}
}
}
} else {
ct.super_fold_with(self)
}
}
}
pub fn sizedness_fast_path<'tcx>(tcx: TyCtxt<'tcx>, predicate: ty::Predicate<'tcx>) -> bool {
// Proving `Sized`/`MetaSized`, very often on "obviously sized" types like
// `&T`, accounts for about 60% percentage of the predicates we have to prove. No need to
// canonicalize and all that for such cases.
if let ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)) =
predicate.kind().skip_binder()
&& trait_pred.polarity == ty::PredicatePolarity::Positive
{
let sizedness = match tcx.as_lang_item(trait_pred.def_id()) {
Some(LangItem::Sized) => SizedTraitKind::Sized,
Some(LangItem::MetaSized) => SizedTraitKind::MetaSized,
_ => return false,
};
if trait_pred.self_ty().has_trivial_sizedness(tcx, sizedness) {
debug!("fast path -- trivial sizedness");
return true;
}
}
false
}
/// To improve performance, sizedness traits are not elaborated and so special-casing is required
/// in the trait solver to find a `Sized` candidate for a `MetaSized` obligation. Returns the
/// predicate to used in the candidate for such a `obligation`, given a `candidate`.
pub(crate) fn lazily_elaborate_sizedness_candidate<'tcx>(
infcx: &InferCtxt<'tcx>,
obligation: &PolyTraitObligation<'tcx>,
candidate: PolyTraitPredicate<'tcx>,
) -> PolyTraitPredicate<'tcx> {
if !infcx.tcx.is_lang_item(obligation.predicate.def_id(), LangItem::MetaSized)
|| !infcx.tcx.is_lang_item(candidate.def_id(), LangItem::Sized)
{
return candidate;
}
if obligation.predicate.polarity() != candidate.polarity() {
return candidate;
}
let drcx = DeepRejectCtxt::relate_rigid_rigid(infcx.tcx);
if !drcx.args_may_unify(
obligation.predicate.skip_binder().trait_ref.args,
candidate.skip_binder().trait_ref.args,
) {
return candidate;
}
candidate.map_bound(|c| TraitPredicate {
trait_ref: TraitRef::new_from_args(
infcx.tcx,
obligation.predicate.def_id(),
c.trait_ref.args,
),
polarity: c.polarity,
})
}
|