1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
/* SPDX-License-Identifier: MIT */
/* origin: musl src/math/fma.c, fmaf.c Ported to generic Rust algorithm in 2025, TG. */
use super::generic;
use crate::support::Round;
// Placeholder so we can have `fmaf16` in the `Float` trait.
#[allow(unused)]
#[cfg(f16_enabled)]
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub(crate) fn fmaf16(_x: f16, _y: f16, _z: f16) -> f16 {
unimplemented!()
}
/// Floating multiply add (f32)
///
/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision).
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn fmaf(x: f32, y: f32, z: f32) -> f32 {
select_implementation! {
name: fmaf,
use_arch: any(
all(target_arch = "aarch64", target_feature = "neon"),
target_feature = "sse2",
),
args: x, y, z,
}
generic::fma_wide_round(x, y, z, Round::Nearest).val
}
/// Fused multiply add (f64)
///
/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision).
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn fma(x: f64, y: f64, z: f64) -> f64 {
select_implementation! {
name: fma,
use_arch: any(
all(target_arch = "aarch64", target_feature = "neon"),
target_feature = "sse2",
),
args: x, y, z,
}
generic::fma_round(x, y, z, Round::Nearest).val
}
/// Fused multiply add (f128)
///
/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision).
#[cfg(f128_enabled)]
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn fmaf128(x: f128, y: f128, z: f128) -> f128 {
generic::fma_round(x, y, z, Round::Nearest).val
}
#[cfg(test)]
mod tests {
use super::*;
use crate::support::{CastFrom, CastInto, Float, FpResult, HInt, MinInt, Round, Status};
/// Test the generic `fma_round` algorithm for a given float.
fn spec_test<F>(f: impl Fn(F, F, F) -> F)
where
F: Float,
F: CastFrom<F::SignedInt>,
F: CastFrom<i8>,
F::Int: HInt,
u32: CastInto<F::Int>,
{
let x = F::from_bits(F::Int::ONE);
let y = F::from_bits(F::Int::ONE);
let z = F::ZERO;
// 754-2020 says "When the exact result of (a × b) + c is non-zero yet the result of
// fusedMultiplyAdd is zero because of rounding, the zero result takes the sign of the
// exact result"
assert_biteq!(f(x, y, z), F::ZERO);
assert_biteq!(f(x, -y, z), F::NEG_ZERO);
assert_biteq!(f(-x, y, z), F::NEG_ZERO);
assert_biteq!(f(-x, -y, z), F::ZERO);
}
#[test]
fn spec_test_f32() {
spec_test::<f32>(fmaf);
// Also do a small check that the non-widening version works for f32 (this should ideally
// get tested some more).
spec_test::<f32>(|x, y, z| generic::fma_round(x, y, z, Round::Nearest).val);
}
#[test]
fn spec_test_f64() {
spec_test::<f64>(fma);
let expect_underflow = [
(
hf64!("0x1.0p-1070"),
hf64!("0x1.0p-1070"),
hf64!("0x1.ffffffffffffp-1023"),
hf64!("0x0.ffffffffffff8p-1022"),
),
(
// FIXME: we raise underflow but this should only be inexact (based on C and
// `rustc_apfloat`).
hf64!("0x1.0p-1070"),
hf64!("0x1.0p-1070"),
hf64!("-0x1.0p-1022"),
hf64!("-0x1.0p-1022"),
),
];
for (x, y, z, res) in expect_underflow {
let FpResult { val, status } = generic::fma_round(x, y, z, Round::Nearest);
assert_biteq!(val, res);
assert_eq!(status, Status::UNDERFLOW);
}
}
#[test]
#[cfg(f128_enabled)]
fn spec_test_f128() {
spec_test::<f128>(fmaf128);
}
#[test]
fn issue_263() {
let a = f32::from_bits(1266679807);
let b = f32::from_bits(1300234242);
let c = f32::from_bits(1115553792);
let expected = f32::from_bits(1501560833);
assert_eq!(fmaf(a, b, c), expected);
}
#[test]
fn fma_segfault() {
// These two inputs cause fma to segfault on release due to overflow:
assert_eq!(
fma(
-0.0000000000000002220446049250313,
-0.0000000000000002220446049250313,
-0.0000000000000002220446049250313
),
-0.00000000000000022204460492503126,
);
let result = fma(-0.992, -0.992, -0.992);
//force rounding to storage format on x87 to prevent superious errors.
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
let result = force_eval!(result);
assert_eq!(result, -0.007936000000000007,);
}
#[test]
fn fma_sbb() {
assert_eq!(
fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN),
-3991680619069439e277
);
}
#[test]
fn fma_underflow() {
assert_eq!(
fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320),
0.0,
);
}
}
|