about summary refs log tree commit diff
path: root/doc/rust.md
blob: 3254b3398a5fa68a0e20a55ec8d9e452e650e048 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
% Rust Reference Manual

# Introduction

This document is the reference manual for the Rust programming language. It
provides three kinds of material:

  - Chapters that formally define the language grammar and, for each
    construct, informally describe its semantics and give examples of its
    use.
  - Chapters that informally describe the memory model, concurrency model,
    runtime services, linkage model and debugging facilities.
  - Appendix chapters providing rationale and references to languages that
    influenced the design.

This document does not serve as a tutorial introduction to the
language. Background familiarity with the language is assumed. A separate
[tutorial] document is available to help acquire such background familiarity.

This document also does not serve as a reference to the [core] or [standard]
libraries included in the language distribution. Those libraries are
documented separately by extracting documentation attributes from their
source code.

[tutorial]: tutorial.html
[core]: core/index.html
[standard]: std/index.html

## Disclaimer

Rust is a work in progress. The language continues to evolve as the design
shifts and is fleshed out in working code. Certain parts work, certain parts
do not, certain parts will be removed or changed.

This manual is a snapshot written in the present tense. All features described
exist in working code unless otherwise noted, but some are quite primitive or
remain to be further modified by planned work. Some may be temporary. It is a
*draft*, and we ask that you not take anything you read here as final.

If you have suggestions to make, please try to focus them on *reductions* to
the language: possible features that can be combined or omitted. We aim to
keep the size and complexity of the language under control.

> **Note:** The grammar for Rust given in this document is rough and
> very incomplete; only a modest number of sections have accompanying grammar
> rules. Formalizing the grammar accepted by the Rust parser is ongoing work,
> but future versions of this document will contain a complete
> grammar. Moreover, we hope that this grammar will be extracted and verified
> as LL(1) by an automated grammar-analysis tool, and further tested against the
> Rust sources. Preliminary versions of this automation exist, but are not yet
> complete.

# Notation

Rust's grammar is defined over Unicode codepoints, each conventionally
denoted `U+XXXX`, for 4 or more hexadecimal digits `X`. _Most_ of Rust's
grammar is confined to the ASCII range of Unicode, and is described in this
document by a dialect of Extended Backus-Naur Form (EBNF), specifically a
dialect of EBNF supported by common automated LL(k) parsing tools such as
`llgen`, rather than the dialect given in ISO 14977. The dialect can be
defined self-referentially as follows:

~~~~~~~~ {.ebnf .notation}

grammar : rule + ;
rule    : nonterminal ':' productionrule ';' ;
productionrule : production [ '|' production ] * ;
production : term * ;
term : element repeats ;
element : LITERAL | IDENTIFIER | '[' productionrule ']' ;
repeats : [ '*' | '+' ] NUMBER ? | NUMBER ? | '?' ;

~~~~~~~~

Where:

  - Whitespace in the grammar is ignored.
  - Square brackets are used to group rules.
  - `LITERAL` is a single printable ASCII character, or an escaped hexadecimal
     ASCII code of the form `\xQQ`, in single quotes, denoting the corresponding
     Unicode codepoint `U+00QQ`.
  - `IDENTIFIER` is a nonempty string of ASCII letters and underscores.
  - The `repeat` forms apply to the adjacent `element`, and are as follows:
    - `?` means zero or one repetition
    - `*` means zero or more repetitions
    - `+` means one or more repetitions
    - NUMBER trailing a repeat symbol gives a maximum repetition count
    - NUMBER on its own gives an exact repetition count

This EBNF dialect should hopefully be familiar to many readers.

## Unicode productions

A small number of productions in Rust's grammar permit Unicode codepoints
outside the ASCII range; these productions are defined in terms of character
properties given by the Unicode standard, rather than ASCII-range
codepoints. These are given in the section [Special Unicode
Productions](#special-unicode-productions).

## String table productions

Some rules in the grammar -- notably [unary
operators](#unary-operator-expressions), [binary
operators](#binary-operator-expressions), and [keywords](#keywords) --
are given in a simplified form: as a listing of a table of unquoted,
printable whitespace-separated strings. These cases form a subset of
the rules regarding the [token](#tokens) rule, and are assumed to be
the result of a lexical-analysis phase feeding the parser, driven by a
DFA, operating over the disjunction of all such string table entries.

When such a string enclosed in double-quotes (`"`) occurs inside the
grammar, it is an implicit reference to a single member of such a string table
production. See [tokens](#tokens) for more information.


# Lexical structure

## Input format

Rust input is interpreted as a sequence of Unicode codepoints encoded in UTF-8,
normalized to Unicode normalization form NFKC.
Most Rust grammar rules are defined in terms of printable ASCII-range codepoints,
but a small number are defined in terms of Unicode properties or explicit codepoint lists.
^[Substitute definitions for the special Unicode productions are provided to the grammar verifier, restricted to ASCII range, when verifying the grammar in this document.]

## Special Unicode Productions

The following productions in the Rust grammar are defined in terms of Unicode properties:
`ident`, `non_null`, `non_star`, `non_eol`, `non_slash`, `non_single_quote` and `non_double_quote`.

### Identifiers

The `ident` production is any nonempty Unicode string of the following form:

   - The first character has property `XID_start`
   - The remaining characters have property `XID_continue`

that does _not_ occur in the set of [keywords](#keywords).

Note: `XID_start` and `XID_continue` as character properties cover the
character ranges used to form the more familiar C and Java language-family
identifiers.

### Delimiter-restricted productions

Some productions are defined by exclusion of particular Unicode characters:

  - `non_null` is any single Unicode character aside from `U+0000` (null)
  - `non_eol` is `non_null` restricted to exclude `U+000A` (`'\n'`)
  - `non_star` is `non_null` restricted to exclude `U+002A` (`*`)
  - `non_slash` is `non_null` restricted to exclude `U+002F` (`/`)
  - `non_single_quote` is `non_null` restricted to exclude `U+0027`  (`'`)
  - `non_double_quote` is `non_null` restricted to exclude `U+0022` (`"`)

## Comments

~~~~~~~~ {.ebnf .gram}
comment : block_comment | line_comment ;
block_comment : "/*" block_comment_body * "*/" ;
block_comment_body : non_star * | '*' non_slash ;
line_comment : "//" non_eol * ;
~~~~~~~~

Comments in Rust code follow the general C++ style of line and block-comment forms,
with no nesting of block-comment delimiters.

Line comments beginning with _three_ slashes (`///`),
and block comments beginning with a repeated asterisk in the block-open sequence (`/**`),
are interpreted as a special syntax for `doc` [attributes](#attributes).
That is, they are equivalent to writing `#[doc "..."]` around the comment's text.

Non-doc comments are interpreted as a form of whitespace.

## Whitespace

~~~~~~~~ {.ebnf .gram}
whitespace_char : '\x20' | '\x09' | '\x0a' | '\x0d' ;
whitespace : [ whitespace_char | comment ] + ;
~~~~~~~~

The `whitespace_char` production is any nonempty Unicode string consisting of any
of the following Unicode characters: `U+0020` (space, `' '`), `U+0009` (tab,
`'\t'`), `U+000A` (LF, `'\n'`), `U+000D` (CR, `'\r'`).

Rust is a "free-form" language, meaning that all forms of whitespace serve
only to separate _tokens_ in the grammar, and have no semantic significance.

A Rust program has identical meaning if each whitespace element is replaced
with any other legal whitespace element, such as a single space character.

## Tokens

~~~~~~~~ {.ebnf .gram}
simple_token : keyword | unop | binop ;
token : simple_token | ident | literal | symbol | whitespace token ;
~~~~~~~~

Tokens are primitive productions in the grammar defined by regular
(non-recursive) languages. "Simple" tokens are given in [string table
production](#string-table-productions) form, and occur in the rest of the
grammar as double-quoted strings. Other tokens have exact rules given.

### Keywords

The keywords in [crate files](#crate-files) are the following strings:

~~~~~~~~ {.keyword}
mod priv pub use
~~~~~~~~

The keywords in [source files](#source-files) are the following strings:

~~~~~~~~ {.keyword}
as assert
break
const copy
do drop
else enum extern
fail false fn for
if impl
let log loop
match mod move mut
priv pub pure
ref return
self static struct
true trait type
unsafe use
while
~~~~~~~~

Any of these have special meaning in their respective grammars, and are
excluded from the `ident` rule.

### Literals

A literal is an expression consisting of a single token, rather than a
sequence of tokens, that immediately and directly denotes the value it
evaluates to, rather than referring to it by name or some other evaluation
rule. A literal is a form of constant expression, so is evaluated (primarily)
at compile time.

~~~~~~~~ {.ebnf .gram}
literal : string_lit | char_lit | num_lit ;
~~~~~~~~

#### Character and string literals

~~~~~~~~ {.ebnf .gram}
char_lit : '\x27' char_body '\x27' ;
string_lit : '"' string_body * '"' ;

char_body : non_single_quote
          | '\x5c' [ '\x27' | common_escape ] ;

string_body : non_double_quote
            | '\x5c' [ '\x22' | common_escape ] ;

common_escape : '\x5c'
              | 'n' | 'r' | 't'
              | 'x' hex_digit 2
              | 'u' hex_digit 4
              | 'U' hex_digit 8 ;

hex_digit : 'a' | 'b' | 'c' | 'd' | 'e' | 'f'
          | 'A' | 'B' | 'C' | 'D' | 'E' | 'F'
          | dec_digit ;
dec_digit : '0' | nonzero_dec ;
nonzero_dec: '1' | '2' | '3' | '4'
           | '5' | '6' | '7' | '8' | '9' ;
~~~~~~~~

A _character literal_ is a single Unicode character enclosed within two
`U+0027` (single-quote) characters, with the exception of `U+0027` itself,
which must be _escaped_ by a preceding U+005C character (`\`).

A _string literal_ is a sequence of any Unicode characters enclosed within
two `U+0022` (double-quote) characters, with the exception of `U+0022`
itself, which must be _escaped_ by a preceding `U+005C` character (`\`).

Some additional _escapes_ are available in either character or string
literals. An escape starts with a `U+005C` (`\`) and continues with one of
the following forms:

  * An _8-bit codepoint escape_ escape starts with `U+0078` (`x`) and is
    followed by exactly two _hex digits_. It denotes the Unicode codepoint
    equal to the provided hex value.
  * A _16-bit codepoint escape_ starts with `U+0075` (`u`) and is followed
    by exactly four _hex digits_. It denotes the Unicode codepoint equal to
    the provided hex value.
  * A _32-bit codepoint escape_ starts with `U+0055` (`U`) and is followed
    by exactly eight _hex digits_. It denotes the Unicode codepoint equal to
    the provided hex value.
  * A _whitespace escape_ is one of the characters `U+006E` (`n`), `U+0072`
    (`r`), or `U+0074` (`t`), denoting the unicode values `U+000A` (LF),
    `U+000D` (CR) or `U+0009` (HT) respectively.
  * The _backslash escape_ is the character U+005C (`\`) which must be
    escaped in order to denote *itself*.

#### Number literals

~~~~~~~~ {.ebnf .gram}

num_lit : nonzero_dec [ dec_digit | '_' ] * num_suffix ?
        | '0' [       [ dec_digit | '_' ] + num_suffix ?
              | 'b'   [ '1' | '0' | '_' ] + int_suffix ?
              | 'x'   [ hex_digit | '-' ] + int_suffix ? ] ;

num_suffix : int_suffix | float_suffix ;

int_suffix : 'u' int_suffix_size ?
           | 'i' int_suffix_size ;
int_suffix_size : [ '8' | '1' '6' | '3' '2' | '6' '4' ] ;

float_suffix : [ exponent | '.' dec_lit exponent ? ] float_suffix_ty ? ;
float_suffix_ty : 'f' [ '3' '2' | '6' '4' ] ;
exponent : ['E' | 'e'] ['-' | '+' ] ? dec_lit ;
dec_lit : [ dec_digit | '_' ] + ;
~~~~~~~~

A _number literal_ is either an _integer literal_ or a _floating-point
literal_. The grammar for recognizing the two kinds of literals is mixed,
as they are differentiated by suffixes.

##### Integer literals

An _integer literal_ has one of three forms:

  * A _decimal literal_ starts with a *decimal digit* and continues with any
    mixture of *decimal digits* and _underscores_.
  * A _hex literal_ starts with the character sequence `U+0030` `U+0078`
    (`0x`) and continues as any mixture hex digits and underscores.
  * A _binary literal_ starts with the character sequence `U+0030` `U+0062`
    (`0b`) and continues as any mixture binary digits and underscores.

An integer literal may be followed (immediately, without any spaces) by an
_integer suffix_, which changes the type of the literal. There are two kinds
of integer literal suffix:

  * The `i` and `u` suffixes give the literal type `int` or `uint`,
    respectively.
  * Each of the signed and unsigned machine types `u8`, `i8`,
    `u16`, `i16`, `u32`, `i32`, `u64` and `i64`
    give the literal the corresponding machine type.

The type of an _unsuffixed_ integer literal is determined by type inference.
If a integer type can be _uniquely_ determined from the surrounding program
context, the unsuffixed integer literal has that type.  If the program context
underconstrains the type, the unsuffixed integer literal's type is `int`; if
the program context overconstrains the type, it is considered a static type
error.

Examples of integer literals of various forms:

~~~~
123; 0xff00;                       // type determined by program context
                                   // defaults to int in absence of type
                                   // information

123u;                              // type uint
123_u;                             // type uint
0xff_u8;                           // type u8
0b1111_1111_1001_0000_i32;         // type i32
~~~~

##### Floating-point literals

A _floating-point literal_ has one of two forms:

* Two _decimal literals_ separated by a period
  character `U+002E` (`.`), with an optional _exponent_ trailing after the
  second decimal literal.
* A single _decimal literal_ followed by an _exponent_.

By default, a floating-point literal is of type `float`. A
floating-point literal may be followed (immediately, without any
spaces) by a _floating-point suffix_, which changes the type of the
literal. There are three floating-point suffixes: `f` (for the base
`float` type), `f32`, and `f64` (the 32-bit and 64-bit floating point
types).

Examples of floating-point literals of various forms:

~~~~
123.0;                             // type float
0.1;                               // type float
3f;                                // type float
0.1f32;                            // type f32
12E+99_f64;                        // type f64
~~~~

##### Nil and boolean literals

The _nil value_, the only value of the type by the same name, is
written as `()`. The two values of the boolean type are written `true`
and `false`.

### Symbols

~~~~~~~~ {.ebnf .gram}
symbol : "::" "->"
       | '#' | '[' | ']' | '(' | ')' | '{' | '}'
       | ',' | ';' ;
~~~~~~~~

Symbols are a general class of printable [token](#tokens) that play structural
roles in a variety of grammar productions. They are catalogued here for
completeness as the set of remaining miscellaneous printable tokens that do not
otherwise appear as [unary operators](#unary-operator-expressions), [binary
operators](#binary-operator-expressions), or [keywords](#keywords).


## Paths

~~~~~~~~ {.ebnf .gram}

expr_path : ident [ "::" expr_path_tail ] + ;
expr_path_tail : '<' type_expr [ ',' type_expr ] + '>'
               | expr_path ;

type_path : ident [ type_path_tail ] + ;
type_path_tail : '<' type_expr [ ',' type_expr ] + '>'
               | "::" type_path ;

~~~~~~~~

A _path_ is a sequence of one or more path components _logically_ separated by
a namespace qualifier (`::`). If a path consists of only one component, it may
refer to either an [item](#items) or a [slot](#memory-slots) in a local
control scope. If a path has multiple components, it refers to an item.

Every item has a _canonical path_ within its crate, but the path naming an
item is only meaningful within a given crate. There is no global namespace
across crates; an item's canonical path merely identifies it within the crate.

Two examples of simple paths consisting of only identifier components:

~~~~{.ignore}
x;
x::y::z;
~~~~

Path components are usually [identifiers](#identifiers), but the trailing
component of a path may be an angle-bracket-enclosed list of type
arguments. In [expression](#expressions) context, the type argument list is
given after a final (`::`) namespace qualifier in order to disambiguate it
from a relational expression involving the less-than symbol (`<`). In type
expression context, the final namespace qualifier is omitted.

Two examples of paths with type arguments:

~~~~
# use std::map;
# fn f() {
# fn id<T:Copy>(t: T) -> T { t }
type t = map::HashMap<int,~str>;  // Type arguments used in a type expression
let x = id::<int>(10);           // Type arguments used in a call expression
# }
~~~~

# Syntax extensions

A number of minor features of Rust are not central enough to have their own
syntax, and yet are not implementable as functions. Instead, they are given
names, and invoked through a consistent syntax: `name!(...)`. Examples
include:

* `fmt!` : format data into a string
* `env!` : look up an environment variable's value at compile time
* `stringify!` : pretty-print the Rust expression given as an argument
* `proto!` : define a protocol for inter-task communication
* `include!` : include the Rust expression in the given file
* `include_str!` : include the contents of the given file as a string
* `include_bin!` : include the contents of the given file as a binary blob
* `error!`, `warn!`, `info!`, `debug!` : provide diagnostic information.

All of the above extensions, with the exception of `proto!`, are expressions
with values. `proto!` is an item, defining a new name.

## Macros

~~~~~~~~ {.ebnf .gram}

expr_macro_rules : "macro_rules" '!' ident '(' macro_rule * ')'
macro_rule : '(' matcher * ')' "=>" '(' transcriber * ')' ';'
matcher : '(' matcher * ')' | '[' matcher * ']'
        | '{' matcher * '}' | '$' ident ':' ident
        | '$' '(' matcher * ')' sep_token? [ '*' | '+' ]
        | non_special_token
transcriber : '(' transcriber * ')' | '[' transcriber * ']'
            | '{' transcriber * '}' | '$' ident
            | '$' '(' transcriber * ')' sep_token? [ '*' | '+' ]
            | non_special_token

~~~~~~~~

User-defined syntax extensions are called "macros", and they can be defined
with the `macro_rules!` syntax extension. User-defined macros can currently
only be invoked in expression position.

(A `sep_token` is any token other than `*` and `+`. A `non_special_token` is
any token other than a delimiter or `$`.)

Macro invocations are looked up by name, and each macro rule is tried in turn;
the first successful match is transcribed. The matching and transcribing
processes are closely related, and will be described together:

### Macro By Example

Everything that does not begin with a `$` is matched and transcirbed
literally, including delimiters. For parsing reasons, they must be matched,
but they are otherwise not special.

In the matcher, `$` _name_ `:` _designator_ matches the nonterminal in the
Rust syntax named by _designator_. Valid designators are `item`, `block`,
`stmt`, `pat`, `expr`, `ty`, `ident`, `path`, `tt`, `matchers`. The last two
are the right-hand side and the left-hand side respectively of the `=>` in
macro rules. In the transcriber, the designator is already known, and so only
the name of a matched nonterminal comes after the dollar sign.

In bothe the matcher and transcriber, the Kleene star-like operator,
consisting of `$` and parens, optionally followed by a separator token,
followed by `*` or `+`, indicates repetition. (`*` means zero or more
repetitions, `+` means at least one repetition. The parens are not matched or
transcribed). On the matcher side, a name is bound to _all_ of the names it
matches, in a structure that mimics the structure of the repetition
encountered on a successful match. The job of the transcriber is to sort that
structure out.

The rules for transcription of these repetitions are called "Macro By Example".
Essentially, one "layer" of repetition is discharged at a time, and all of
them must be discharged by the time a name is transcribed. Therefore,
`( $( $i:ident ),* ) => ( $i )` is an invalid macro, but
`( $( $i:ident ),* ) => ( $( $i:ident ),*  )` is acceptable (if trivial).

When Macro By Example encounters a repetition, it examines all of the `$`
_name_ s that occur in its body. At the "current layer", they all must repeat
the same number of times, so
` ( $( $i:ident ),* ; $( $j:ident ),* ) => ( $( ($i,$j) ),* )` is valid if
given the argument `(a,b,c ; d,e,f)`, but not `(a,b,c ; d,e)`. The repetition
walks through the choices at that layer in lockstep, so the former input
transcribes to `( (a,d), (b,e), (c,f) )`.

Nested repetitions are allowed.

### Parsing limitations

The parser used by the macro system is reasonably powerful, but the parsing of
Rust syntax is restricted in two ways:

1. The parser will always parse as much as possible. If it attempts to match
`$i:expr [ , ]` against `8 [ , ]`, it will attempt to parse `i` as an array
index operation and fail. Adding a separator can solve this problem.
2. The parser must have eliminated all ambiguity by the time it reaches a
`$` _name_ `:` _designator_. This most often affects them when they occur in
the beginning of, or immediately after, a `$(...)*`; requiring a distinctive
token in front can solve the problem.


## Syntax extensions useful for the macro author

* `log_syntax!` : print out the arguments at compile time
* `trace_macros!` : supply `true` or `false` to enable or disable printing
of the macro expansion process.
* `ident_to_str!` : turns the identifier argument into a string literal
* `concat_idents!` : creates a new identifier by concatenating its arguments



# Crates and source files

Rust is a *compiled* language. Its semantics are divided along a
*phase distinction* between compile-time and run-time. Those semantic
rules that have a *static interpretation* govern the success or failure
of compilation. A program that fails to compile due to violation of a
compile-time rule has no defined semantics at run-time; the compiler should
halt with an error report, and produce no executable artifact.

The compilation model centres on artifacts called _crates_. Each compilation
is directed towards a single crate in source form, and if successful,
produces a single crate in binary form: either an executable or a library.

A _crate_ is a unit of compilation and linking, as well as versioning,
distribution and runtime loading. A crate contains a _tree_ of nested
[module](#modules) scopes. The top level of this tree is a module that is
anonymous -- from the point of view of paths within the module -- and any item
within a crate has a canonical [module path](#paths) denoting its location
within the crate's module tree.

Crates are provided to the Rust compiler through two kinds of file:

  - _crate files_, that end in `.rc` and each define a `crate`.
  - _source files_, that end in `.rs` and each define a `module`.

> **Note:** The functionality of crate files will be merged into source files in future versions of Rust.
> The separate processing of crate files, both their grammar and file extension, will be removed.

The Rust compiler is always invoked with a single input file, and always
produces a single output crate.

When the Rust compiler is invoked with a crate file, it reads the _explicit_
definition of the crate it's compiling from that file, and populates the
crate with modules derived from all the source files referenced by the
crate, reading and processing all the referenced modules at once.

When the Rust compiler is invoked with a source file, it creates an
_implicit_ crate and treats the source file as though it was referenced as
the sole module populating this implicit crate. The module name is derived
from the source file name, with the `.rs` extension removed.

## Crate files

~~~~~~~~ {.ebnf .gram}
crate : attribute [ ';' | attribute* directive ]
      | directive ;
directive : view_item | dir_directive | source_directive ;
~~~~~~~~

A crate file contains a crate definition, for which the production above
defines the grammar. It is a declarative grammar that guides the compiler in
assembling a crate from component source files.^[A crate is somewhat
analogous to an *assembly* in the ECMA-335 CLI model, a *library* in the
SML/NJ Compilation Manager, a *unit* in the Owens and Flatt module system,
or a *configuration* in Mesa.] A crate file describes:

* [Attributes](#attributes) about the crate, such as author, name, version,
  and copyright. These are used for linking, versioning and distributing
  crates.
* The source-file and directory modules that make up the crate.
* Any `use` or `extern mod` [view items](#view-items) that apply to
  the anonymous module at the top-level of the crate's module tree.

An example of a crate file:

~~~~~~~~{.xfail-test}
// Linkage attributes
#[ link(name = "projx"
        vers = "2.5",
        uuid = "9cccc5d5-aceb-4af5-8285-811211826b82") ];

// Additional metadata attributes
#[ desc = "Project X",
   license = "BSD" ];
   author = "Jane Doe" ];

// Import a module.
extern mod std (ver = "1.0");

// Define some modules.
#[path = "foo.rs"]
mod foo;
mod bar {
    #[path =  "quux.rs"]
    mod quux;
}
~~~~~~~~

### Dir directives

A `dir_directive` forms a module in the module tree making up the crate, as
well as implicitly relating that module to a directory in the filesystem
containing source files and/or further subdirectories. The filesystem
directory associated with a `dir_directive` module can either be explicit,
or if omitted, is implicitly the same name as the module.

A `source_directive` references a source file, either explicitly or
implicitly by combining the module name with the file extension `.rs`.  The
module contained in that source file is bound to the module path formed by
the `dir_directive` modules containing the `source_directive`.

## Source files

A source file contains a `module`: that is, a sequence of zero or more
`item` definitions. Each source file is an implicit module, the name and
location of which -- in the module tree of the current crate -- is defined
from outside the source file: either by an explicit `source_directive` in
a referencing crate file, or by the filename of the source file itself.

A source file that contains a `main` function can be compiled to an
executable. If a `main` function is present,
its return type must be [`nil`](#primitive-types) and it must take no arguments.

# Items and attributes

Crates contain [items](#items),
each of which may have some number of [attributes](#attributes) attached to it.

## Items

~~~~~~~~ {.ebnf .gram}
item : mod_item | fn_item | type_item | enum_item
     | const_item | trait_item | impl_item | foreign_mod_item ;
~~~~~~~~

An _item_ is a component of a crate; some module items can be defined in crate
files, but most are defined in source files. Items are organized within a
crate by a nested set of [modules](#modules). Every crate has a single
"outermost" anonymous module; all further items within the crate have
[paths](#paths) within the module tree of the crate.

Items are entirely determined at compile-time, remain constant during
execution, and may reside in read-only memory.

There are several kinds of item:

  * [modules](#modules)
  * [functions](#functions)
  * [type definitions](#type-definitions)
  * [structures](#structures)
  * [enumerations](#enumerations)
  * [constants](#constants)
  * [traits](#traits)
  * [implementations](#implementations)

Some items form an implicit scope for the declaration of sub-items. In other
words, within a function or module, declarations of items can (in many cases)
be mixed with the statements, control blocks, and similar artifacts that
otherwise compose the item body. The meaning of these scoped items is the same
as if the item was declared outside the scope -- it is still a static item --
except that the item's *path name* within the module namespace is qualified by
the name of the enclosing item, or is private to the enclosing item (in the
case of functions). The exact locations in which sub-items may be declared is
given by the grammar.

### Type Parameters

All items except modules may be *parametrized* by type. Type parameters are
given as a comma-separated list of identifiers enclosed in angle brackets
(`<...>`), after the name of the item and before its definition. The type
parameters of an item are considered "part of the name", not the type of the
item; in order to refer to the type-parametrized item, a referencing
[path](#paths) must in general provide type arguments as a list of
comma-separated types enclosed within angle brackets. In practice, the
type-inference system can usually infer such argument types from
context. There are no general type-parametric types, only type-parametric
items.


### Modules

~~~~~~~~ {.ebnf .gram}
mod_item : "mod" ident '{' mod '}' ;
mod : [ view_item | item ] * ;
~~~~~~~~

A module is a container for zero or more [view items](#view-items) and zero or
more [items](#items). The view items manage the visibility of the items
defined within the module, as well as the visibility of names from outside the
module when referenced from inside the module.

A _module item_ is a module, surrounded in braces, named, and prefixed with
the keyword `mod`. A module item introduces a new, named module into the tree
of modules making up a crate. Modules can nest arbitrarily.

An example of a module:

~~~~~~~~
mod math {
    type complex = (f64, f64);
    fn sin(f: f64) -> f64 {
        ...
# fail;
    }
    fn cos(f: f64) -> f64 {
        ...
# fail;
    }
    fn tan(f: f64) -> f64 {
        ...
# fail;
    }
}
~~~~~~~~


#### View items

~~~~~~~~ {.ebnf .gram}
view_item : extern_mod_decl | use_decl ;
~~~~~~~~

A view item manages the namespace of a module; it does not define new items
but simply changes the visibility of other items. There are several kinds of
view item:

 * [`extern mod` declarations](#extern-mod-declarations)
 * [`use` declarations](#use-declarations)

##### Extern mod declarations

~~~~~~~~ {.ebnf .gram}
extern_mod_decl : "extern" "mod" ident [ '(' link_attrs ')' ] ? ;
link_attrs : link_attr [ ',' link_attrs ] + ;
link_attr : ident '=' literal ;
~~~~~~~~

An _`extern mod` declaration_ specifies a dependency on an external crate.
The external crate is then bound into the declaring scope as the `ident` provided in the `extern_mod_decl`.

The external crate is resolved to a specific `soname` at compile time, and a
runtime linkage requirement to that `soname` is passed to the linker for
loading at runtime. The `soname` is resolved at compile time by scanning the
compiler's library path and matching the `link_attrs` provided in the
`use_decl` against any `#link` attributes that were declared on the external
crate when it was compiled. If no `link_attrs` are provided, a default `name`
attribute is assumed, equal to the `ident` given in the `use_decl`.

Two examples of `extern mod` declarations:

~~~~~~~~{.xfail-test}
extern mod pcre (uuid = "54aba0f8-a7b1-4beb-92f1-4cf625264841");

extern mod std; // equivalent to: extern mod std ( name = "std" );

extern mod ruststd (name = "std"); // linking to 'std' under another name
~~~~~~~~

##### Use declarations

~~~~~~~~ {.ebnf .gram}
use_decl : "use" ident [ '=' path
                          | "::" path_glob ] ;

path_glob : ident [ "::" path_glob ] ?
          | '*'
          | '{' ident [ ',' ident ] * '}'
~~~~~~~~

A _use declaration_ creates one or more local name bindings synonymous
with some other [path](#paths). Usually a `use` declaration is used to
shorten the path required to refer to a module item.

*Note*: unlike many languages, Rust's `use` declarations do *not* declare
linkage-dependency with external crates. Linkage dependencies are
independently declared with
[`extern mod` declarations](#extern-mod-declarations).

Use declarations support a number of "convenience" notations:

  * Rebinding the target name as a new local name, using the
    syntax `use x = p::q::r;`.
  * Simultaneously binding a list of paths differing only in final element,
    using the glob-like brace syntax `use a::b::{c,d,e,f};`
  * Binding all paths matching a given prefix,
    using the glob-like asterisk syntax `use a::b::*;`

An example of `use` declarations:

~~~~
use foo = core::info;
use core::float::sin;
use core::str::{slice, to_upper};
use core::option::Some;

fn main() {
    // Equivalent to 'log(core::info, core::float::sin(1.0));'
    log(foo, sin(1.0));

    // Equivalent to 'log(core::info, core::option::Some(1.0));'
    log(info, Some(1.0));

    // Equivalent to 'log(core::info,
    //                    core::str::to_upper(core::str::slice("foo", 0u, 1u)));'
    log(info, to_upper(slice("foo", 0u, 1u)));
}
~~~~

Like items, `use` declarations are private to the containing module, by default.
Also like items, a `use` declaration can be public, if qualified by the `pub` keyword.
A public `use` declaration can therefore be used to _redirect_ some public name to a different target definition,
even a definition with a private canonical path, inside a different module.
If a sequence of such redirections form a cycle or cannot be unambiguously resolved, they represent a compile-time error.

### Functions

A _function item_ defines a sequence of [statements](#statements) and an
optional final [expression](#expressions) associated with a name and a set of
parameters. Functions are declared with the keyword `fn`. Functions declare a
set of *input* [*slots*](#memory-slots) as parameters, through which the
caller passes arguments into the function, and an *output*
[*slot*](#memory-slots) through which the function passes results back to
the caller.

A function may also be copied into a first class *value*, in which case the
value has the corresponding [*function type*](#function-types), and can be
used otherwise exactly as a function item (with a minor additional cost of
calling the function indirectly).

Every control path in a function logically ends with a `return` expression or a
diverging expression. If the outermost block of a function has a
value-producing expression in its final-expression position, that expression
is interpreted as an implicit `return` expression applied to the
final-expression.

An example of a function:

~~~~
fn add(x: int, y: int) -> int {
    return x + y;
}
~~~~


#### Generic functions

A _generic function_ allows one or more _parameterized types_ to
appear in its signature. Each type parameter must be explicitly
declared, in an angle-bracket-enclosed, comma-separated list following
the function name.

~~~~ {.xfail-test}
fn iter<T>(seq: &[T], f: fn(T)) {
    for seq.each |elt| { f(elt); }
}
fn map<T, U>(seq: &[T], f: fn(T) -> U) -> ~[U] {
    let mut acc = ~[];
    for seq.each |elt| { acc.push(f(elt)); }
    acc
}
~~~~

Inside the function signature and body, the name of the type parameter
can be used as a type name.

When a generic function is referenced, its type is instantiated based
on the context of the reference. For example, calling the `iter`
function defined above on `[1, 2]` will instantiate type parameter `T`
with `int`, and require the closure parameter to have type
`fn(int)`.

Since a parameter type is opaque to the generic function, the set of
operations that can be performed on it is limited. Values of parameter
type can always be moved, but they can only be copied when the
parameter is given a [`Copy` bound](#type-kinds).

~~~~
fn id<T: Copy>(x: T) -> T { x }
~~~~

Similarly, [trait](#traits) bounds can be specified for type
parameters to allow methods with that trait to be called on values
of that type.


#### Unsafe functions

Unsafe functions are those containing unsafe operations that are not contained in an [`unsafe` block](#unsafe-blocks).
Such a function must be prefixed with the keyword `unsafe`.

Unsafe operations are those that potentially violate the memory-safety guarantees of Rust's static semantics.
Specifically, the following operations are considered unsafe:

  - Dereferencing a [raw pointer](#pointer-types).
  - Casting a [raw pointer](#pointer-types) to a safe pointer type.
  - Breaking the [purity-checking rules](#pure-functions) in a `pure` function.
  - Calling an unsafe function.

##### Unsafe blocks

A block of code can also be prefixed with the `unsafe` keyword,
to permit a sequence of unsafe operations in an otherwise-safe function.
This facility exists because the static semantics of a Rust are a necessary approximation of the dynamic semantics.
When a programmer has sufficient conviction that a sequence of unsafe operations is actually safe,
they can encapsulate that sequence (taken as a whole) within an `unsafe` block.
The compiler will consider uses of such code "safe", to the surrounding context.


#### Pure functions

A pure function declaration is identical to a function declaration, except that
it is declared with the additional keyword `pure`. In addition, the typechecker
checks the body of a pure function with a restricted set of typechecking rules.
A pure function

* may not contain an assignment or self-call expression; and
* may only call other pure functions, not general functions.

An example of a pure function:

~~~~
pure fn lt_42(x: int) -> bool {
    return (x < 42);
}
~~~~

Pure functions may call other pure functions:

~~~~{.xfail-test}
pure fn pure_length<T>(ls: List<T>) -> uint { ... }

pure fn nonempty_list<T>(ls: List<T>) -> bool { pure_length(ls) > 0u }
~~~~

These purity-checking rules approximate the concept of referential transparency:
that a call-expression could be rewritten with the literal-expression of its return value, without changing the meaning of the program.
Since they are an approximation, sometimes these rules are *too* restrictive.
Rust allows programmers to violate these rules using [`unsafe` blocks](#unsafe-blocks).
As with any `unsafe` block, those that violate static purity carry transfer the burden of safety-proof from the compiler to the programmer.
Programmers should exercise caution when breaking such rules.

An example of a pure function that uses an unsafe block:

~~~~ {.xfail-test}
# use std::list::*;

fn pure_foldl<T, U: Copy>(ls: List<T>, u: U, f: fn(&T, &U) -> U) -> U {
    match ls {
      Nil => u,
      Cons(hd, tl) => f(hd, pure_foldl(*tl, f(hd, u), f))
    }
}

pure fn pure_length<T>(ls: List<T>) -> uint {
    fn count<T>(_t: &T, u: &uint) -> uint { *u + 1u }
    unsafe {
        pure_foldl(ls, 0u, count)
    }
}
~~~~

Despite its name, `pure_foldl` is a `fn`, not a `pure fn`, because there is no
way in Rust to specify that the higher-order function argument `f` is a pure
function. So, to use `foldl` in a pure list length function that a pure function
could then use, we must use an `unsafe` block wrapped around the call to
`pure_foldl` in the definition of `pure_length`.


#### Diverging functions

A special kind of function can be declared with a `!` character where the
output slot type would normally be. For example:

~~~~
fn my_err(s: ~str) -> ! {
    log(info, s);
    fail;
}
~~~~

We call such functions "diverging" because they never return a value to the
caller. Every control path in a diverging function must end with a
[`fail`](#fail-expressions) or a call to another diverging function on every
control path. The `!` annotation does *not* denote a type. Rather, the result
type of a diverging function is a special type called $\bot$ ("bottom") that
unifies with any type. Rust has no syntax for $\bot$.

It might be necessary to declare a diverging function because as mentioned
previously, the typechecker checks that every control path in a function ends
with a [`return`](#return-expressions) or diverging expression. So, if `my_err`
were declared without the `!` annotation, the following code would not
typecheck:

~~~~
# fn my_err(s: &str) -> ! { fail }

fn f(i: int) -> int {
   if i == 42 {
     return 42;
   }
   else {
     my_err("Bad number!");
   }
}
~~~~

This will not compile without the `!` annotation on `my_err`,
since the `else` branch of the conditional in `f` does not return an `int`,
as required by the signature of `f`.
Adding the `!` annotation to `my_err` informs the typechecker that,
should control ever enter `my_err`, no further type judgments about `f` need to hold,
since control will never resume in any context that relies on those judgments.
Thus the return type on `f` only needs to reflect the `if` branch of the conditional.


#### Extern functions

Extern functions are part of Rust's foreign function interface, providing
the opposite functionality to [foreign modules](#foreign-modules). Whereas
foreign modules allow Rust code to call foreign code, extern functions with
bodies defined in Rust code _can be called by foreign code_. They are defined the
same as any other Rust function, except that they are prepended with the
`extern` keyword.

~~~
extern fn new_vec() -> ~[int] { ~[] }
~~~

Extern functions may not be called from Rust code, but their value
may be taken as a raw `u8` pointer.

~~~
# extern fn new_vec() -> ~[int] { ~[] }
let fptr: *u8 = new_vec;
~~~

The primary motivation of extern functions is to create callbacks
for foreign functions that expect to receive function pointers.

### Type definitions

A _type definition_ defines a new name for an existing [type](#types). Type
definitions are declared with the keyword `type`. Every value has a single,
specific type; the type-specified aspects of a value include:

* Whether the value is composed of sub-values or is indivisible.
* Whether the value represents textual or numerical information.
* Whether the value represents integral or floating-point information.
* The sequence of memory operations required to access the value.
* The [kind](#type-kinds) of the type.

For example, the type `{x: u8, y: u8`} defines the set of immutable values
that are composite records, each containing two unsigned 8-bit integers
accessed through the components `x` and `y`, and laid out in memory with the
`x` component preceding the `y` component.

### Structures

A _structure_ is a nominal [structure type](#structure-types) defined with the keyword `struct`.

An example of a `struct` item and its use:

~~~~
struct Point {x: int, y: int}
let p = Point {x: 10, y: 11};
let px: int = p.x;
~~~~

### Enumerations

An _enumeration_ is a simulatneous definition of a nominal [enumerated type](#enumerated-types) as well as a set of *constructors*,
that can be used to create or pattern-match values of the corresponding enumerated type.

Enumerations are declared with the keyword `enum`.

An example of an `enum` item and its use:

~~~~
enum Animal {
  Dog,
  Cat
}

let mut a: Animal = Dog;
a = Cat;
~~~~

### Constants

~~~~~~~~ {.ebnf .gram}
const_item : "const" ident ':' type '=' expr ';' ;
~~~~~~~~

A Constant is a named value stored in read-only memory in a crate.
The value bound to a constant is evaluated at compile time.
Constants are declared with the `const` keyword.
A constant item must have an expression giving its definition.
The definition expression of a constant is limited to expression forms that can be evaluated at compile time.

### Traits

A _trait_ describes a set of method types.

Traits can include default implementations of methods,
written in terms of some unknown [`self` type](#self-types);
the `self` type may either be completely unspecified,
or constrained by some other [trait type](#trait-types).

Traits are implemented for specific types through separate [implementations](#implementations).

~~~~
# type Surface = int;
# type BoundingBox = int;

trait Shape {
    fn draw(Surface);
    fn bounding_box() -> BoundingBox;
}
~~~~

This defines a trait with two methods.
All values that have [implementations](#implementations) of this trait in scope can have their `draw` and `bounding_box` methods called,
using `value.bounding_box()` [syntax](#method-call-expressions).

Type parameters can be specified for a trait to make it generic.
These appear after the trait name, using the same syntax used in [generic functions](#generic-functions).

~~~~
trait Seq<T> {
   fn len() -> uint;
   fn elt_at(n: uint) -> T;
   fn iter(fn(T));
}
~~~~

Generic functions may use traits as _bounds_ on their type parameters.
This will have two effects: only types that have the trait may instantiate the parameter,
and within the generic function,
the methods of the trait can be called on values that have the parameter's type.
For example:

~~~~
# type Surface = int;
# trait Shape { fn draw(Surface); }

fn draw_twice<T: Shape>(surface: Surface, sh: T) {
    sh.draw(surface);
    sh.draw(surface);
}
~~~~

Traits also define a [type](#trait-types) with the same name as the trait.
Values of this type are created by [casting](#type-cast-expressions) pointer values
(pointing to a type for which an implementation of the given trait is in scope)
to pointers to the trait name, used as a type.

~~~~
# trait Shape { }
# impl int: Shape { }
# let mycircle = 0;

let myshape: Shape = @mycircle as @Shape;
~~~~

The resulting value is a managed box containing the value that was cast,
along with information that identify the methods of the implementation that was used.
Values with a trait type can have [methods called](#method-call-expressions) on them,
for any method in the trait,
and can be used to instantiate type parameters that are bounded by the trait.

### Implementations

An _implementation_ is an item that implements a [trait](#traits) for a specific type.

Implementations are defined with the keyword `impl`.

~~~~
# type Point = {x: float, y: float};
# type Surface = int;
# type BoundingBox = {x: float, y: float, width: float, height: float};
# trait Shape { fn draw(Surface); fn bounding_box() -> BoundingBox; }
# fn do_draw_circle(s: Surface, c: Circle) { }

type Circle = {radius: float, center: Point};

impl Circle: Shape {
    fn draw(s: Surface) { do_draw_circle(s, self); }
    fn bounding_box() -> BoundingBox {
        let r = self.radius;
        {x: self.center.x - r, y: self.center.y - r,
         width: 2.0 * r, height: 2.0 * r}
    }
}
~~~~

It is possible to define an implementation without referring to a trait.
The methods in such an implementation can only be used statically
(as direct calls on the values of the type that the implementation targets).
In such an implementation, the type after the colon is omitted.
Such implementations are limited to nominal types (enums, structs),
and the implementation must appear in the same module or a sub-module as the `self` type.

When a trait _is_ specified in an `impl`,
all methods declared as part of the trait must be implemented,
with matching types and type parameter counts.

An implementation can take type parameters,
which can be different from the type parameters taken by the trait it implements.
Implementation parameters are written after after the `impl` keyword.

~~~~
# trait Seq<T> { }

impl<T> ~[T]: Seq<T> {
   ...
}
impl u32: Seq<bool> {
   /* Treat the integer as a sequence of bits */
}
~~~~

### Foreign modules

~~~ {.ebnf .gram}
foreign_mod_item : "extern mod" ident '{' foreign_mod '} ;
foreign_mod : [ foreign_fn ] * ;
~~~

Foreign modules form the basis for Rust's foreign function interface. A
foreign module describes functions in external, non-Rust
libraries. Functions within foreign modules are declared the same as other
Rust functions, with the exception that they may not have a body and are
instead terminated by a semi-colon.

~~~
# use libc::{c_char, FILE};
# #[nolink]

extern mod c {
    fn fopen(filename: *c_char, mode: *c_char) -> *FILE;
}
~~~

Functions within foreign modules may be called by Rust code as it would any
normal function and the Rust compiler will automatically translate between
the Rust ABI and the foreign ABI.

The name of the foreign module has special meaning to the Rust compiler in
that it will treat the module name as the name of a library to link to,
performing the linking as appropriate for the target platform. The name
given for the foreign module will be transformed in a platform-specific way
to determine the name of the library. For example, on Linux the name of the
foreign module is prefixed with 'lib' and suffixed with '.so', so the
foreign mod 'rustrt' would be linked to a library named 'librustrt.so'.

A number of [attributes](#attributes) control the behavior of foreign
modules.

By default foreign modules assume that the library they are calling use the
standard C "cdecl" ABI. Other ABI's may be specified using the `abi`
attribute as in

~~~{.xfail-test}
// Interface to the Windows API
#[abi = "stdcall"]
extern mod kernel32 { }
~~~

The `link_name` attribute allows the default library naming behavior to
be overriden by explicitly specifying the name of the library.

~~~{.xfail-test}
#[link_name = "crypto"]
extern mod mycrypto { }
~~~

The `nolink` attribute tells the Rust compiler not to perform any linking
for the foreign module. This is particularly useful for creating foreign
modules for libc, which tends to not follow standard library naming
conventions and is linked to all Rust programs anyway.

## Attributes

~~~~~~~~{.ebnf .gram}
attribute : '#' '[' attr_list ']' ;
attr_list : attr [ ',' attr_list ]*
attr : ident [ '=' literal
             | '(' attr_list ')' ] ? ;
~~~~~~~~

Static entities in Rust -- crates, modules and items -- may have _attributes_
applied to them. ^[Attributes in Rust are modeled on Attributes in ECMA-335,
C#] An attribute is a general, free-form piece of metadata that is interpreted
according to name, convention, and language and compiler version.  Attributes
may appear as any of:

* A single identifier, the attribute name
* An identifier followed by the equals sign '=' and a literal, providing a key/value pair
* An identifier followed by a parenthesized list of sub-attribute arguments

Attributes are applied to an entity by placing them within a hash-list
(`#[...]`) as either a prefix to the entity or as a semicolon-delimited
declaration within the entity body.

An example of attributes:

~~~~~~~~{.xfail-test}
// General metadata applied to the enclosing module or crate.
#[license = "BSD"];

// A function marked as a unit test
#[test]
fn test_foo() {
  ...
}

// A conditionally-compiled module
#[cfg(target_os="linux")]
mod bar {
  ...
}

// A documentation attribute
#[doc = "Add two numbers together."]
fn add(x: int, y: int) { x + y }
~~~~~~~~

> **Note:** In future versions of Rust, user-provided extensions to the compiler will be able to interpret attributes.
> When this facility is provided, the compiler will distinguish between language-reserved and user-available attributes.

At present, only the Rust compiler interprets attributes, so all attribute
names are effectively reserved. Some significant attributes include:

* The `doc` attribute, for documenting code in-place.
* The `cfg` attribute, for conditional-compilation by build-configuration.
* The `link` attribute, for describing linkage metadata for a crate.
* The `test` attribute, for marking functions as unit tests.

Other attributes may be added or removed during development of the language.


# Statements and expressions

Rust is _primarily_ an expression language. This means that most forms of
value-producing or effect-causing evaluation are directed by the uniform
syntax category of _expressions_. Each kind of expression can typically _nest_
within each other kind of expression, and rules for evaluation of expressions
involve specifying both the value produced by the expression and the order in
which its sub-expressions are themselves evaluated.

In contrast, statements in Rust serve _mostly_ to contain and explicitly
sequence expression evaluation.

## Statements

A _statement_ is a component of a block, which is in turn a component of an
outer [expression](#expressions) or [function](#functions).

Rust has two kinds of statement:
[declaration statements](#declaration-statements) and
[expression statements](#expression-statements).

### Declaration statements

A _declaration statement_ is one that introduces one or more *names* into the enclosing statement block.
The declared names may denote new slots or new items.

#### Item declarations

An _item declaration statement_ has a syntactic form identical to an
[item](#items) declaration within a module. Declaring an item -- a function,
enumeration, type, constant, trait, implementation or module -- locally
within a statement block is simply a way of restricting its scope to a narrow
region containing all of its uses; it is otherwise identical in meaning to
declaring the item outside the statement block.

Note: there is no implicit capture of the function's dynamic environment when
declaring a function-local item.


#### Slot declarations

~~~~~~~~{.ebnf .gram}
let_decl : "let" pat [':' type ] ? [ init ] ? ';' ;
init : [ '=' | '<-' ] expr ;
~~~~~~~~

A _slot declaration_ introduces a new set of slots, given by a pattern.
The pattern may be followed by a type annotation, and/or an initializer expression.
When no type annotation is given, the compiler will infer the type,
or signal an error if insufficient type information is available for definite inference.
Any slots introduced by a slot declaration are visible from the point of declaration until the end of the enclosing block scope.

### Expression statements

An _expression statement_ is one that evaluates an [expression](#expressions)
and drops its result. The purpose of an expression statement is often to cause
the side effects of the expression's evaluation.

## Expressions

An expression plays the dual roles of causing side effects and producing a
*value*. Expressions are said to *evaluate to* a value, and the side effects
are caused during *evaluation*. Many expressions contain sub-expressions as
operands; the definition of each kind of expression dictates whether or not,
and in which order, it will evaluate its sub-expressions, and how the
expression's value derives from the value of its sub-expressions.

In this way, the structure of execution -- both the overall sequence of
observable side effects and the final produced value -- is dictated by the
structure of expressions. Blocks themselves are expressions, so the nesting
sequence of block, statement, expression, and block can repeatedly nest to an
arbitrary depth.

#### Lvalues, rvalues and temporaries

Expressions are divided into two main categories: _lvalues_ and _rvalues_.
Likewise within each expression, sub-expressions may occur in _lvalue context_ or _rvalue context_.
The evaluation of an expression depends both on its own category and the context it occurs within.

[Path](#path-expressions), [field](#field-expressions) and [index](#index-expressions) expressions are lvalues.
All other expressions are rvalues.

The left operand of an [assignment](#assignment-expressions),
[binary move](#binary-move-expressions) or
[compound-assignment](#compound-assignment-expressions) expression is an lvalue context,
as is the single operand of a unary [borrow](#unary-operator-expressions),
or [move](#unary-move-expressions) expression,
and _both_ operands of a [swap](#swap-expressions) expression.
All other expression contexts are rvalue contexts.

When an lvalue is evaluated in an _lvalue context_, it denotes a memory location;
when evaluated in an _rvalue context_, it denotes the value held _in_ that memory location.

When an rvalue is used in lvalue context, a temporary un-named lvalue is created and used instead.
A temporary's lifetime equals the largest lifetime of any borrowed pointer that points to it.


### Literal expressions

A _literal expression_ consists of one of the [literal](#literals)
forms described earlier. It directly describes a number, character,
string, boolean value, or the nil value.

~~~~~~~~ {.literals}
();        // nil type
"hello";   // string type
'5';       // character type
5;         // integer type
~~~~~~~~

### Path expressions

A [path](#paths) used as an expression context denotes either a local variable or an item.
Path expressions are [lvalues](#lvalues-rvalues-and-temporaries).

### Tuple expressions

Tuples are written by enclosing two or more comma-separated
expressions in parentheses. They are used to create [tuple-typed](#tuple-types)
values.

~~~~~~~~ {.tuple}
(0f, 4.5f);
("a", 4u, true);
~~~~~~~~

### Record expressions

~~~~~~~~{.ebnf .gram}
rec_expr : '{' ident ':' expr
               [ ',' ident ':' expr ] *
               [ ".." expr ] '}'
~~~~~~~~

A [_record_](#record-types) _expression_ is one or more comma-separated
name-value pairs enclosed by braces. A fieldname can be any identifier
(including keywords), and is separated from its value expression by a
colon. To indicate that a field is mutable, the `mut` keyword is
written before its name.

~~~~
{x: 10f, y: 20f};
{name: "Joe", age: 35u, score: 100_000};
{ident: "X", mut count: 0u};
~~~~

The order of the fields in a record expression is significant, and
determines the type of the resulting value. `{a: u8, b: u8}` and `{b:
u8, a: u8}` are two different fields.

A record expression can terminate with the syntax `..` followed by an
expression to denote a functional update. The expression following
`..` (the base) must be of a record type that includes at least all the
fields mentioned in the record expression. A new record will be
created, of the same type as the base expression, with the given
values for the fields that were explicitly specified, and the values
in the base record for all other fields. The ordering of the fields in
such a record expression is not significant.

~~~~
let base = {x: 1, y: 2, z: 3};
{y: 0, z: 10, .. base};
~~~~

### Method-call expressions

~~~~~~~~{.ebnf .gram}
method_call_expr : expr '.' ident paren_expr_list ;
~~~~~~~~

A _method call_ consists of an expression followed by a single dot, an identifier, and a parenthesized expression-list.
Method calls are resolved to methods on specific traits,
either statically dispatching to a method if the exact `self`-type of the left-hand-side is known,
or dynamically dispatching if the left-hand-side expression is an indirect [trait type](#trait-types).


### Field expressions

~~~~~~~~{.ebnf .gram}
field_expr : expr '.' ident
~~~~~~~~

A _field expression_ consists of an expression followed by a single dot and an identifier,
when not immediately followed by a parenthesized expression-list (the latter is a [method call expression](#method-call-expressions)).
A field expression denotes a field of a [structure](#structure-types) or [record](#record-types).

~~~~~~~~ {.field}
myrecord.myfield;
{a: 10, b: 20}.a;
~~~~~~~~

A field access on a record is an [lvalue](#lvalues-rvalues-and-temporaries) referring to the value of that field.
When the field is mutable, it can be [assigned](#assignment-expressions) to.

When the type of the expression to the left of the dot is a pointer to a record or structure,
it is automatically derferenced to make the field access possible.


### Vector expressions

~~~~~~~~{.ebnf .gram}
vec_expr : '[' "mut" ? [ expr [ ',' expr ] * ] ? ']'
~~~~~~~~

A [_vector_](#vector-types) _expression_ is written by enclosing zero or
more comma-separated expressions of uniform type in square brackets.
The keyword `mut` can be written after the opening bracket to
indicate that the elements of the resulting vector may be mutated.
When no mutability is specified, the vector is immutable.

~~~~
[1, 2, 3, 4];
["a", "b", "c", "d"];
[mut 0u8, 0u8, 0u8, 0u8];
~~~~

### Index expressions

~~~~~~~~{.ebnf .gram}
idx_expr : expr '[' expr ']'
~~~~~~~~


[Vector](#vector-types)-typed expressions can be indexed by writing a
square-bracket-enclosed expression (the index) after them. When the
vector is mutable, the resulting [lvalue](#lvalues-rvalues-and-temporaries) can be assigned to.

Indices are zero-based, and may be of any integral type. Vector access
is bounds-checked at run-time. When the check fails, it will put the
task in a _failing state_.

~~~~
# do task::spawn_unlinked {

([1, 2, 3, 4])[0];
([mut 'x', 'y'])[1] = 'z';
(["a", "b"])[10]; // fails

# }
~~~~

### Unary operator expressions

Rust defines six symbolic unary operators,
in addition to the unary [copy](#unary-copy-expressions) and [move](#unary-move-expressions) operators.
They are all written as prefix operators, before the expression they apply to.

`-`
  : Negation. May only be applied to numeric types.
`*`
  : Dereference. When applied to a [pointer](#pointer-types) it denotes the pointed-to location.
    For pointers to mutable locations, the resulting [lvalue](#lvalues-rvalues-and-temporaries) can be assigned to.
    For [enums](#enumerated-types) that have only a single variant, containing a single parameter,
    the dereference operator accesses this parameter.
`!`
  : Logical negation. On the boolean type, this flips between `true` and
    `false`. On integer types, this inverts the individual bits in the
    two's complement representation of the value.
`@` and `~`
  :  [Boxing](#pointer-types) operators. Allocate a box to hold the value they are applied to,
     and store the value in it. `@` creates a managed box, whereas `~` creates an owned box.
`&`
  : Borrow operator. Returns a borrowed pointer, pointing to its operand.
    The operand of a borrowed pointer is statically proven to outlive the resulting pointer.
    If the borrow-checker cannot prove this, it is a compilation error.

### Binary operator expressions

~~~~~~~~{.ebnf .gram}
binop_expr : expr binop expr ;
~~~~~~~~

Binary operators expressions are given in terms of
[operator precedence](#operator-precedence).

#### Arithmetic operators

Binary arithmetic expressions are syntactic sugar for calls to built-in traits,
defined in the `core::ops` module of the `core` library.
This means that arithmetic operators can be overridden for user-defined types.
The default meaning of the operators on standard types is given here.

`+`
  : Addition and vector/string concatenation.
    Calls the `add` method on the `core::ops::Add` trait.
`-`
  : Subtraction.
    Calls the `sub` method on the `core::ops::Sub` trait.
`*`
  : Multiplication.
    Calls the `mul` method on the `core::ops::Mul` trait.
`/`
  : Division.
    Calls the `div` method on the `core::ops::Div` trait.
`%`
  : Modulo (a.k.a. "remainder").
    Calls the `modulo` method on the `core::ops::Modulo` trait.

#### Bitwise operators

Bitwise operators are, like the [arithmetic operators](#arithmetic-operators),
syntactic sugar for calls to built-in traits.
This means that bitwise operators can be overridden for user-defined types.
The default meaning of the operators on standard types is given here.

`&`
  : And.
    Calls the `bitand` method on the `core::ops::BitAnd` trait.
`|`
  : Inclusive or.
    Calls the `bitor` method on the `core::ops::BitOr` trait.
`^`
  : Exclusive or.
    Calls the `bitxor` method on the `core::ops::BitXor` trait.
`<<`
  : Logical left shift.
    Calls the `shl` method on the `core::ops::Shl` trait.
`>>`
  : Logical right shift.
    Calls the `shr` method on the `core::ops::Shr` trait.

#### Lazy boolean operators

The operators `||` and `&&` may be applied to operands of boolean
type. The first performs the 'or' operation, and the second the 'and'
operation. They differ from `|` and `&` in that the right-hand operand
is only evaluated when the left-hand operand does not already
determine the outcome of the expression. That is, `||` only evaluates
its right-hand operand when the left-hand operand evaluates to `false`,
and `&&` only when it evaluates to `true`.

#### Comparison operators

Comparison operators are, like the [arithmetic operators](#arithmetic-operators),
and [bitwise operators](#bitwise-operators),
syntactic sugar for calls to built-in traits.
This means that comparison operators can be overridden for user-defined types.
The default meaning of the operators on standard types is given here.

`==`
  : Equal to.
    Calls the `eq` method on the `core::cmp::Eq` trait.
`!=`
  : Unequal to.
    Calls the `ne` method on the `core::cmp::Eq` trait.
`<`
  : Less than.
    Calls the `lt` method on the `core::cmp::Ord` trait.
`>`
  : Greater than.
    Calls the `gt` method on the `core::cmp::Ord` trait.
`<=`
  : Less than or equal.
    Calls the `le` method on the `core::cmp::Ord` trait.
`>=`
  : Greater than or equal.
    Calls the `ge` method on the `core::cmp::Ord` trait.


#### Type cast expressions

A type cast expression is denoted with the binary operator `as`.

Executing an `as` expression casts the value on the left-hand side to the type
on the right-hand side.

A numeric value can be cast to any numeric type.
A raw pointer value can be cast to or from any integral type or raw pointer type.
Any other cast is unsupported and will fail to compile.

An example of an `as` expression:

~~~~
# fn sum(v: &[float]) -> float { 0.0 }
# fn len(v: &[float]) -> int { 0 }

fn avg(v: &[float]) -> float {
  let sum: float = sum(v);
  let sz: float = len(v) as float;
  return sum / sz;
}
~~~~


#### Binary move expressions

A _binary move expression_ consists of an [lvalue](#lvalues-rvalues-and-temporaries) followed by a left-pointing
arrow (`<-`) and an [rvalue](#lvalues-rvalues-and-temporaries) expression.

Evaluating a move expression causes, as a side effect,
the rvalue to be *moved* into the lvalue.
If the rvalue was itself an lvalue, it must be a local variable,
as it will be de-initialized in the process.

Evaluating a move expression does not change reference counts,
nor does it cause a deep copy of any owned structure pointed to by the moved rvalue.
Instead, the move expression represents an indivisible *transfer of ownership*
from the right-hand-side to the left-hand-side of the expression.
No allocation or destruction is entailed.

An example of three different move expressions:

~~~~~~~~
# let mut x = &[mut 0];
# let a = &[mut 0];
# let b = 0;
# let y = {mut z: 0};
# let c = 0;
# let i = 0;

x <- a;
x[i] <- b;
y.z <- c;
~~~~~~~~

#### Swap expressions

A _swap expression_ consists of an [lvalue](#lvalues-rvalues-and-temporaries) followed by a bi-directional arrow (`<->`) and another [lvalue](#lvalues-rvalues-and-temporaries).

Evaluating a swap expression causes, as a side effect, the values held in the left-hand-side and right-hand-side [lvalues](#lvalues-rvalues-and-temporaries) to be exchanged indivisibly.

Evaluating a swap expression neither changes reference counts,
nor deeply copies any owned structure pointed to by the moved [rvalue](#lvalues-rvalues-and-temporaries).
Instead, the swap expression represents an indivisible *exchange of ownership*,
between the right-hand-side and the left-hand-side of the expression.
No allocation or destruction is entailed.

An example of three different swap expressions:

~~~~~~~~
# let mut x = &[mut 0];
# let mut a = &[mut 0];
# let i = 0;
# let y = {mut z: 0};
# let b = {mut c: 0};

x <-> a;
x[i] <-> a[i];
y.z <-> b.c;
~~~~~~~~


#### Assignment expressions

An _assignment expression_ consists of an [lvalue](#lvalues-rvalues-and-temporaries) expression followed by an
equals sign (`=`) and an [rvalue](#lvalues-rvalues-and-temporaries) expression.

Evaluating an assignment expression is equivalent to evaluating a [binary move
expression](#binary-move-expressions) applied to a [unary copy
expression](#unary-copy-expressions). For example, the following two
expressions have the same effect:

~~~~
# let mut x = 0;
# let y = 0;

x = y;
x <- copy y;
~~~~

The former is just more terse and familiar.

#### Compound assignment expressions

The `+`, `-`, `*`, `/`, `%`, `&`, `|`, `^`, `<<`, and `>>`
operators may be composed with the `=` operator. The expression `lval
OP= val` is equivalent to `lval = lval OP val`. For example, `x = x +
1` may be written as `x += 1`.

Any such expression always has the [`nil`](#primitive-types) type.

#### Operator precedence

The precedence of Rust binary operators is ordered as follows, going
from strong to weak:

~~~~ {.precedence}
* / %
as
+ -
<< >>
&
^
|
< > <= >=
== !=
&&
||
= <- <->
~~~~

Operators at the same precedence level are evaluated left-to-right.

### Grouped expressions

An expression enclosed in parentheses evaluates to the result of the enclosed
expression.  Parentheses can be used to explicitly specify evaluation order
within an expression.

~~~~~~~~{.ebnf .gram}
paren_expr : '(' expr ')' ;
~~~~~~~~

An example of a parenthesized expression:

~~~~
let x = (2 + 3) * 4;
~~~~

### Unary copy expressions

~~~~~~~~{.ebnf .gram}
copy_expr : "copy" expr ;
~~~~~~~~

A _unary copy expression_ consists of the unary `copy` operator applied to
some argument expression.

Evaluating a copy expression first evaluates the argument expression, then
copies the resulting value, allocating any memory necessary to hold the new
copy.

[Managed boxes](#pointer-types) (type `@`) are, as usual, shallow-copied,
as are raw and borrowed pointers.
[Owned boxes](#pointer-types), [owned vectors](#vector-types) and similar owned types are deep-copied.

Since the binary [assignment operator](#assignment-expressions) `=` performs a copy implicitly,
the unary copy operator is typically only used to cause an argument to a function to be copied and passed by value.

An example of a copy expression:

~~~~
fn mutate(vec: &[mut int]) {
   vec[0] = 10;
}

let v = &[mut 1,2,3];

mutate(copy v);   // Pass a copy

assert v[0] == 1; // Original was not modified
~~~~

### Unary move expressions

~~~~~~~~{.ebnf .gram}
move_expr : "move" expr ;
~~~~~~~~

A _unary move expression_ is similar to a [unary copy](#unary-copy-expressions) expression,
except that it can only be applied to an [lvalue](#lvalues-rvalues-and-temporaries),
and it performs a _move_ on its operand, rather than a copy.
That is, the memory location denoted by its operand is de-initialized after evaluation,
and the resulting value is a shallow copy of the operand,
even if the operand is an [owning type](#type-kinds).


### Call expressions

~~~~~~~~ {.abnf .gram}
expr_list : [ expr [ ',' expr ]* ] ? ;
paren_expr_list : '(' expr_list ')' ;
call_expr : expr paren_expr_list ;
~~~~~~~~

A _call expression_ invokes a function, providing zero or more input slots and
an optional reference slot to serve as the function's output, bound to the
`lval` on the right hand side of the call. If the function eventually returns,
then the expression completes.

An example of a call expression:

~~~~
# fn add(x: int, y: int) -> int { 0 }

let x: int = add(1, 2);
~~~~

### Lambda expressions

~~~~~~~~ {.abnf .gram}
ident_list : [ ident [ ',' ident ]* ] ? ;
lambda_expr : '|' ident_list '| expr ;
~~~~~~~~

A _lambda expression_ (a.k.a. "anonymous function expression") defines a function and denotes it as a value,
in a single expression.
Lambda expressions are written by prepending a list of identifiers, surrounded by pipe symbols (`|`),
to an expression.

A lambda expression denotes a function mapping parameters to the expression to the right of the `ident_list`.
The identifiers in the `ident_list` are the parameters to the function, with types inferred from context.

Lambda expressions are most useful when passing functions as arguments to other functions,
as an abbreviation for defining and capturing a separate fucntion.

Significantly, lambda expressions _capture their environment_,
which regular [function definitions](#functions) do not.

The exact type of capture depends on the [function type](#function-types) inferred for the lambda expression;
in the simplest and least-expensive form, the environment is captured by reference,
effectively borrowing pointers to all outer variables referenced inside the function.
Other forms of capture include making copies of captured variables,
and moving values from the environment into the lambda expression's captured environment.

An example of a lambda expression:

~~~~
fn ten_times(f: fn(int)) {
    let mut i = 0;
    while i < 10 {
        f(i);
        i += 1;
    }
}

ten_times(|j| io::println(fmt!("hello, %d", j)));

~~~~

### While loops

~~~~~~~~{.ebnf .gram}
while_expr : "while" expr '{' block '}' ;
~~~~~~~~

A `while` loop begins by evaluating the boolean loop conditional expression.
If the loop conditional expression evaluates to `true`, the loop body block
executes and control returns to the loop conditional expression. If the loop
conditional expression evaluates to `false`, the `while` expression completes.

An example:

~~~~
let mut i = 0;

while i < 10 {
    io::println("hello\n");
    i = i + 1;
}
~~~~

### Infinite loops

A `loop` expression denotes an infinite loop:

~~~~~~~~{.ebnf .gram}
loop_expr : "loop" '{' block '}';
~~~~~~~~

### Break expressions

~~~~~~~~{.ebnf .gram}
break_expr : "break" ;
~~~~~~~~

Executing a `break` expression immediately terminates the innermost loop
enclosing it. It is only permitted in the body of a loop.

### Loop expressions

~~~~~~~~{.ebnf .gram}
loop_expr : "loop" ;
~~~~~~~~

Evaluating a `loop` expression immediately terminates the current iteration of
the innermost loop enclosing it, returning control to the loop *head*. In the
case of a `while` loop, the head is the conditional expression controlling the
loop. In the case of a `for` loop, the head is the call-expression controlling
the loop.

A `loop` expression is only permitted in the body of a loop.


### Do expressions

~~~~~~~~{.ebnf .gram}
do_expr : "do" expr [ '|' ident_list '|' ] ? '{' block '}' ;
~~~~~~~~

A _do expression_ provides a more-familiar block-syntax for a [lambda expression](#lambda-expressions),
including a special translation of [return expressions](#return-expressions) inside the supplied block.

The optional `ident_list` and `block` provided in a `do` expression are parsed as though they constitute a lambda expression;
if the `ident_list` is missing, an empty `ident_list` is implied.

The lambda expression is then provided as a _trailing argument_
to the outermost [call](#call-expressions) or [method call](#method-call-expressions) expression
in the `expr` following `do`.
If the `expr` is a [path expression](#path-expressions), it is parsed as though it is a call expression.
If the `expr` is a [field expression](#field-expressions), it is parsed as though it is a method call expression.

In this example, both calls to `f` are equivalent:

~~~~
# fn f(f: fn(int)) { }
# fn g(i: int) { }

f(|j| g(j));

do f |j| {
    g(j);
}
~~~~


### For expressions

~~~~~~~~{.ebnf .gram}
for_expr : "for" expr [ '|' ident_list '|' ] ? '{' block '}' ;
~~~~~~~~

A _for expression_ is similar to a [`do` expression](#do-expressions),
in that it provides a special block-form of lambda expression,
suited to passing the `block` function to a higher-order function implementing a loop.

Like a `do` expression, a `return` expression inside a `for` expresison is rewritten,
to access a local flag that causes an early return in the caller.

Additionally, any occurrence of a [return expression](#return-expressions)
inside the `block` of a `for` expression is rewritten
as a reference to an (anonymous) flag set in the caller's environment,
which is checked on return from the `expr` and, if set,
causes a corresponding return from the caller.
In this way, the meaning of `return` statements in language built-in control blocks is preserved,
if they are rewritten using lambda functions and `do` expressions as abstractions.

Like `return` expressions, any [`break`](#break-expressions) and [`loop`](#loop-expressions) expressions
are rewritten inside `for` expressions, with a combination of local flag variables,
and early boolean-valued returns from the `block` function,
such that the meaning of `break` and `loop` is preserved in a primitive loop
when rewritten as a `for` loop controlled by a higher order function.

An example a for loop:

~~~~
# type foo = int;
# fn bar(f: foo) { }
# let a = 0, b = 0, c = 0;

let v: &[foo] = &[a, b, c];

for v.each |e| {
    bar(*e);
}
~~~~


### If expressions

~~~~~~~~{.ebnf .gram}
if_expr : "if" expr '{' block '}'
          else_tail ? ;

else_tail : "else" [ if_expr
                   | '{' block '}' ] ;
~~~~~~~~

An `if` expression is a conditional branch in program control. The form of
an `if` expression is a condition expression, followed by a consequent
block, any number of `else if` conditions and blocks, and an optional
trailing `else` block. The condition expressions must have type
`bool`. If a condition expression evaluates to `true`, the
consequent block is executed and any subsequent `else if` or `else`
block is skipped. If a condition expression evaluates to `false`, the
consequent block is skipped and any subsequent `else if` condition is
evaluated. If all `if` and `else if` conditions evaluate to `false`
then any `else` block is executed.


### Match expressions

~~~~~~~~{.ebnf .gram}
match_expr : "match" expr '{' match_arm [ '|' match_arm ] * '}' ;

match_arm : match_pat '=>' [ expr "," | '{' block '}' ] ;

match_pat : pat [ ".." pat ] ? [ "if" expr ] ;
~~~~~~~~


A `match` expression branches on a *pattern*. The exact form of matching that
occurs depends on the pattern. Patterns consist of some combination of
literals, destructured enum constructors, structures, records and tuples, variable binding
specifications, wildcards (`*`), and placeholders (`_`). A `match` expression has a *head
expression*, which is the value to compare to the patterns. The type of the
patterns must equal the type of the head expression.

In a pattern whose head expression has an `enum` type, a placeholder (`_`) stands for a
*single* data field, whereas a wildcard `*` stands for *all* the fields of a particular
variant. For example:

~~~~
enum List<X> { Nil, Cons(X, @List<X>) }

let x: List<int> = Cons(10, @Cons(11, @Nil));

match x {
    Cons(_, @Nil) => fail ~"singleton list",
    Cons(*)       => return,
    Nil           => fail ~"empty list"
}
~~~~

The first pattern matches lists constructed by applying `Cons` to any head value, and a
tail value of `@Nil`. The second pattern matches _any_ list constructed with `Cons`,
ignoring the values of its arguments. The difference between `_` and `*` is that the pattern `C(_)` is only type-correct if
`C` has exactly one argument, while the pattern `C(*)` is type-correct for any enum variant `C`, regardless of how many arguments `C` has.

To execute an `match` expression, first the head expression is evaluated, then
its value is sequentially compared to the patterns in the arms until a match
is found. The first arm with a matching pattern is chosen as the branch target
of the `match`, any variables bound by the pattern are assigned to local
variables in the arm's block, and control enters the block.

An example of an `match` expression:


~~~~
# fn process_pair(a: int, b: int) { }
# fn process_ten() { }

enum List<X> { Nil, Cons(X, @List<X>) }

let x: List<int> = Cons(10, @Cons(11, @Nil));

match x {
    Cons(a, @Cons(b, _)) => {
        process_pair(a,b);
    }
    Cons(10, _) => {
        process_ten();
    }
    Nil => {
        return;
    }
    _ => {
        fail;
    }
}
~~~~

Records and structures can also be pattern-matched and their fields bound to variables.
When matching fields of a record, the fields being matched are specified
first, then a placeholder (`_`) represents the remaining fields.

~~~~
# type options = {choose: bool, size: ~str};
# type player = {player: ~str, stats: (), options: options};
# fn load_stats() { }
# fn choose_player(r: player) { }
# fn next_player() { }

fn main() {
    let r = {
        player: ~"ralph",
        stats: load_stats(),
        options: {
            choose: true,
            size: ~"small"
        }
    };

    match r {
      {options: {choose: true, _}, _} => {
        choose_player(r)
      }
      {player: p, options: {size: ~"small", _}, _} => {
        log(info, p + ~" is small");
      }
      _ => {
        next_player();
      }
    }
}
~~~~

Multiple match patterns may be joined with the `|` operator.  A
range of values may be specified with `..`. For example:

~~~~
# let x = 2;

let message = match x {
  0 | 1  => "not many",
  2 .. 9 => "a few",
  _      => "lots"
};
~~~~

Finally, match patterns can accept *pattern guards* to further refine the
criteria for matching a case. Pattern guards appear after the pattern and
consist of a bool-typed expression following the `if` keyword. A pattern
guard may refer to the variables bound within the pattern they follow.

~~~~
# let maybe_digit = Some(0);
# fn process_digit(i: int) { }
# fn process_other(i: int) { }

let message = match maybe_digit {
  Some(x) if x < 10 => process_digit(x),
  Some(x) => process_other(x),
  None => fail
};
~~~~


### Fail expressions

~~~~~~~~{.ebnf .gram}
fail_expr : "fail" expr ? ;
~~~~~~~~

Evaluating a `fail` expression causes a task to enter the *failing* state. In
the *failing* state, a task unwinds its stack, destroying all frames and
running all destructors until it reaches its entry frame, at which point it
halts execution in the *dead* state.


### Return expressions

~~~~~~~~{.ebnf .gram}
return_expr : "return" expr ? ;
~~~~~~~~

Return expressions are denoted with the keyword `return`. Evaluating a `return`
expression moves its argument into the output slot of the current
function, destroys the current function activation frame, and transfers
control to the caller frame.

An example of a `return` expression:

~~~~
fn max(a: int, b: int) -> int {
   if a > b {
      return a;
   }
   return b;
}
~~~~

### Log expressions

~~~~~~~~{.ebnf .gram}
log_expr : "log" '(' level ',' expr ')' ;
~~~~~~~~

Evaluating a `log` expression may, depending on runtime configuration, cause a
value to be appended to an internal diagnostic logging buffer provided by the
runtime or emitted to a system console. Log expressions are enabled or
disabled dynamically at run-time on a per-task and per-item basis. See
[logging system](#logging-system).

Each `log` expression must be provided with a *level* argument in
addition to the value to log. The logging level is a `u32` value, where
lower levels indicate more-urgent levels of logging. By default, the lowest
four logging levels (`0_u32 ... 3_u32`) are predefined as the constants
`error`, `warn`, `info` and `debug` in the `core` library.

Additionally, the macros `error!`, `warn!`, `info!` and `debug!` are defined
in the default syntax-extension namespace. These expand into calls to the
logging facility composed with calls to the `fmt!` string formatting
syntax-extension.

The following examples all produce the same output, logged at the `error`
logging level:

~~~~
# let filename = "bulbasaur";

// Full version, logging a value.
log(core::error, ~"file not found: " + filename);

// Log-level abbreviated, since core::* is used by default.
log(error, ~"file not found: " + filename);

// Formatting the message using a format-string and fmt!
log(error, fmt!("file not found: %s", filename));

// Using the error! macro, that expands to the previous call.
error!("file not found: %s", filename);
~~~~

A `log` expression is *not evaluated* when logging at the specified logging-level, module or task is disabled at runtime.
This makes inactive `log` expressions very cheap;
they should be used extensively in Rust code, as diagnostic aids,
as they add little overhead beyond a single integer-compare and branch at runtime.

Logging is presently implemented as a language built-in feature,
as it makes use of compiler-provided, per-module data tables and flags.
In the future, logging will move into a library, and will no longer be a core expression type.
It is therefore recommended to use the macro forms of logging (`error!`, `debug!`, etc.) to minimize disruption in code that uses logging.


### Assert expressions

~~~~~~~~{.ebnf .gram}
assert_expr : "assert" expr ;
~~~~~~~~

> **Note:** In future versions of Rust, `assert` will be changed from a full expression to a macro.

An `assert` expression causes the program to fail if its `expr` argument evaluates to `false`.
The failure carries string representation of the false expression.

# Type system

## Types

Every slot, item and value in a Rust program has a type. The _type_ of a *value*
defines the interpretation of the memory holding it.

Built-in types and type-constructors are tightly integrated into the language,
in nontrivial ways that are not possible to emulate in user-defined
types. User-defined types have limited capabilities.

### Primitive types

The primitive types are the following:

* The "nil" type `()`, having the single "nil" value `()`.^[The "nil" value
  `()` is *not* a sentinel "null pointer" value for reference slots; the "nil"
  type is the implicit return type from functions otherwise lacking a return
  type, and can be used in other contexts (such as message-sending or
  type-parametric code) as a zero-size type.]
* The boolean type `bool` with values `true` and `false`.
* The machine types.
* The machine-dependent integer and floating-point types.

#### Machine types

The machine types are the following:


* The unsigned word types `u8`, `u16`, `u32` and `u64`, with values drawn from
  the integer intervals $[0, 2^8 - 1]$, $[0, 2^{16} - 1]$, $[0, 2^{32} - 1]$ and
  $[0, 2^{64} - 1]$ respectively.

* The signed two's complement word types `i8`, `i16`, `i32` and `i64`, with
  values drawn from the integer intervals $[-(2^7), 2^7 - 1]$,
  $[-(2^{15}), 2^{15} - 1]$, $[-(2^{31}), 2^{31} - 1]$, $[-(2^{63}), 2^{63} - 1]$
  respectively.

* The IEEE 754-2008 `binary32` and `binary64` floating-point types: `f32` and
  `f64`, respectively.

#### Machine-dependent integer types

The Rust type `uint`^[A Rust `uint` is analogous to a C99 `uintptr_t`.] is an
unsigned integer type with target-machine-dependent size. Its size, in
bits, is equal to the number of bits required to hold any memory address on
the target machine.

The Rust type `int`^[A Rust `int` is analogous to a C99 `intptr_t`.] is a
two's complement signed integer type with target-machine-dependent size. Its
size, in bits, is equal to the size of the rust type `uint` on the same target
machine.


#### Machine-dependent floating point type

The Rust type `float` is a machine-specific type equal to one of the supported
Rust floating-point machine types (`f32` or `f64`). It is the largest
floating-point type that is directly supported by hardware on the target
machine, or if the target machine has no floating-point hardware support, the
largest floating-point type supported by the software floating-point library
used to support the other floating-point machine types.

Note that due to the preference for hardware-supported floating-point, the
type `float` may not be equal to the largest *supported* floating-point type.


### Textual types

The types `char` and `str` hold textual data.

A value of type `char` is a Unicode character, represented as a 32-bit
unsigned word holding a UCS-4 codepoint.

A value of type `str` is a Unicode string, represented as a vector of 8-bit
unsigned bytes holding a sequence of UTF-8 codepoints.
Since `str` is of indefinite size, it is not a _first class_ type,
but can only be instantiated through a pointer type,
such as `&str`, `@str` or `~str`.


### Tuple types

The tuple type-constructor forms a new heterogeneous product of values similar
to the record type-constructor. The differences are as follows:

* tuple elements cannot be mutable, unlike record fields
* tuple elements are not named and can be accessed only by pattern-matching

Tuple types and values are denoted by listing the types or values of their
elements, respectively, in a parenthesized, comma-separated
list. Single-element tuples are not legal; all tuples have two or more values.

The members of a tuple are laid out in memory contiguously, like a record, in
order specified by the tuple type.

An example of a tuple type and its use:

~~~~
type Pair = (int,&str);
let p: Pair = (10,"hello");
let (a, b) = p;
assert b != "world";
~~~~


### Vector types

The vector type-constructor represents a homogeneous array of values of a given type.
A vector has a fixed size.
A vector type can be accompanied by _definite_ size, written with a trailing asterisk and integer literal, such as `[int * 10]`.
Such a definite-sized vector can be treated as a first class type since its size is known statically.
A vector without such a size is said to be of _indefinite_ size,
and is therefore not a _first class_ type,
can only be instantiated through a pointer type,
such as `&[T]`, `@[T]` or `~[T]`.
The kind of a vector type depends on the kind of its member type, as with other simple structural types.

An example of a vector type and its use:

~~~~
let v: &[int] = &[7, 5, 3];
let i: int = v[2];
assert (i == 3);
~~~~

All accessible elements of a vector are always initialized, and access to a vector is always bounds-checked.
In the case of a definite-


### Structure types

A `struct` *type* is a heterogeneous product of other types, called the *fields* of the type.
^[`struct` types are analogous `struct` types in C,
the *record* types of the ML family,
or the *structure* types of the Lisp family.]

New instances of a `struct` can be constructed with a [struct expression](#struct-expressions).

The memory order of fields in a `struct` is given by the item defining it.
Fields may be given in any order in a corresponding struct *expression*;
the resulting `struct` value will always be laid out in memory in the order specified by the corresponding *item*.

The fields of a `struct` may be qualified by [visibility modifiers](#visibility-modifiers),
to restrict access to implementation-private data in a structure.


### Enumerated types

An *enumerated type* is a nominal, heterogeneous disjoint union type,
denoted by the name of an [`enum` item](#enumerations).
^[The `enum` type is analogous to a `data` constructor declaration in ML,
or a *pick ADT* in Limbo.]

An [`enum` item](#enumerations) declares both the type and a number of *variant constructors*,
each of which is independently named and takes an optional tuple of arguments.

New instances of an `enum` can be constructed by calling one of the variant constructors,
in a [call expression](#call-expressions).

Any `enum` value consumes as much memory as the largest variant constructor for its corresponding `enum` type.

Enum types cannot be denoted *structurally* as types,
but must be denoted by named reference to an [`enum` item](#enumerations).


### Recursive types

Nominal types -- [enumerations](#enumerated-types) and [structures](#structure-types) -- may be recursive.
That is, each `enum` constructor or `struct` field may refer, directly or indirectly, to the enclosing `enum` or `struct` type itself.
Such recursion has restrictions:

* Recursive types must include a nominal type in the recursion
  (not mere [type definitions](#type-definitions),
   or other structural types such as [vectors](#vector-types) or [tuples](#tuple-types)).
* A recursive `enum` item must have at least one non-recursive constructor
  (in order to give the recursion a basis case).
* The size of a recursive type must be finite;
  in other words the recursive fields of the type must be [pointer types](#pointer-types).
* Recursive type definitions can cross module boundaries, but not module *visibility* boundaries,
  or crate boundaries (in order to simplify the module system and type checker).

An example of a *recursive* type and its use:

~~~~
enum List<T> {
  Nil,
  Cons(T, @List<T>)
}

let a: List<int> = Cons(7, @Cons(13, @Nil));
~~~~


### Record types

> **Note:** Records are not nominal types, thus do not directly support recursion, visibility control,
> out-of-order field initialization, or coherent trait implementation.
> Records are therefore deprecared and will be removed in future versions of Rust.
> [Structure types](#structure-types) should be used instead.

The record type-constructor forms a new heterogeneous product of values.
Fields of a record type are accessed by name and are arranged in memory in the order specified by the record type.

An example of a record type and its use:

~~~~
type Point = {x: int, y: int};
let p: Point = {x: 10, y: 11};
let px: int = p.x;
~~~~


### Pointer types

All pointers in Rust are explicit first-class values.
They can be copied, stored into data structures, and returned from functions.
There are four varieties of pointer in Rust:

Managed pointers (`@`)
  : These point to managed heap allocations (or "boxes") in the task-local, managed heap.
    Managed pointers are written `@content`,
    for example `@int` means a managed pointer to a managed box containing an integer.
    Copying a managed pointer is a "shallow" operation:
    it involves only copying the pointer itself
    (as well as any reference-count or GC-barriers required by the managed heap).
    Dropping a managed pointer does not necessarily release the box it points to;
    the lifecycles of managed boxes are subject to an unspecified garbage collection algorithm.

Owning pointers (`~`)
  : These point to owned heap allocations (or "boxes") in the shared, inter-task heap.
    Each owned box has a single owning pointer; pointer and pointee retain a 1:1 relationship at all times.
    Owning pointers are written `~content`,
    for example `~int` means an owning pointer to an owned box containing an integer.
    Copying an owned box is a "deep" operation:
    it involves allocating a new owned box and copying the contents of the old box into the new box.
    Releasing an owning pointer immediately releases its corresponding owned box.

Borrowed pointers (`&`)
  : These point to memory _owned by some other value_.
    Borrowed pointers arise by (automatic) conversion from owning pointers, managed pointers,
    or by applying the borrowing operator `&` to some other value,
    including [lvalues, rvalues or temporaries](#lvalues-rvalues-and-temporaries).
    Borrowed pointers are written `&content`, or in some cases `&f/content` for some lifetime-variable `f`,
    for example `&int` means a borrowed pointer to an integer.
    Copying a borrowed pointer is a "shallow" operation:
    it involves only copying the pointer itself.
    Releasing a borrowed pointer typically has no effect on the value it points to,
    with the exception of temporary values,
    which are released when the last borrowed pointer to them is released.

Raw pointers (`*`)
  : Raw pointers are pointers without safety or liveness guarantees.
    Raw pointers are written `*content`,
    for example `*int` means a raw pointer to an integer.
    Copying or dropping a raw pointer is has no effect on the lifecycle of any other value.
    Dereferencing a raw pointer or converting it to any other pointer type is an [`unsafe` operation](#unsafe-functions).
    Raw pointers are generally discouraged in Rust code;
    they exist to support interoperability with foreign code,
    and writing performance-critical or low-level functions.


### Function types

The function type-constructor `fn` forms new function types. A function type
consists of a set of function-type modifiers (`pure`, `unsafe`, `extern`, etc.),
a sequence of input slots and an output slot.

An example of a `fn` type:

~~~~~~~~
fn add(x: int, y: int) -> int {
  return x + y;
}

let mut x = add(5,7);

type Binop = fn(int,int) -> int;
let bo: Binop = add;
x = bo(5,7);
~~~~~~~~

### Trait types

Every trait item (see [traits](#traits)) defines a type with the same name
as the trait. For a trait `T`, cast expressions introduce values of type `T`:

~~~~~~~~
trait Printable {
  fn to_str() -> ~str;
}

impl int: Printable {
  fn to_str() -> ~str { int::to_str(self, 10) }
}

fn print(a: @Printable) {
   io::println(a.to_str());
}

fn main() {
   print(@10 as @Printable);
}
~~~~~~~~

In this example, the trait `Printable` occurs as a type in both the type signature of
`print`, and the cast expression in `main`.

### Type parameters

Within the body of an item that has type parameter declarations, the names of its type parameters are types:

~~~~~~~
fn map<A: Copy, B: Copy>(f: fn(A) -> B, xs: &[A]) -> ~[B] {
   if xs.len() == 0 { return ~[]; }
   let first: B = f(xs[0]);
   let rest: ~[B] = map(f, xs.slice(1, xs.len()));
   return ~[first] + rest;
}
~~~~~~~

Here, `first` has type `B`, referring to `map`'s `B` type parameter; and `rest` has
type `~[B]`, a vector type with element type `B`.

### Self types

The special type `self` has a meaning within methods inside an
impl item. It refers to the type of the implicit `self` argument. For
example, in:

~~~~~~
trait Printable {
  fn to_str() -> ~str;
}

impl ~str: Printable {
  fn to_str() -> ~str { self }
}
~~~~~~

`self` refers to the value of type `~str` that is the receiver for a
call to the method `to_str`.

## Type kinds

Types in Rust are categorized into kinds, based on various properties of the components of the type.
The kinds are:

`Const`
  : Types of this kind are deeply immutable;
    they contain no mutable memory locations directly or indirectly via pointers.
`Send`
  : Types of this kind can be safely sent between tasks.
    This kind includes scalars, owning pointers, owned closures, and
    structural types containing only other sendable types.
`Owned`
  : Types of this kind do not contain any borrowed pointers;
    this can be a useful guarantee for code that breaks borrowing assumptions using [`unsafe` operations](#unsafe-functions).    
`Copy`
  : This kind includes all types that can be copied. All types with
    sendable kind are copyable, as are managed boxes, managed closures,
    trait types, and structural types built out of these.
_Default_
  : Types with destructors, closure environments,
    and various other _non-first-class_ types,
    are not copyable at all.
    Such types can usually only be accessed through pointers,
    or in some cases, moved between mutable locations.

Kinds can be supplied as _bounds_ on type parameters, like traits,
in which case the parameter is constrained to types satisfying that kind.

By default, type parameters do not carry any assumed kind-bounds at all.

Any operation that causes a value to be copied requires the type of that value to be of copyable kind,
so the `Copy` bound is frequently required on function type parameters.
For example, this is not a valid program:

~~~~{.xfail-test}
fn box<T>(x: T) -> @T { @x }
~~~~

Putting `x` into a managed box involves copying, and the `T` parameter has the default (non-copyable) kind.
To change that, a bound is declared:

~~~~
fn box<T: Copy>(x: T) -> @T { @x }
~~~~

Calling this second version of `box` on a noncopyable type is not
allowed. When instantiating a type parameter, the kind bounds on the
parameter are checked to be the same or narrower than the kind of the
type that it is instantiated with.

Sending operations are not part of the Rust language, but are
implemented in the library. Generic functions that send values bound
the kind of these values to sendable.

# Memory and concurrency models

Rust has a memory model centered around concurrently-executing _tasks_. Thus
its memory model and its concurrency model are best discussed simultaneously,
as parts of each only make sense when considered from the perspective of the
other.

When reading about the memory model, keep in mind that it is partitioned in
order to support tasks; and when reading about tasks, keep in mind that their
isolation and communication mechanisms are only possible due to the ownership
and lifetime semantics of the memory model.

## Memory model

A Rust program's memory consists of a static set of *items*, a set of
[tasks](#tasks) each with its own *stack*, and a *heap*. Immutable portions of
the heap may be shared between tasks, mutable portions may not.

Allocations in the stack consist of *slots*, and allocations in the heap
consist of *boxes*.


### Memory allocation and lifetime

The _items_ of a program are those functions, modules and types
that have their value calculated at compile-time and stored uniquely in the
memory image of the rust process. Items are neither dynamically allocated nor
freed.

A task's _stack_ consists of activation frames automatically allocated on
entry to each function as the task executes. A stack allocation is reclaimed
when control leaves the frame containing it.

The _heap_ is a general term that describes two separate sets of boxes:
managed boxes -- which may be subject to garbage collection -- and owned
boxes.  The lifetime of an allocation in the heap depends on the lifetime of
the box values pointing to it. Since box values may themselves be passed in
and out of frames, or stored in the heap, heap allocations may outlive the
frame they are allocated within.

### Memory ownership

A task owns all memory it can *safely* reach through local variables,
as well as managed, owning and borrowed pointers.

When a task sends a value that has the `Send` trait to another task,
it loses ownership of the value sent and can no longer refer to it.
This is statically guaranteed by the combined use of "move semantics",
and the compiler-checked _meaning_ of the `Send` trait:
it is only instantiated for (transitively) sendable kinds of data constructor and pointers,
never including managed or borrowed pointers.

When a stack frame is exited, its local allocations are all released, and its
references to boxes (both managed and owned) are dropped.

A managed box may (in the case of a recursive, mutable managed type) be cyclic;
in this case the release of memory inside the managed structure may be deferred
until task-local garbage collection can reclaim it. Code can ensure no such
delayed deallocation occurs by restricting itself to owned boxes and similar
unmanaged kinds of data.

When a task finishes, its stack is necessarily empty and it therefore has no
references to any boxes; the remainder of its heap is immediately freed.


### Memory slots

A task's stack contains slots.

A _slot_ is a component of a stack frame, either a function parameter,
a [temporary](#lvalues-rvalues-and-temporaries), or a local variable.

A _local variable_ (or *stack-local* allocation) holds a value directly,
allocated within the stack's memory. The value is a part of the stack frame.

Local variables are immutable unless declared with `let mut`.  The
`mut` keyword applies to all local variables declared within that
declaration (so `let mut x, y` declares two mutable variables, `x` and
`y`).

Local variables are not initialized when allocated; the entire frame worth of
local variables are allocated at once, on frame-entry, in an uninitialized
state. Subsequent statements within a function may or may not initialize the
local variables. Local variables can be used only after they have been
initialized; this is enforced by the compiler.


### Memory boxes

A _box_ is a reference to a heap allocation holding another value. There
are two kinds of boxes: *managed boxes* and *owned boxes*.

A _managed box_ type or value is constructed by the prefix *at* sigil `@`.

An _owned box_ type or value is constructed by the prefix *tilde* sigil `~`.

Multiple managed box values can point to the same heap allocation; copying a
managed box value makes a shallow copy of the pointer (optionally incrementing
a reference count, if the managed box is implemented through
reference-counting).

Owned box values exist in 1:1 correspondence with their heap allocation;
copying an owned box value makes a deep copy of the heap allocation and
produces a pointer to the new allocation.

An example of constructing one managed box type and value, and one owned box
type and value:

~~~~~~~~
let x: @int = @10;
let x: ~int = ~10;
~~~~~~~~

Some operations (such as field selection) implicitly dereference boxes. An
example of an _implicit dereference_ operation performed on box values:

~~~~~~~~
let x = @{y: 10};
assert x.y == 10;
~~~~~~~~

Other operations act on box values as single-word-sized address values. For
these operations, to access the value held in the box requires an explicit
dereference of the box value. Explicitly dereferencing a box is indicated with
the unary *star* operator `*`. Examples of such _explicit dereference_
operations are:

* copying box values (`x = y`)
* passing box values to functions (`f(x,y)`)


An example of an explicit-dereference operation performed on box values:

~~~~~~~~
fn takes_boxed(b: @int) {
}

fn takes_unboxed(b: int) {
}

fn main() {
    let x: @int = @10;
    takes_boxed(x);
    takes_unboxed(*x);
}
~~~~~~~~

## Tasks

An executing Rust program consists of a tree of tasks. A Rust _task_
consists of an entry function, a stack, a set of outgoing communication
channels and incoming communication ports, and ownership of some portion of
the heap of a single operating-system process.

Multiple Rust tasks may coexist in a single operating-system process. The
runtime scheduler maps tasks to a certain number of operating-system threads;
by default a number of threads is used based on the number of concurrent
physical CPUs detected at startup, but this can be changed dynamically at
runtime. When the number of tasks exceeds the number of threads -- which is
quite possible -- the tasks are multiplexed onto the threads ^[This is an M:N
scheduler, which is known to give suboptimal results for CPU-bound concurrency
problems. In such cases, running with the same number of threads as tasks can
give better results. The M:N scheduling in Rust exists to support very large
numbers of tasks in contexts where threads are too resource-intensive to use
in a similar volume. The cost of threads varies substantially per operating
system, and is sometimes quite low, so this flexibility is not always worth
exploiting.]


### Communication between tasks

Rust tasks are isolated and generally unable to interfere with one another's memory directly,
except through [`unsafe` code](#unsafe-functions).
All contact between tasks is mediated by safe forms of ownership transfer,
and data races on memory are prohibited by the type system.

Inter-task communication and co-ordination facilities are provided in the standard library.
These include:

  - synchronous and asynchronous communication channels with various communication topologies
  - read-only and read-write shared variables with various safe mutual exclusion patterns
  - simple locks and semaphores

When such facilities carry values, the values are restricted to the [`Send` type-kind](#type-kinds).
Restricting communication interfaces to this kind ensures that no borrowed or managed pointers move between tasks.
Thus access to an entire data structure can be mediated through its owning "root" value;
no further locking or copying is required to avoid data races within the substructure of such a value.


### Task lifecycle

The _lifecycle_ of a task consists of a finite set of states and events
that cause transitions between the states. The lifecycle states of a task are:

* running
* blocked
* failing
* dead

A task begins its lifecycle -- once it has been spawned -- in the *running*
state. In this state it executes the statements of its entry function, and any
functions called by the entry function.

A task may transition from the *running* state to the *blocked*
state any time it makes a blocking communication call. When the
call can be completed -- when a message arrives at a sender, or a
buffer opens to receive a message -- then the blocked task will
unblock and transition back to *running*.

A task may transition to the *failing* state at any time, due being
killed by some external event or internally, from the evaluation of a
`fail` expression. Once *failing*, a task unwinds its stack and
transitions to the *dead* state. Unwinding the stack of a task is done by
the task itself, on its own control stack. If a value with a destructor is
freed during unwinding, the code for the destructor is run, also on the task's
control stack. Running the destructor code causes a temporary transition to a
*running* state, and allows the destructor code to cause any subsequent
state transitions.  The original task of unwinding and failing thereby may
suspend temporarily, and may involve (recursive) unwinding of the stack of a
failed destructor. Nonetheless, the outermost unwinding activity will continue
until the stack is unwound and the task transitions to the *dead*
state. There is no way to "recover" from task failure.  Once a task has
temporarily suspended its unwinding in the *failing* state, failure
occurring from within this destructor results in *hard* failure.  The
unwinding procedure of hard failure frees resources but does not execute
destructors.  The original (soft) failure is still resumed at the point where
it was temporarily suspended.

A task in the *dead* state cannot transition to other states; it exists
only to have its termination status inspected by other tasks, and/or to await
reclamation when the last reference to it drops.


### Task scheduling

The currently scheduled task is given a finite *time slice* in which to
execute, after which it is *descheduled* at a loop-edge or similar
preemption point, and another task within is scheduled, pseudo-randomly.

An executing task can yield control at any time, by making a library call to
`core::task::yield`, which deschedules it immediately. Entering any other
non-executing state (blocked, dead) similarly deschedules the task.


### Spawning tasks

A call to `core::task::spawn`, passing a 0-argument function as its single
argument, causes the runtime to construct a new task executing the passed
function. The passed function is referred to as the _entry function_ for
the spawned task, and any captured environment it carries is moved from the
spawning task to the spawned task before the spawned task begins execution.

The result of a `spawn` call is a `core::task::Task` value.

An example of a `spawn` call:

~~~~
let po = comm::Port();
let ch = comm::Chan(&po);

do task::spawn {
    // let task run, do other things
    ...
    comm::send(ch, true);
};

let result = comm::recv(po);
~~~~


### Sending values into channels

Sending a value into a channel is done by a library call to `core::comm::send`,
which takes a channel and a value to send, and moves the value into the
channel's outgoing buffer.

An example of a send:

~~~~
let po = comm::Port();
let ch = comm::Chan(&po);
comm::send(ch, ~"hello, world");
~~~~


### Receiving values from ports

Receiving a value is done by a call to the `recv` method on a value of type
`core::comm::Port`. This call causes the receiving task to enter the *blocked
reading* state until a value arrives in the port's receive queue, at which
time the port deques a value to return, and un-blocks the receiving task.

An example of a *receive*:

~~~~~~~~
# let po = comm::Port();
# let ch = comm::Chan(&po);
# comm::send(ch, ~"");
let s = comm::recv(po);
~~~~~~~~

> **Note:** this communication system will be replaced by a higher-performance system called "pipes",
> in future versions of Rust.


# Runtime services, linkage and debugging


The Rust _runtime_ is a relatively compact collection of C++ and Rust code
that provides fundamental services and datatypes to all Rust tasks at
run-time. It is smaller and simpler than many modern language runtimes. It is
tightly integrated into the language's execution model of memory, tasks,
communication and logging.

> **Note:** The runtime library will merge with the `core` library in future versions of Rust.

### Memory allocation

The runtime memory-management system is based on a _service-provider
interface_, through which the runtime requests blocks of memory from its
environment and releases them back to its environment when they are no longer
in use. The default implementation of the service-provider interface consists
of the C runtime functions `malloc` and `free`.

The runtime memory-management system in turn supplies Rust tasks with
facilities for allocating, extending and releasing stacks, as well as
allocating and freeing boxed values.


### Built in types

The runtime provides C and Rust code to assist with various built-in types,
such as vectors, strings, and the low level communication system (ports,
channels, tasks).

Support for other built-in types such as simple types, tuples, records, and
enums is open-coded by the Rust compiler.



### Task scheduling and communication

The runtime provides code to manage inter-task communication.  This includes
the system of task-lifecycle state transitions depending on the contents of
queues, as well as code to copy values between queues and their recipients and
to serialize values for transmission over operating-system inter-process
communication facilities.


### Logging system

The runtime contains a system for directing [logging
expressions](#log-expressions) to a logging console and/or internal logging
buffers. Logging expressions can be enabled per module.

Logging output is enabled by setting the `RUST_LOG` environment
variable.  `RUST_LOG` accepts a logging specification made up of a
comma-separated list of paths, with optional log levels. For each
module containing log expressions, if `RUST_LOG` contains the path to
that module or a parent of that module, then logs of the appropriate
level will be output to the console.

The path to a module consists of the crate name, any parent modules,
then the module itself, all separated by double colons (`::`).  The
optional log level can be appended to the module path with an equals
sign (`=`) followed by the log level, from 0 to 3, inclusive. Level 0
is the error level, 1 is warning, 2 info, and 3 debug. Any logs
less than or equal to the specified level will be output. If not
specified then log level 3 is assumed.

As an example, to see all the logs generated by the compiler, you would set
`RUST_LOG` to `rustc`, which is the crate name (as specified in its `link`
[attribute](#attributes)). To narrow down the logs to just crate resolution,
you would set it to `rustc::metadata::creader`. To see just error logging
use `rustc=0`.

Note that when compiling either `.rs` or `.rc` files that don't specify a
crate name the crate is given a default name that matches the source file,
with the extension removed. In that case, to turn on logging for a program
compiled from, e.g. `helloworld.rs`, `RUST_LOG` should be set to `helloworld`.

As a convenience, the logging spec can also be set to a special psuedo-crate,
`::help`. In this case, when the application starts, the runtime will
simply output a list of loaded modules containing log expressions, then exit.

The Rust runtime itself generates logging information. The runtime's logs are
generated for a number of artificial modules in the `::rt` psuedo-crate,
and can be enabled just like the logs for any standard module. The full list
of runtime logging modules follows.

* `::rt::mem` Memory management
* `::rt::comm` Messaging and task communication
* `::rt::task` Task management
* `::rt::dom` Task scheduling
* `::rt::trace` Unused
* `::rt::cache` Type descriptor cache
* `::rt::upcall` Compiler-generated runtime calls
* `::rt::timer` The scheduler timer
* `::rt::gc` Garbage collection
* `::rt::stdlib` Functions used directly by the standard library
* `::rt::kern` The runtime kernel
* `::rt::backtrace` Log a backtrace on task failure
* `::rt::callback` Unused


# Appendix: Rationales and design tradeoffs

*TODO*.

# Appendix: Influences and further references

## Influences


>  The essential problem that must be solved in making a fault-tolerant
>  software system is therefore that of fault-isolation. Different programmers
>  will write different modules, some modules will be correct, others will have
>  errors. We do not want the errors in one module to adversely affect the
>  behaviour of a module which does not have any errors.
>
>  &mdash; Joe Armstrong


>  In our approach, all data is private to some process, and processes can
>  only communicate through communications channels. *Security*, as used
>  in this paper, is the property which guarantees that processes in a system
>  cannot affect each other except by explicit communication.
>
>  When security is absent, nothing which can be proven about a single module
>  in isolation can be guaranteed to hold when that module is embedded in a
>  system [...]
>
>  &mdash;  Robert Strom and Shaula Yemini


>  Concurrent and applicative programming complement each other. The
>  ability to send messages on channels provides I/O without side effects,
>  while the avoidance of shared data helps keep concurrent processes from
>  colliding.
>
>  &mdash; Rob Pike


Rust is not a particularly original language. It may however appear unusual
by contemporary standards, as its design elements are drawn from a number of
"historical" languages that have, with a few exceptions, fallen out of
favour. Five prominent lineages contribute the most, though their influences
have come and gone during the course of Rust's development:

* The NIL (1981) and Hermes (1990) family. These languages were developed by
  Robert Strom, Shaula Yemini, David Bacon and others in their group at IBM
  Watson Research Center (Yorktown Heights, NY, USA).

* The Erlang (1987) language, developed by Joe Armstrong, Robert Virding, Claes
  Wikstr&ouml;m, Mike Williams and others in their group at the Ericsson Computer
  Science Laboratory (&Auml;lvsj&ouml;, Stockholm, Sweden) .

* The Sather (1990) language, developed by Stephen Omohundro, Chu-Cheow Lim,
  Heinz Schmidt and others in their group at The International Computer
  Science Institute of the University of California, Berkeley (Berkeley, CA,
  USA).

* The Newsqueak (1988), Alef (1995), and Limbo (1996) family. These
  languages were developed by Rob Pike, Phil Winterbottom, Sean Dorward and
  others in their group at Bell labs Computing Sciences Research Center
  (Murray Hill, NJ, USA).

* The Napier (1985) and Napier88 (1988) family. These languages were
  developed by Malcolm Atkinson, Ron Morrison and others in their group at
  the University of St. Andrews (St. Andrews, Fife, UK).

Additional specific influences can be seen from the following languages:

* The stack-growth implementation of Go.
* The structural algebraic types and compilation manager of SML.
* The attribute and assembly systems of C#.
* The references and deterministic destructor system of C++.
* The memory region systems of the ML Kit and Cyclone.
* The typeclass system of Haskell.
* The lexical identifier rule of Python.
* The block syntax of Ruby.