about summary refs log tree commit diff
path: root/library/core/src/fmt/num.rs
blob: 253a7b7587e49b05f9c88fa71369fa8c889dc458 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
//! Integer and floating-point number formatting

use crate::fmt::NumBuffer;
use crate::mem::MaybeUninit;
use crate::num::fmt as numfmt;
use crate::{fmt, str};

/// Formatting of integers with a non-decimal radix.
macro_rules! radix_integer {
    (fmt::$Trait:ident for $Signed:ident and $Unsigned:ident, $prefix:literal, $dig_tab:literal) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl fmt::$Trait for $Unsigned {
            /// Format unsigned integers in the radix.
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                // Check macro arguments at compile time.
                const {
                    assert!($Unsigned::MIN == 0, "need unsigned");
                    assert!($dig_tab.is_ascii(), "need single-byte entries");
                }

                // ASCII digits in ascending order are used as a lookup table.
                const DIG_TAB: &[u8] = $dig_tab;
                const BASE: $Unsigned = DIG_TAB.len() as $Unsigned;
                const MAX_DIG_N: usize = $Unsigned::MAX.ilog(BASE) as usize + 1;

                // Buffer digits of self with right alignment.
                let mut buf = [MaybeUninit::<u8>::uninit(); MAX_DIG_N];
                // Count the number of bytes in buf that are not initialized.
                let mut offset = buf.len();

                // Accumulate each digit of the number from the least
                // significant to the most significant figure.
                let mut remain = *self;
                loop {
                    let digit = remain % BASE;
                    remain /= BASE;

                    offset -= 1;
                    // SAFETY: `remain` will reach 0 and we will break before `offset` wraps
                    unsafe { core::hint::assert_unchecked(offset < buf.len()) }
                    buf[offset].write(DIG_TAB[digit as usize]);
                    if remain == 0 {
                        break;
                    }
                }

                // SAFETY: Starting from `offset`, all elements of the slice have been set.
                let digits = unsafe { slice_buffer_to_str(&buf, offset) };
                f.pad_integral(true, $prefix, digits)
            }
        }

        #[stable(feature = "rust1", since = "1.0.0")]
        impl fmt::$Trait for $Signed {
            /// Format signed integers in the two’s-complement form.
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                fmt::$Trait::fmt(&self.cast_unsigned(), f)
            }
        }
    };
}

/// Formatting of integers with a non-decimal radix.
macro_rules! radix_integers {
    ($Signed:ident, $Unsigned:ident) => {
        radix_integer! { fmt::Binary   for $Signed and $Unsigned, "0b", b"01" }
        radix_integer! { fmt::Octal    for $Signed and $Unsigned, "0o", b"01234567" }
        radix_integer! { fmt::LowerHex for $Signed and $Unsigned, "0x", b"0123456789abcdef" }
        radix_integer! { fmt::UpperHex for $Signed and $Unsigned, "0x", b"0123456789ABCDEF" }
    };
}
radix_integers! { isize, usize }
radix_integers! { i8, u8 }
radix_integers! { i16, u16 }
radix_integers! { i32, u32 }
radix_integers! { i64, u64 }
radix_integers! { i128, u128 }

macro_rules! impl_Debug {
    ($($T:ident)*) => {
        $(
            #[stable(feature = "rust1", since = "1.0.0")]
            impl fmt::Debug for $T {
                #[inline]
                fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                    if f.debug_lower_hex() {
                        fmt::LowerHex::fmt(self, f)
                    } else if f.debug_upper_hex() {
                        fmt::UpperHex::fmt(self, f)
                    } else {
                        fmt::Display::fmt(self, f)
                    }
                }
            }
        )*
    };
}

// The string of all two-digit numbers in range 00..99 is used as a lookup table.
static DECIMAL_PAIRS: &[u8; 200] = b"\
      0001020304050607080910111213141516171819\
      2021222324252627282930313233343536373839\
      4041424344454647484950515253545556575859\
      6061626364656667686970717273747576777879\
      8081828384858687888990919293949596979899";

/// This function converts a slice of ascii characters into a `&str` starting from `offset`.
///
/// # Safety
///
/// `buf` content starting from `offset` index MUST BE initialized and MUST BE ascii
/// characters.
unsafe fn slice_buffer_to_str(buf: &[MaybeUninit<u8>], offset: usize) -> &str {
    // SAFETY: `offset` is always included between 0 and `buf`'s length.
    let written = unsafe { buf.get_unchecked(offset..) };
    // SAFETY: (`assume_init_ref`) All buf content since offset is set.
    // SAFETY: (`from_utf8_unchecked`) Writes use ASCII from the lookup table exclusively.
    unsafe { str::from_utf8_unchecked(written.assume_init_ref()) }
}

macro_rules! impl_Display {
    ($($Signed:ident, $Unsigned:ident),* ; as $T:ident into $fmt_fn:ident) => {

        $(
        const _: () = {
            assert!($Signed::MIN < 0, "need signed");
            assert!($Unsigned::MIN == 0, "need unsigned");
            assert!($Signed::BITS == $Unsigned::BITS, "need counterparts");
            assert!($Signed::BITS <= $T::BITS, "need lossless conversion");
            assert!($Unsigned::BITS <= $T::BITS, "need lossless conversion");
        };

        #[stable(feature = "rust1", since = "1.0.0")]
        impl fmt::Display for $Unsigned {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                #[cfg(not(feature = "optimize_for_size"))]
                {
                    const MAX_DEC_N: usize = $Unsigned::MAX.ilog10() as usize + 1;
                    // Buffer decimals for self with right alignment.
                    let mut buf = [MaybeUninit::<u8>::uninit(); MAX_DEC_N];

                    // SAFETY: `buf` is always big enough to contain all the digits.
                    unsafe { f.pad_integral(true, "", self._fmt(&mut buf)) }
                }
                #[cfg(feature = "optimize_for_size")]
                {
                    // Lossless conversion (with as) is asserted at the top of
                    // this macro.
                    ${concat($fmt_fn, _small)}(*self as $T, true, f)
                }
            }
        }

        #[stable(feature = "rust1", since = "1.0.0")]
        impl fmt::Display for $Signed {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                #[cfg(not(feature = "optimize_for_size"))]
                {
                    const MAX_DEC_N: usize = $Unsigned::MAX.ilog10() as usize + 1;
                    // Buffer decimals for self with right alignment.
                    let mut buf = [MaybeUninit::<u8>::uninit(); MAX_DEC_N];

                    // SAFETY: `buf` is always big enough to contain all the digits.
                    unsafe { f.pad_integral(*self >= 0, "", self.unsigned_abs()._fmt(&mut buf)) }
                }
                #[cfg(feature = "optimize_for_size")]
                {
                    // Lossless conversion (with as) is asserted at the top of
                    // this macro.
                    return ${concat($fmt_fn, _small)}(self.unsigned_abs() as $T, *self >= 0, f);
                }
            }
        }

        #[cfg(not(feature = "optimize_for_size"))]
        impl $Unsigned {
            #[doc(hidden)]
            #[unstable(
                feature = "fmt_internals",
                reason = "specialized method meant to only be used by `SpecToString` implementation",
                issue = "none"
            )]
            pub unsafe fn _fmt<'a>(self, buf: &'a mut [MaybeUninit::<u8>]) -> &'a str {
                // SAFETY: `buf` will always be big enough to contain all digits.
                let offset = unsafe { self._fmt_inner(buf) };
                // SAFETY: Starting from `offset`, all elements of the slice have been set.
                unsafe { slice_buffer_to_str(buf, offset) }
            }

            unsafe fn _fmt_inner(self, buf: &mut [MaybeUninit::<u8>]) -> usize {
                // Count the number of bytes in buf that are not initialized.
                let mut offset = buf.len();
                // Consume the least-significant decimals from a working copy.
                let mut remain = self;

                // Format per four digits from the lookup table.
                // Four digits need a 16-bit $Unsigned or wider.
                while size_of::<Self>() > 1 && remain > 999.try_into().expect("branch is not hit for types that cannot fit 999 (u8)") {
                    // SAFETY: All of the decimals fit in buf due to MAX_DEC_N
                    // and the while condition ensures at least 4 more decimals.
                    unsafe { core::hint::assert_unchecked(offset >= 4) }
                    // SAFETY: The offset counts down from its initial buf.len()
                    // without underflow due to the previous precondition.
                    unsafe { core::hint::assert_unchecked(offset <= buf.len()) }
                    offset -= 4;

                    // pull two pairs
                    let scale: Self = 1_00_00.try_into().expect("branch is not hit for types that cannot fit 1E4 (u8)");
                    let quad = remain % scale;
                    remain /= scale;
                    let pair1 = (quad / 100) as usize;
                    let pair2 = (quad % 100) as usize;
                    buf[offset + 0].write(DECIMAL_PAIRS[pair1 * 2 + 0]);
                    buf[offset + 1].write(DECIMAL_PAIRS[pair1 * 2 + 1]);
                    buf[offset + 2].write(DECIMAL_PAIRS[pair2 * 2 + 0]);
                    buf[offset + 3].write(DECIMAL_PAIRS[pair2 * 2 + 1]);
                }

                // Format per two digits from the lookup table.
                if remain > 9 {
                    // SAFETY: All of the decimals fit in buf due to MAX_DEC_N
                    // and the if condition ensures at least 2 more decimals.
                    unsafe { core::hint::assert_unchecked(offset >= 2) }
                    // SAFETY: The offset counts down from its initial buf.len()
                    // without underflow due to the previous precondition.
                    unsafe { core::hint::assert_unchecked(offset <= buf.len()) }
                    offset -= 2;

                    let pair = (remain % 100) as usize;
                    remain /= 100;
                    buf[offset + 0].write(DECIMAL_PAIRS[pair * 2 + 0]);
                    buf[offset + 1].write(DECIMAL_PAIRS[pair * 2 + 1]);
                }

                // Format the last remaining digit, if any.
                if remain != 0 || self == 0 {
                    // SAFETY: All of the decimals fit in buf due to MAX_DEC_N
                    // and the if condition ensures (at least) 1 more decimals.
                    unsafe { core::hint::assert_unchecked(offset >= 1) }
                    // SAFETY: The offset counts down from its initial buf.len()
                    // without underflow due to the previous precondition.
                    unsafe { core::hint::assert_unchecked(offset <= buf.len()) }
                    offset -= 1;

                    // Either the compiler sees that remain < 10, or it prevents
                    // a boundary check up next.
                    let last = (remain & 15) as usize;
                    buf[offset].write(DECIMAL_PAIRS[last * 2 + 1]);
                    // not used: remain = 0;
                }

                offset
            }
        }

        impl $Signed {
            /// Allows users to write an integer (in signed decimal format) into a variable `buf` of
            /// type [`NumBuffer`] that is passed by the caller by mutable reference.
            ///
            /// # Examples
            ///
            /// ```
            /// #![feature(int_format_into)]
            /// use core::fmt::NumBuffer;
            ///
            #[doc = concat!("let n = 0", stringify!($Signed), ";")]
            /// let mut buf = NumBuffer::new();
            /// assert_eq!(n.format_into(&mut buf), "0");
            ///
            #[doc = concat!("let n1 = 32", stringify!($Signed), ";")]
            /// assert_eq!(n1.format_into(&mut buf), "32");
            ///
            #[doc = concat!("let n2 = ", stringify!($Signed::MAX), ";")]
            #[doc = concat!("assert_eq!(n2.format_into(&mut buf), ", stringify!($Signed::MAX), ".to_string());")]
            /// ```
            #[unstable(feature = "int_format_into", issue = "138215")]
            pub fn format_into(self, buf: &mut NumBuffer<Self>) -> &str {
                let mut offset;

                #[cfg(not(feature = "optimize_for_size"))]
                // SAFETY: `buf` will always be big enough to contain all digits.
                unsafe {
                    offset = self.unsigned_abs()._fmt_inner(&mut buf.buf);
                }
                #[cfg(feature = "optimize_for_size")]
                {
                    // Lossless conversion (with as) is asserted at the top of
                    // this macro.
                    offset = ${concat($fmt_fn, _in_buf_small)}(self.unsigned_abs() as $T, &mut buf.buf);
                }
                // Only difference between signed and unsigned are these 4 lines.
                if self < 0 {
                    offset -= 1;
                    buf.buf[offset].write(b'-');
                }
                // SAFETY: Starting from `offset`, all elements of the slice have been set.
                unsafe { slice_buffer_to_str(&buf.buf, offset) }
            }
        }

        impl $Unsigned {
            /// Allows users to write an integer (in signed decimal format) into a variable `buf` of
            /// type [`NumBuffer`] that is passed by the caller by mutable reference.
            ///
            /// # Examples
            ///
            /// ```
            /// #![feature(int_format_into)]
            /// use core::fmt::NumBuffer;
            ///
            #[doc = concat!("let n = 0", stringify!($Unsigned), ";")]
            /// let mut buf = NumBuffer::new();
            /// assert_eq!(n.format_into(&mut buf), "0");
            ///
            #[doc = concat!("let n1 = 32", stringify!($Unsigned), ";")]
            /// assert_eq!(n1.format_into(&mut buf), "32");
            ///
            #[doc = concat!("let n2 = ", stringify!($Unsigned::MAX), ";")]
            #[doc = concat!("assert_eq!(n2.format_into(&mut buf), ", stringify!($Unsigned::MAX), ".to_string());")]
            /// ```
            #[unstable(feature = "int_format_into", issue = "138215")]
            pub fn format_into(self, buf: &mut NumBuffer<Self>) -> &str {
                let offset;

                #[cfg(not(feature = "optimize_for_size"))]
                // SAFETY: `buf` will always be big enough to contain all digits.
                unsafe {
                    offset = self._fmt_inner(&mut buf.buf);
                }
                #[cfg(feature = "optimize_for_size")]
                {
                    // Lossless conversion (with as) is asserted at the top of
                    // this macro.
                    offset = ${concat($fmt_fn, _in_buf_small)}(self as $T, &mut buf.buf);
                }
                // SAFETY: Starting from `offset`, all elements of the slice have been set.
                unsafe { slice_buffer_to_str(&buf.buf, offset) }
            }
        }

        )*

        #[cfg(feature = "optimize_for_size")]
        fn ${concat($fmt_fn, _in_buf_small)}(mut n: $T, buf: &mut [MaybeUninit::<u8>]) -> usize {
            let mut curr = buf.len();

            // SAFETY: To show that it's OK to copy into `buf_ptr`, notice that at the beginning
            // `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at
            // each step this is kept the same as `n` is divided. Since `n` is always
            // non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]`
            // is safe to access.
            loop {
                curr -= 1;
                buf[curr].write((n % 10) as u8 + b'0');
                n /= 10;

                if n == 0 {
                    break;
                }
            }
            curr
        }

        #[cfg(feature = "optimize_for_size")]
        fn ${concat($fmt_fn, _small)}(n: $T, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            const MAX_DEC_N: usize = $T::MAX.ilog(10) as usize + 1;
            let mut buf = [MaybeUninit::<u8>::uninit(); MAX_DEC_N];

            let offset = ${concat($fmt_fn, _in_buf_small)}(n, &mut buf);
            // SAFETY: Starting from `offset`, all elements of the slice have been set.
            let buf_slice = unsafe { slice_buffer_to_str(&buf, offset) };
            f.pad_integral(is_nonnegative, "", buf_slice)
        }
    };
}

macro_rules! impl_Exp {
    ($($Signed:ident, $Unsigned:ident),* ; as $T:ident into $fmt_fn:ident) => {
        const _: () = assert!($T::MIN == 0, "need unsigned");

        fn $fmt_fn(
            f: &mut fmt::Formatter<'_>,
            n: $T,
            is_nonnegative: bool,
            letter_e: u8
        ) -> fmt::Result {
            debug_assert!(letter_e.is_ascii_alphabetic(), "single-byte character");

            // Print the integer as a coefficient in range (-10, 10).
            let mut exp = n.checked_ilog10().unwrap_or(0) as usize;
            debug_assert!(n / (10 as $T).pow(exp as u32) < 10);

            // Precisison is counted as the number of digits in the fraction.
            let mut coef_prec = exp;
            // Keep the digits as an integer (paired with its coef_prec count).
            let mut coef = n;

            // A Formatter may set the precision to a fixed number of decimals.
            let more_prec = match f.precision() {
                None => {
                    // Omit any and all trailing zeroes.
                    while coef_prec != 0 && coef % 10 == 0 {
                        coef /= 10;
                        coef_prec -= 1;
                    }
                    0
                },

                Some(fmt_prec) if fmt_prec >= coef_prec => {
                    // Count the number of additional zeroes needed.
                    fmt_prec - coef_prec
                },

                Some(fmt_prec) => {
                    // Count the number of digits to drop.
                    let less_prec = coef_prec - fmt_prec;
                    assert!(less_prec > 0);
                    // Scale down the coefficient/precision pair. For example,
                    // coef 123456 gets coef_prec 5 (to make 1.23456). To format
                    // the number with 2 decimals, i.e., fmt_prec 2, coef should
                    // be scaled by 10⁵⁻²=1000 to get coef 123 with coef_prec 2.

                    // SAFETY: Any precision less than coef_prec will cause a
                    // power of ten below the coef value.
                    let scale = unsafe {
                        (10 as $T).checked_pow(less_prec as u32).unwrap_unchecked()
                    };
                    let floor = coef / scale;
                    // Round half to even conform documentation.
                    let over = coef % scale;
                    let half = scale / 2;
                    let round_up = if over < half {
                        0
                    } else if over > half {
                        1
                    } else {
                        floor & 1 // round odd up to even
                    };
                    // Adding one to a scale down of at least 10 won't overflow.
                    coef = floor + round_up;
                    coef_prec = fmt_prec;

                    // The round_up may have caused the coefficient to reach 10
                    // (which is not permitted). For example, anything in range
                    // [9.95, 10) becomes 10.0 when adjusted to precision 1.
                    if round_up != 0 && coef.checked_ilog10().unwrap_or(0) as usize > coef_prec {
                        debug_assert_eq!(coef, (10 as $T).pow(coef_prec as u32 + 1));
                        coef /= 10; // drop one trailing zero
                        exp += 1;   // one power of ten higher
                    }
                    0
                },
            };

            // Allocate a text buffer with lazy initialization.
            const MAX_DEC_N: usize = $T::MAX.ilog10() as usize + 1;
            const MAX_COEF_LEN: usize = MAX_DEC_N + ".".len();
            const MAX_TEXT_LEN: usize = MAX_COEF_LEN + "e99".len();
            let mut buf = [MaybeUninit::<u8>::uninit(); MAX_TEXT_LEN];

            // Encode the coefficient in buf[..coef_len].
            let (lead_dec, coef_len) = if coef_prec == 0 && more_prec == 0 {
                (coef, 1_usize) // single digit; no fraction
            } else {
                buf[1].write(b'.');
                let fraction_range = 2..(2 + coef_prec);

                // Consume the least-significant decimals from a working copy.
                let mut remain = coef;
                #[cfg(feature = "optimize_for_size")] {
                    for i in fraction_range.clone().rev() {
                        let digit = (remain % 10) as usize;
                        remain /= 10;
                        buf[i].write(b'0' + digit as u8);
                    }
                }
                #[cfg(not(feature = "optimize_for_size"))] {
                    // Write digits per two at a time with a lookup table.
                    for i in fraction_range.clone().skip(1).rev().step_by(2) {
                        let pair = (remain % 100) as usize;
                        remain /= 100;
                        buf[i - 1].write(DECIMAL_PAIRS[pair * 2 + 0]);
                        buf[i - 0].write(DECIMAL_PAIRS[pair * 2 + 1]);
                    }
                    // An odd number of digits leave one digit remaining.
                    if coef_prec & 1 != 0 {
                        let digit = (remain % 10) as usize;
                        remain /= 10;
                        buf[fraction_range.start].write(b'0' + digit as u8);
                    }
                }

                (remain, fraction_range.end)
            };
            debug_assert!(lead_dec < 10);
            debug_assert!(lead_dec != 0 || coef == 0, "significant digits only");
            buf[0].write(b'0' + lead_dec as u8);

            // SAFETY: The number of decimals is limited, captured by MAX.
            unsafe { core::hint::assert_unchecked(coef_len <= MAX_COEF_LEN) }
            // Encode the scale factor in buf[coef_len..text_len].
            buf[coef_len].write(letter_e);
            let text_len: usize = match exp {
                ..10 => {
                    buf[coef_len + 1].write(b'0' + exp as u8);
                    coef_len + 2
                },
                10..100 => {
                    #[cfg(feature = "optimize_for_size")] {
                        buf[coef_len + 1].write(b'0' + (exp / 10) as u8);
                        buf[coef_len + 2].write(b'0' + (exp % 10) as u8);
                    }
                    #[cfg(not(feature = "optimize_for_size"))] {
                        buf[coef_len + 1].write(DECIMAL_PAIRS[exp * 2 + 0]);
                        buf[coef_len + 2].write(DECIMAL_PAIRS[exp * 2 + 1]);
                    }
                    coef_len + 3
                },
                _ => {
                    const { assert!($T::MAX.ilog10() < 100) };
                    // SAFETY: A `u256::MAX` would get exponent 77.
                    unsafe { core::hint::unreachable_unchecked() }
                }
            };
            // SAFETY: All bytes up until text_len have been set.
            let text = unsafe { buf[..text_len].assume_init_ref() };

            if more_prec == 0 {
                // SAFETY: Text is set with ASCII exclusively: either a decimal,
                // or a LETTER_E, or a dot. ASCII implies valid UTF-8.
                let as_str = unsafe { str::from_utf8_unchecked(text) };
                f.pad_integral(is_nonnegative, "", as_str)
            } else {
                let parts = &[
                    numfmt::Part::Copy(&text[..coef_len]),
                    numfmt::Part::Zero(more_prec),
                    numfmt::Part::Copy(&text[coef_len..]),
                ];
                let sign = if !is_nonnegative {
                    "-"
                } else if f.sign_plus() {
                    "+"
                } else {
                    ""
                };
                // SAFETY: Text is set with ASCII exclusively: either a decimal,
                // or a LETTER_E, or a dot. ASCII implies valid UTF-8.
                unsafe { f.pad_formatted_parts(&numfmt::Formatted { sign, parts }) }
            }
        }

        $(
        const _: () = {
            assert!($Signed::MIN < 0, "need signed");
            assert!($Unsigned::MIN == 0, "need unsigned");
            assert!($Signed::BITS == $Unsigned::BITS, "need counterparts");
            assert!($Signed::BITS <= $T::BITS, "need lossless conversion");
            assert!($Unsigned::BITS <= $T::BITS, "need lossless conversion");
        };
        #[stable(feature = "integer_exp_format", since = "1.42.0")]
        impl fmt::LowerExp for $Signed {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                $fmt_fn(f, self.unsigned_abs() as $T, *self >= 0, b'e')
            }
        }
        #[stable(feature = "integer_exp_format", since = "1.42.0")]
        impl fmt::LowerExp for $Unsigned {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                $fmt_fn(f, *self as $T, true, b'e')
            }
        }
        #[stable(feature = "integer_exp_format", since = "1.42.0")]
        impl fmt::UpperExp for $Signed {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                $fmt_fn(f, self.unsigned_abs() as $T, *self >= 0, b'E')
            }
        }
        #[stable(feature = "integer_exp_format", since = "1.42.0")]
        impl fmt::UpperExp for $Unsigned {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                $fmt_fn(f, *self as $T, true, b'E')
            }
        }
        )*

    };
}

impl_Debug! {
    i8 i16 i32 i64 i128 isize
    u8 u16 u32 u64 u128 usize
}

// Include wasm32 in here since it doesn't reflect the native pointer size, and
// often cares strongly about getting a smaller code size.
#[cfg(any(target_pointer_width = "64", target_arch = "wasm32"))]
mod imp {
    use super::*;
    impl_Display!(i8, u8, i16, u16, i32, u32, i64, u64, isize, usize; as u64 into display_u64);
    impl_Exp!(i8, u8, i16, u16, i32, u32, i64, u64, isize, usize; as u64 into exp_u64);
}

#[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))]
mod imp {
    use super::*;
    impl_Display!(i8, u8, i16, u16, i32, u32, isize, usize; as u32 into display_u32);
    impl_Display!(i64, u64; as u64 into display_u64);

    impl_Exp!(i8, u8, i16, u16, i32, u32, isize, usize; as u32 into exp_u32);
    impl_Exp!(i64, u64; as u64 into exp_u64);
}
impl_Exp!(i128, u128; as u128 into exp_u128);

const U128_MAX_DEC_N: usize = u128::MAX.ilog10() as usize + 1;

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for u128 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut buf = [MaybeUninit::<u8>::uninit(); U128_MAX_DEC_N];

        // SAFETY: `buf` is always big enough to contain all the digits.
        unsafe { f.pad_integral(true, "", self._fmt(&mut buf)) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for i128 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // This is not a typo, we use the maximum number of digits of `u128`, hence why we use
        // `U128_MAX_DEC_N`.
        let mut buf = [MaybeUninit::<u8>::uninit(); U128_MAX_DEC_N];

        let is_nonnegative = *self >= 0;
        // SAFETY: `buf` is always big enough to contain all the digits.
        unsafe { f.pad_integral(is_nonnegative, "", self.unsigned_abs()._fmt(&mut buf)) }
    }
}

impl u128 {
    /// Format optimized for u128. Computation of 128 bits is limited by processing
    /// in batches of 16 decimals at a time.
    #[doc(hidden)]
    #[unstable(
        feature = "fmt_internals",
        reason = "specialized method meant to only be used by `SpecToString` implementation",
        issue = "none"
    )]
    pub unsafe fn _fmt<'a>(self, buf: &'a mut [MaybeUninit<u8>]) -> &'a str {
        // SAFETY: `buf` will always be big enough to contain all digits.
        let offset = unsafe { self._fmt_inner(buf) };
        // SAFETY: Starting from `offset`, all elements of the slice have been set.
        unsafe { slice_buffer_to_str(buf, offset) }
    }

    unsafe fn _fmt_inner(self, buf: &mut [MaybeUninit<u8>]) -> usize {
        // Optimize common-case zero, which would also need special treatment due to
        // its "leading" zero.
        if self == 0 {
            let offset = buf.len() - 1;
            buf[offset].write(b'0');
            return offset;
        }
        // Take the 16 least-significant decimals.
        let (quot_1e16, mod_1e16) = div_rem_1e16(self);
        let (mut remain, mut offset) = if quot_1e16 == 0 {
            (mod_1e16, U128_MAX_DEC_N)
        } else {
            // Write digits at buf[23..39].
            enc_16lsd::<{ U128_MAX_DEC_N - 16 }>(buf, mod_1e16);

            // Take another 16 decimals.
            let (quot2, mod2) = div_rem_1e16(quot_1e16);
            if quot2 == 0 {
                (mod2, U128_MAX_DEC_N - 16)
            } else {
                // Write digits at buf[7..23].
                enc_16lsd::<{ U128_MAX_DEC_N - 32 }>(buf, mod2);
                // Quot2 has at most 7 decimals remaining after two 1e16 divisions.
                (quot2 as u64, U128_MAX_DEC_N - 32)
            }
        };

        // Format per four digits from the lookup table.
        while remain > 999 {
            // SAFETY: All of the decimals fit in buf due to U128_MAX_DEC_N
            // and the while condition ensures at least 4 more decimals.
            unsafe { core::hint::assert_unchecked(offset >= 4) }
            // SAFETY: The offset counts down from its initial buf.len()
            // without underflow due to the previous precondition.
            unsafe { core::hint::assert_unchecked(offset <= buf.len()) }
            offset -= 4;

            // pull two pairs
            let quad = remain % 1_00_00;
            remain /= 1_00_00;
            let pair1 = (quad / 100) as usize;
            let pair2 = (quad % 100) as usize;
            buf[offset + 0].write(DECIMAL_PAIRS[pair1 * 2 + 0]);
            buf[offset + 1].write(DECIMAL_PAIRS[pair1 * 2 + 1]);
            buf[offset + 2].write(DECIMAL_PAIRS[pair2 * 2 + 0]);
            buf[offset + 3].write(DECIMAL_PAIRS[pair2 * 2 + 1]);
        }

        // Format per two digits from the lookup table.
        if remain > 9 {
            // SAFETY: All of the decimals fit in buf due to U128_MAX_DEC_N
            // and the if condition ensures at least 2 more decimals.
            unsafe { core::hint::assert_unchecked(offset >= 2) }
            // SAFETY: The offset counts down from its initial buf.len()
            // without underflow due to the previous precondition.
            unsafe { core::hint::assert_unchecked(offset <= buf.len()) }
            offset -= 2;

            let pair = (remain % 100) as usize;
            remain /= 100;
            buf[offset + 0].write(DECIMAL_PAIRS[pair * 2 + 0]);
            buf[offset + 1].write(DECIMAL_PAIRS[pair * 2 + 1]);
        }

        // Format the last remaining digit, if any.
        if remain != 0 {
            // SAFETY: All of the decimals fit in buf due to U128_MAX_DEC_N
            // and the if condition ensures (at least) 1 more decimals.
            unsafe { core::hint::assert_unchecked(offset >= 1) }
            // SAFETY: The offset counts down from its initial buf.len()
            // without underflow due to the previous precondition.
            unsafe { core::hint::assert_unchecked(offset <= buf.len()) }
            offset -= 1;

            // Either the compiler sees that remain < 10, or it prevents
            // a boundary check up next.
            let last = (remain & 15) as usize;
            buf[offset].write(DECIMAL_PAIRS[last * 2 + 1]);
            // not used: remain = 0;
        }
        offset
    }

    /// Allows users to write an integer (in signed decimal format) into a variable `buf` of
    /// type [`NumBuffer`] that is passed by the caller by mutable reference.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(int_format_into)]
    /// use core::fmt::NumBuffer;
    ///
    /// let n = 0u128;
    /// let mut buf = NumBuffer::new();
    /// assert_eq!(n.format_into(&mut buf), "0");
    ///
    /// let n1 = 32u128;
    /// let mut buf1 = NumBuffer::new();
    /// assert_eq!(n1.format_into(&mut buf1), "32");
    ///
    /// let n2 = u128::MAX;
    /// let mut buf2 = NumBuffer::new();
    /// assert_eq!(n2.format_into(&mut buf2), u128::MAX.to_string());
    /// ```
    #[unstable(feature = "int_format_into", issue = "138215")]
    pub fn format_into(self, buf: &mut NumBuffer<Self>) -> &str {
        let diff = buf.capacity() - U128_MAX_DEC_N;
        // FIXME: Once const generics are better, use `NumberBufferTrait::BUF_SIZE` as generic const
        // for `fmt_u128_inner`.
        //
        // In the meantime, we have to use a slice starting at index 1 and add 1 to the returned
        // offset to ensure the number is correctly generated at the end of the buffer.
        // SAFETY: `diff` will always be between 0 and its initial value.
        unsafe { self._fmt(buf.buf.get_unchecked_mut(diff..)) }
    }
}

impl i128 {
    /// Allows users to write an integer (in signed decimal format) into a variable `buf` of
    /// type [`NumBuffer`] that is passed by the caller by mutable reference.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(int_format_into)]
    /// use core::fmt::NumBuffer;
    ///
    /// let n = 0i128;
    /// let mut buf = NumBuffer::new();
    /// assert_eq!(n.format_into(&mut buf), "0");
    ///
    /// let n1 = i128::MIN;
    /// assert_eq!(n1.format_into(&mut buf), i128::MIN.to_string());
    ///
    /// let n2 = i128::MAX;
    /// assert_eq!(n2.format_into(&mut buf), i128::MAX.to_string());
    /// ```
    #[unstable(feature = "int_format_into", issue = "138215")]
    pub fn format_into(self, buf: &mut NumBuffer<Self>) -> &str {
        let diff = buf.capacity() - U128_MAX_DEC_N;
        // FIXME: Once const generics are better, use `NumberBufferTrait::BUF_SIZE` as generic const
        // for `fmt_u128_inner`.
        //
        // In the meantime, we have to use a slice starting at index 1 and add 1 to the returned
        // offset to ensure the number is correctly generated at the end of the buffer.
        let mut offset =
            // SAFETY: `buf` will always be big enough to contain all digits.
            unsafe { self.unsigned_abs()._fmt_inner(buf.buf.get_unchecked_mut(diff..)) };
        // We put back the offset at the right position.
        offset += diff;
        // Only difference between signed and unsigned are these 4 lines.
        if self < 0 {
            offset -= 1;
            // SAFETY: `buf` will always be big enough to contain all digits plus the minus sign.
            unsafe {
                buf.buf.get_unchecked_mut(offset).write(b'-');
            }
        }
        // SAFETY: Starting from `offset`, all elements of the slice have been set.
        unsafe { slice_buffer_to_str(&buf.buf, offset) }
    }
}

/// Encodes the 16 least-significant decimals of n into `buf[OFFSET .. OFFSET +
/// 16 ]`.
fn enc_16lsd<const OFFSET: usize>(buf: &mut [MaybeUninit<u8>], n: u64) {
    // Consume the least-significant decimals from a working copy.
    let mut remain = n;

    // Format per four digits from the lookup table.
    for quad_index in (0..4).rev() {
        // pull two pairs
        let quad = remain % 1_00_00;
        remain /= 1_00_00;
        let pair1 = (quad / 100) as usize;
        let pair2 = (quad % 100) as usize;
        buf[quad_index * 4 + OFFSET + 0].write(DECIMAL_PAIRS[pair1 * 2 + 0]);
        buf[quad_index * 4 + OFFSET + 1].write(DECIMAL_PAIRS[pair1 * 2 + 1]);
        buf[quad_index * 4 + OFFSET + 2].write(DECIMAL_PAIRS[pair2 * 2 + 0]);
        buf[quad_index * 4 + OFFSET + 3].write(DECIMAL_PAIRS[pair2 * 2 + 1]);
    }
}

/// Euclidean division plus remainder with constant 1E16 basically consumes 16
/// decimals from n.
///
/// The integer division algorithm is based on the following paper:
///
///   T. Granlund and P. Montgomery, “Division by Invariant Integers Using Multiplication”
///   in Proc. of the SIGPLAN94 Conference on Programming Language Design and
///   Implementation, 1994, pp. 61–72
///
#[inline]
fn div_rem_1e16(n: u128) -> (u128, u64) {
    const D: u128 = 1_0000_0000_0000_0000;
    // The check inlines well with the caller flow.
    if n < D {
        return (0, n as u64);
    }

    // These constant values are computed with the CHOOSE_MULTIPLIER procedure
    // from the Granlund & Montgomery paper, using N=128, prec=128 and d=1E16.
    const M_HIGH: u128 = 76624777043294442917917351357515459181;
    const SH_POST: u8 = 51;

    let quot = n.widening_mul(M_HIGH).1 >> SH_POST;
    let rem = n - quot * D;
    (quot, rem as u64)
}