about summary refs log tree commit diff
path: root/compiler/rustc_ty_utils/src/layout_naive.rs
blob: 3070ab59d531d32e3672af2aaaaae9d7e07271d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
    IntegerExt, LayoutCx, LayoutError, LayoutOf, NaiveAbi, NaiveLayout, NaiveNiches,
    TyAndNaiveLayout,
};
use rustc_middle::ty::{self, ReprOptions, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::DUMMY_SP;
use rustc_target::abi::*;

use std::ops::Bound;

use crate::layout::{compute_array_count, ptr_metadata_scalar};

pub fn provide(providers: &mut Providers) {
    *providers = Providers { naive_layout_of, ..*providers };
}

#[instrument(skip(tcx, query), level = "debug")]
fn naive_layout_of<'tcx>(
    tcx: TyCtxt<'tcx>,
    query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> Result<TyAndNaiveLayout<'tcx>, &'tcx LayoutError<'tcx>> {
    let (param_env, ty) = query.into_parts();
    debug!(?ty);

    let param_env = param_env.with_reveal_all_normalized(tcx);
    let unnormalized_ty = ty;

    // FIXME: We might want to have two different versions of `layout_of`:
    // One that can be called after typecheck has completed and can use
    // `normalize_erasing_regions` here and another one that can be called
    // before typecheck has completed and uses `try_normalize_erasing_regions`.
    let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
        Ok(t) => t,
        Err(normalization_error) => {
            return Err(tcx
                .arena
                .alloc(LayoutError::NormalizationFailure(ty, normalization_error)));
        }
    };

    if ty != unnormalized_ty {
        // Ensure this layout is also cached for the normalized type.
        return tcx.naive_layout_of(param_env.and(ty));
    }

    let cx = LayoutCx { tcx, param_env };
    let layout = naive_layout_of_uncached(&cx, ty)?;
    Ok(TyAndNaiveLayout { ty, layout })
}

fn error<'tcx>(
    cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
    err: LayoutError<'tcx>,
) -> &'tcx LayoutError<'tcx> {
    cx.tcx.arena.alloc(err)
}

fn naive_layout_of_uncached<'tcx>(
    cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
    ty: Ty<'tcx>,
) -> Result<NaiveLayout, &'tcx LayoutError<'tcx>> {
    let tcx = cx.tcx;
    let dl = cx.data_layout();

    let scalar = |niched: bool, value: Primitive| NaiveLayout {
        abi: NaiveAbi::Scalar(value),
        niches: if niched { NaiveNiches::Some } else { NaiveNiches::None },
        size: value.size(dl),
        align: value.align(dl).abi,
        exact: true,
    };

    let univariant = |fields: &mut dyn Iterator<Item = Ty<'tcx>>,
                      repr: &ReprOptions|
     -> Result<NaiveLayout, &'tcx LayoutError<'tcx>> {
        if repr.pack.is_some() && repr.align.is_some() {
            cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
            return Err(error(cx, LayoutError::Unknown(ty)));
        }

        let linear = repr.inhibit_struct_field_reordering_opt();
        let pack = repr.pack.unwrap_or(Align::MAX);
        let mut layout = NaiveLayout::EMPTY;

        for field in fields {
            let field = cx.naive_layout_of(field)?.packed(pack);
            if linear {
                layout = layout.pad_to_align(field.align);
            }
            layout = layout
                .concat(&field, dl)
                .ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
        }

        if let Some(align) = repr.align {
            layout = layout.align_to(align);
        }

        if linear {
            layout.abi = layout.abi.as_aggregate();
        }

        Ok(layout.pad_to_align(layout.align))
    };

    debug_assert!(!ty.has_non_region_infer());

    Ok(match *ty.kind() {
        // Basic scalars
        ty::Bool => scalar(true, Int(I8, false)),
        ty::Char => scalar(true, Int(I32, false)),
        ty::Int(ity) => scalar(false, Int(Integer::from_int_ty(dl, ity), true)),
        ty::Uint(ity) => scalar(false, Int(Integer::from_uint_ty(dl, ity), false)),
        ty::Float(fty) => scalar(
            false,
            match fty {
                ty::FloatTy::F32 => F32,
                ty::FloatTy::F64 => F64,
            },
        ),
        ty::FnPtr(_) => scalar(true, Pointer(dl.instruction_address_space)),

        // The never type.
        ty::Never => NaiveLayout { abi: NaiveAbi::Uninhabited, ..NaiveLayout::EMPTY },

        // Potentially-wide pointers.
        ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
            let data_ptr = scalar(!ty.is_unsafe_ptr(), Pointer(AddressSpace::DATA));
            if let Some(metadata) = ptr_metadata_scalar(cx, pointee)? {
                // Effectively a (ptr, meta) tuple.
                let meta = scalar(!metadata.is_always_valid(dl), metadata.primitive());
                let l = data_ptr
                    .concat(&meta, dl)
                    .ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
                l.pad_to_align(l.align)
            } else {
                // No metadata, this is a thin pointer.
                data_ptr
            }
        }

        ty::Dynamic(_, _, ty::DynStar) => {
            let ptr = scalar(false, Pointer(AddressSpace::DATA));
            let vtable = scalar(true, Pointer(AddressSpace::DATA));
            ptr.concat(&vtable, dl).ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?
        }

        // Arrays and slices.
        ty::Array(element, count) => {
            let count = compute_array_count(cx, count)
                .ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
            let element = cx.naive_layout_of(element)?;
            NaiveLayout {
                abi: element.abi.as_aggregate(),
                size: element
                    .size
                    .checked_mul(count, cx)
                    .ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?,
                niches: if count == 0 { NaiveNiches::None } else { element.niches },
                ..*element
            }
        }
        ty::Slice(element) => NaiveLayout {
            abi: NaiveAbi::Unsized,
            size: Size::ZERO,
            niches: NaiveNiches::None,
            ..*cx.naive_layout_of(element)?
        },

        ty::FnDef(..) => NaiveLayout::EMPTY,

        // Unsized types.
        ty::Str | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
            NaiveLayout { abi: NaiveAbi::Unsized, ..NaiveLayout::EMPTY }
        }

        // FIXME(reference_niches): try to actually compute a reasonable layout estimate,
        // without duplicating too much code from `generator_layout`.
        ty::Generator(..) => {
            NaiveLayout { exact: false, niches: NaiveNiches::Maybe, ..NaiveLayout::EMPTY }
        }

        ty::Closure(_, ref substs) => {
            univariant(&mut substs.as_closure().upvar_tys(), &ReprOptions::default())?
        }

        ty::Tuple(tys) => univariant(&mut tys.iter(), &ReprOptions::default())?,

        ty::Adt(def, substs) if def.is_union() => {
            assert_eq!(def.variants().len(), 1, "union should have a single variant");
            let repr = def.repr();
            let pack = repr.pack.unwrap_or(Align::MAX);
            if repr.pack.is_some() && repr.align.is_some() {
                cx.tcx.sess.delay_span_bug(DUMMY_SP, "union cannot be packed and aligned");
                return Err(error(cx, LayoutError::Unknown(ty)));
            }

            let mut layout = NaiveLayout {
                // Unions never have niches.
                niches: NaiveNiches::None,
                ..NaiveLayout::EMPTY
            };

            for f in &def.variants()[FIRST_VARIANT].fields {
                let field = cx.naive_layout_of(f.ty(tcx, substs))?;
                layout = layout.union(&field.packed(pack));
            }

            // Unions are always inhabited, and never scalar if `repr(C)`.
            if !matches!(layout.abi, NaiveAbi::Scalar(_)) || repr.inhibit_enum_layout_opt() {
                layout.abi = NaiveAbi::Sized;
            }

            if let Some(align) = repr.align {
                layout = layout.align_to(align);
            }
            layout.pad_to_align(layout.align)
        }

        ty::Adt(def, substs) => {
            let repr = def.repr();
            let mut layout = NaiveLayout {
                // An ADT with no inhabited variants should have an uninhabited ABI.
                abi: NaiveAbi::Uninhabited,
                ..NaiveLayout::EMPTY
            };

            let mut empty_variants = 0;
            for v in def.variants() {
                let mut fields = v.fields.iter().map(|f| f.ty(tcx, substs));
                let vlayout = univariant(&mut fields, &repr)?;

                if vlayout.size == Size::ZERO && vlayout.exact {
                    empty_variants += 1;
                } else {
                    // Remember the niches of the last seen variant.
                    layout.niches = vlayout.niches;
                }

                layout = layout.union(&vlayout);
            }

            if def.is_enum() {
                let may_need_discr = match def.variants().len() {
                    0 | 1 => false,
                    // Simple Option-like niche optimization.
                    // Handling this special case allows enums like `Option<&T>`
                    // to be recognized as `PointerLike` and to be transmutable
                    // in generic contexts.
                    2 if empty_variants == 1 && layout.niches == NaiveNiches::Some => {
                        layout.niches = NaiveNiches::Maybe; // fill up the niche.
                        false
                    }
                    _ => true,
                };

                if may_need_discr || repr.inhibit_enum_layout_opt() {
                    // For simplicity, assume that the discriminant always get niched.
                    // This will be wrong in many cases, which will cause the size (and
                    // sometimes the alignment) to be underestimated.
                    // FIXME(reference_niches): Be smarter here.
                    layout.niches = NaiveNiches::Maybe;
                    layout = layout.inexact();
                }
            } else {
                assert_eq!(def.variants().len(), 1, "struct should have a single variant");

                // We don't compute exact alignment for SIMD structs.
                if repr.simd() {
                    layout = layout.inexact();
                }

                // `UnsafeCell` hides all niches.
                if def.is_unsafe_cell() {
                    layout.niches = NaiveNiches::None;
                }
            }

            let valid_range = tcx.layout_scalar_valid_range(def.did());
            if valid_range != (Bound::Unbounded, Bound::Unbounded) {
                let get = |bound, default| match bound {
                    Bound::Unbounded => default,
                    Bound::Included(v) => v,
                    Bound::Excluded(_) => bug!("exclusive `layout_scalar_valid_range` bound"),
                };

                let valid_range = WrappingRange {
                    start: get(valid_range.0, 0),
                    // FIXME: this is wrong for scalar-pair ABIs. Fortunately, the
                    // only type this could currently affect is`NonNull<T: !Sized>`,
                    // and the `NaiveNiches` result still ends up correct.
                    end: get(valid_range.1, layout.size.unsigned_int_max()),
                };
                assert!(
                    valid_range.is_in_range_for(layout.size),
                    "`layout_scalar_valid_range` values are out of bounds",
                );
                if !valid_range.is_full_for(layout.size) {
                    layout.niches = NaiveNiches::Some;
                }
            }

            layout.pad_to_align(layout.align)
        }

        // Types with no meaningful known layout.
        ty::Alias(..) => {
            // NOTE(eddyb) `layout_of` query should've normalized these away,
            // if that was possible, so there's no reason to try again here.
            return Err(error(cx, LayoutError::Unknown(ty)));
        }

        ty::Bound(..) | ty::GeneratorWitness(..) | ty::GeneratorWitnessMIR(..) | ty::Infer(_) => {
            bug!("Layout::compute: unexpected type `{}`", ty)
        }

        ty::Placeholder(..) | ty::Param(_) | ty::Error(_) => {
            return Err(error(cx, LayoutError::Unknown(ty)));
        }
    })
}