about summary refs log tree commit diff
path: root/library/core/src/num/f128.rs
blob: 6b9b2ba8689118f00459e6ad07dc8abc9e43dcf5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
//! Constants for the `f128` quadruple-precision floating point type.
//!
//! *[See also the `f128` primitive type][f128].*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! For the constants defined directly in this module
//! (as distinct from those defined in the `consts` sub-module),
//! new code should instead use the associated constants
//! defined directly on the `f128` type.

#![unstable(feature = "f128", issue = "116909")]

use crate::convert::FloatToInt;
use crate::num::FpCategory;
use crate::panic::const_assert;
use crate::{intrinsics, mem};

/// Basic mathematical constants.
#[unstable(feature = "f128", issue = "116909")]
pub mod consts {
    // FIXME: replace with mathematical constants from cmath.

    /// Archimedes' constant (π)
    #[unstable(feature = "f128", issue = "116909")]
    pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;

    /// The full circle constant (τ)
    ///
    /// Equal to 2π.
    #[unstable(feature = "f128", issue = "116909")]
    pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;

    /// The golden ratio (φ)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;

    /// The Euler-Mascheroni constant (γ)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;

    /// π/2
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;

    /// π/3
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;

    /// π/4
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;

    /// π/6
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;

    /// π/8
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;

    /// 1/π
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;

    /// 1/sqrt(π)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const FRAC_1_SQRT_PI: f128 =
        0.564189583547756286948079451560772585844050629328998856844086_f128;

    /// 1/sqrt(2π)
    #[doc(alias = "FRAC_1_SQRT_TAU")]
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const FRAC_1_SQRT_2PI: f128 =
        0.398942280401432677939946059934381868475858631164934657665926_f128;

    /// 2/π
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;

    /// 2/sqrt(π)
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_2_SQRT_PI: f128 =
        1.12837916709551257389615890312154517168810125865799771368817_f128;

    /// sqrt(2)
    #[unstable(feature = "f128", issue = "116909")]
    pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;

    /// 1/sqrt(2)
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_1_SQRT_2: f128 =
        0.707106781186547524400844362104849039284835937688474036588340_f128;

    /// sqrt(3)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;

    /// 1/sqrt(3)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const FRAC_1_SQRT_3: f128 =
        0.577350269189625764509148780501957455647601751270126876018602_f128;

    /// Euler's number (e)
    #[unstable(feature = "f128", issue = "116909")]
    pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;

    /// log<sub>2</sub>(10)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;

    /// log<sub>2</sub>(e)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;

    /// log<sub>10</sub>(2)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;

    /// log<sub>10</sub>(e)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;

    /// ln(2)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;

    /// ln(10)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
}

impl f128 {
    // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
    // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.

    /// The radix or base of the internal representation of `f128`.
    #[unstable(feature = "f128", issue = "116909")]
    pub const RADIX: u32 = 2;

    /// Number of significant digits in base 2.
    ///
    /// Note that the size of the mantissa in the bitwise representation is one
    /// smaller than this since the leading 1 is not stored explicitly.
    #[unstable(feature = "f128", issue = "116909")]
    pub const MANTISSA_DIGITS: u32 = 113;

    /// Approximate number of significant digits in base 10.
    ///
    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
    /// significant digits can be converted to `f128` and back without loss.
    ///
    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
    ///
    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
    #[unstable(feature = "f128", issue = "116909")]
    pub const DIGITS: u32 = 33;

    /// [Machine epsilon] value for `f128`.
    ///
    /// This is the difference between `1.0` and the next larger representable number.
    ///
    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
    ///
    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
    #[unstable(feature = "f128", issue = "116909")]
    pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;

    /// Smallest finite `f128` value.
    ///
    /// Equal to &minus;[`MAX`].
    ///
    /// [`MAX`]: f128::MAX
    #[unstable(feature = "f128", issue = "116909")]
    pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128;
    /// Smallest positive normal `f128` value.
    ///
    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
    ///
    /// [`MIN_EXP`]: f128::MIN_EXP
    #[unstable(feature = "f128", issue = "116909")]
    pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
    /// Largest finite `f128` value.
    ///
    /// Equal to
    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
    ///
    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
    /// [`MAX_EXP`]: f128::MAX_EXP
    #[unstable(feature = "f128", issue = "116909")]
    pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128;

    /// One greater than the minimum possible *normal* power of 2 exponent
    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
    ///
    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
    /// In other words, all normal numbers representable by this type are
    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
    #[unstable(feature = "f128", issue = "116909")]
    pub const MIN_EXP: i32 = -16_381;
    /// One greater than the maximum possible power of 2 exponent
    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
    ///
    /// This corresponds to the exact maximum possible power of 2 exponent
    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
    /// In other words, all numbers representable by this type are
    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
    #[unstable(feature = "f128", issue = "116909")]
    pub const MAX_EXP: i32 = 16_384;

    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
    ///
    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
    ///
    /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
    #[unstable(feature = "f128", issue = "116909")]
    pub const MIN_10_EXP: i32 = -4_931;
    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
    ///
    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
    ///
    /// [`MAX`]: f128::MAX
    #[unstable(feature = "f128", issue = "116909")]
    pub const MAX_10_EXP: i32 = 4_932;

    /// Not a Number (NaN).
    ///
    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
    /// info.
    ///
    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
    /// The concrete bit pattern may change across Rust versions and target platforms.
    #[allow(clippy::eq_op)]
    #[rustc_diagnostic_item = "f128_nan"]
    #[unstable(feature = "f128", issue = "116909")]
    pub const NAN: f128 = 0.0_f128 / 0.0_f128;

    /// Infinity (∞).
    #[unstable(feature = "f128", issue = "116909")]
    pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;

    /// Negative infinity (−∞).
    #[unstable(feature = "f128", issue = "116909")]
    pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;

    /// Sign bit
    pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000;

    /// Exponent mask
    pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000;

    /// Mantissa mask
    pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff;

    /// Minimum representable positive value (min subnormal)
    const TINY_BITS: u128 = 0x1;

    /// Minimum representable negative value (min negative subnormal)
    const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK;

    /// Returns `true` if this value is NaN.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `unordtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let nan = f128::NAN;
    /// let f = 7.0_f128;
    ///
    /// assert!(nan.is_nan());
    /// assert!(!f.is_nan());
    /// # }
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
    pub const fn is_nan(self) -> bool {
        self != self
    }

    /// Returns `true` if this value is positive infinity or negative infinity, and
    /// `false` otherwise.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let f = 7.0f128;
    /// let inf = f128::INFINITY;
    /// let neg_inf = f128::NEG_INFINITY;
    /// let nan = f128::NAN;
    ///
    /// assert!(!f.is_infinite());
    /// assert!(!nan.is_infinite());
    ///
    /// assert!(inf.is_infinite());
    /// assert!(neg_inf.is_infinite());
    /// # }
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn is_infinite(self) -> bool {
        (self == f128::INFINITY) | (self == f128::NEG_INFINITY)
    }

    /// Returns `true` if this number is neither infinite nor NaN.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `lttf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let f = 7.0f128;
    /// let inf: f128 = f128::INFINITY;
    /// let neg_inf: f128 = f128::NEG_INFINITY;
    /// let nan: f128 = f128::NAN;
    ///
    /// assert!(f.is_finite());
    ///
    /// assert!(!nan.is_finite());
    /// assert!(!inf.is_finite());
    /// assert!(!neg_inf.is_finite());
    /// # }
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    pub const fn is_finite(self) -> bool {
        // There's no need to handle NaN separately: if self is NaN,
        // the comparison is not true, exactly as desired.
        self.abs() < Self::INFINITY
    }

    /// Returns `true` if the number is [subnormal].
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
    /// let max = f128::MAX;
    /// let lower_than_min = 1.0e-4960_f128;
    /// let zero = 0.0_f128;
    ///
    /// assert!(!min.is_subnormal());
    /// assert!(!max.is_subnormal());
    ///
    /// assert!(!zero.is_subnormal());
    /// assert!(!f128::NAN.is_subnormal());
    /// assert!(!f128::INFINITY.is_subnormal());
    /// // Values between `0` and `min` are Subnormal.
    /// assert!(lower_than_min.is_subnormal());
    /// # }
    /// ```
    ///
    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn is_subnormal(self) -> bool {
        matches!(self.classify(), FpCategory::Subnormal)
    }

    /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
    /// let max = f128::MAX;
    /// let lower_than_min = 1.0e-4960_f128;
    /// let zero = 0.0_f128;
    ///
    /// assert!(min.is_normal());
    /// assert!(max.is_normal());
    ///
    /// assert!(!zero.is_normal());
    /// assert!(!f128::NAN.is_normal());
    /// assert!(!f128::INFINITY.is_normal());
    /// // Values between `0` and `min` are Subnormal.
    /// assert!(!lower_than_min.is_normal());
    /// # }
    /// ```
    ///
    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn is_normal(self) -> bool {
        matches!(self.classify(), FpCategory::Normal)
    }

    /// Returns the floating point category of the number. If only one property
    /// is going to be tested, it is generally faster to use the specific
    /// predicate instead.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// use std::num::FpCategory;
    ///
    /// let num = 12.4_f128;
    /// let inf = f128::INFINITY;
    ///
    /// assert_eq!(num.classify(), FpCategory::Normal);
    /// assert_eq!(inf.classify(), FpCategory::Infinite);
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn classify(self) -> FpCategory {
        let bits = self.to_bits();
        match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
            (0, Self::EXP_MASK) => FpCategory::Infinite,
            (_, Self::EXP_MASK) => FpCategory::Nan,
            (0, 0) => FpCategory::Zero,
            (_, 0) => FpCategory::Subnormal,
            _ => FpCategory::Normal,
        }
    }

    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
    /// positive sign bit and positive infinity.
    ///
    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
    /// conserved over arithmetic operations, the result of `is_sign_positive` on
    /// a NaN might produce an unexpected or non-portable result. See the [specification
    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
    /// if you need fully portable behavior (will return `false` for all NaNs).
    ///
    /// ```
    /// #![feature(f128)]
    ///
    /// let f = 7.0_f128;
    /// let g = -7.0_f128;
    ///
    /// assert!(f.is_sign_positive());
    /// assert!(!g.is_sign_positive());
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn is_sign_positive(self) -> bool {
        !self.is_sign_negative()
    }

    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
    /// negative sign bit and negative infinity.
    ///
    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
    /// conserved over arithmetic operations, the result of `is_sign_negative` on
    /// a NaN might produce an unexpected or non-portable result. See the [specification
    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
    /// if you need fully portable behavior (will return `false` for all NaNs).
    ///
    /// ```
    /// #![feature(f128)]
    ///
    /// let f = 7.0_f128;
    /// let g = -7.0_f128;
    ///
    /// assert!(!f.is_sign_negative());
    /// assert!(g.is_sign_negative());
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn is_sign_negative(self) -> bool {
        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
        // applies to zeros and NaNs as well.
        // SAFETY: This is just transmuting to get the sign bit, it's fine.
        (self.to_bits() & (1 << 127)) != 0
    }

    /// Returns the least number greater than `self`.
    ///
    /// Let `TINY` be the smallest representable positive `f128`. Then,
    ///  - if `self.is_nan()`, this returns `self`;
    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
    ///  - if `self` is `-TINY`, this returns -0.0;
    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
    ///  - otherwise the unique least value greater than `self` is returned.
    ///
    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
    /// is finite `x == x.next_up().next_down()` also holds.
    ///
    /// ```rust
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// // f128::EPSILON is the difference between 1.0 and the next number up.
    /// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
    /// // But not for most numbers.
    /// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON);
    /// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001);
    /// # }
    /// ```
    ///
    /// This operation corresponds to IEEE-754 `nextUp`.
    ///
    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
    /// [`INFINITY`]: Self::INFINITY
    /// [`MIN`]: Self::MIN
    /// [`MAX`]: Self::MAX
    #[inline]
    #[doc(alias = "nextUp")]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn next_up(self) -> Self {
        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
        // denormals to zero. This is in general unsound and unsupported, but here
        // we do our best to still produce the correct result on such targets.
        let bits = self.to_bits();
        if self.is_nan() || bits == Self::INFINITY.to_bits() {
            return self;
        }

        let abs = bits & !Self::SIGN_MASK;
        let next_bits = if abs == 0 {
            Self::TINY_BITS
        } else if bits == abs {
            bits + 1
        } else {
            bits - 1
        };
        Self::from_bits(next_bits)
    }

    /// Returns the greatest number less than `self`.
    ///
    /// Let `TINY` be the smallest representable positive `f128`. Then,
    ///  - if `self.is_nan()`, this returns `self`;
    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
    ///  - if `self` is `TINY`, this returns 0.0;
    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
    ///  - otherwise the unique greatest value less than `self` is returned.
    ///
    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
    /// is finite `x == x.next_down().next_up()` also holds.
    ///
    /// ```rust
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let x = 1.0f128;
    /// // Clamp value into range [0, 1).
    /// let clamped = x.clamp(0.0, 1.0f128.next_down());
    /// assert!(clamped < 1.0);
    /// assert_eq!(clamped.next_up(), 1.0);
    /// # }
    /// ```
    ///
    /// This operation corresponds to IEEE-754 `nextDown`.
    ///
    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
    /// [`INFINITY`]: Self::INFINITY
    /// [`MIN`]: Self::MIN
    /// [`MAX`]: Self::MAX
    #[inline]
    #[doc(alias = "nextDown")]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn next_down(self) -> Self {
        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
        // denormals to zero. This is in general unsound and unsupported, but here
        // we do our best to still produce the correct result on such targets.
        let bits = self.to_bits();
        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
            return self;
        }

        let abs = bits & !Self::SIGN_MASK;
        let next_bits = if abs == 0 {
            Self::NEG_TINY_BITS
        } else if bits == abs {
            bits - 1
        } else {
            bits + 1
        };
        Self::from_bits(next_bits)
    }

    /// Takes the reciprocal (inverse) of a number, `1/x`.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let x = 2.0_f128;
    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
    ///
    /// assert!(abs_difference <= f128::EPSILON);
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the operation, without modifying the original"]
    pub const fn recip(self) -> Self {
        1.0 / self
    }

    /// Converts radians to degrees.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let angle = std::f128::consts::PI;
    ///
    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
    /// assert!(abs_difference <= f128::EPSILON);
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the operation, without modifying the original"]
    pub const fn to_degrees(self) -> Self {
        // Use a literal for better precision.
        const PIS_IN_180: f128 = 57.2957795130823208767981548141051703324054724665643215491602_f128;
        self * PIS_IN_180
    }

    /// Converts degrees to radians.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let angle = 180.0f128;
    ///
    /// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs();
    ///
    /// assert!(abs_difference <= 1e-30);
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the operation, without modifying the original"]
    pub const fn to_radians(self) -> f128 {
        // Use a literal for better precision.
        const RADS_PER_DEG: f128 =
            0.0174532925199432957692369076848861271344287188854172545609719_f128;
        self * RADS_PER_DEG
    }

    /// Returns the maximum of the two numbers, ignoring NaN.
    ///
    /// If one of the arguments is NaN, then the other argument is returned.
    /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
    /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
    /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // Using aarch64 because `reliable_f128_math` is needed
    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
    ///
    /// let x = 1.0f128;
    /// let y = 2.0f128;
    ///
    /// assert_eq!(x.max(y), y);
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the comparison, without modifying either input"]
    pub const fn max(self, other: f128) -> f128 {
        intrinsics::maxnumf128(self, other)
    }

    /// Returns the minimum of the two numbers, ignoring NaN.
    ///
    /// If one of the arguments is NaN, then the other argument is returned.
    /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
    /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
    /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // Using aarch64 because `reliable_f128_math` is needed
    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
    ///
    /// let x = 1.0f128;
    /// let y = 2.0f128;
    ///
    /// assert_eq!(x.min(y), x);
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the comparison, without modifying either input"]
    pub const fn min(self, other: f128) -> f128 {
        intrinsics::minnumf128(self, other)
    }

    /// Returns the maximum of the two numbers, propagating NaN.
    ///
    /// This returns NaN when *either* argument is NaN, as opposed to
    /// [`f128::max`] which only returns NaN when *both* arguments are NaN.
    ///
    /// ```
    /// #![feature(f128)]
    /// #![feature(float_minimum_maximum)]
    /// # // Using aarch64 because `reliable_f128_math` is needed
    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
    ///
    /// let x = 1.0f128;
    /// let y = 2.0f128;
    ///
    /// assert_eq!(x.maximum(y), y);
    /// assert!(x.maximum(f128::NAN).is_nan());
    /// # }
    /// ```
    ///
    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
    /// Note that this follows the semantics specified in IEEE 754-2019.
    ///
    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
    #[must_use = "this returns the result of the comparison, without modifying either input"]
    pub const fn maximum(self, other: f128) -> f128 {
        intrinsics::maximumf128(self, other)
    }

    /// Returns the minimum of the two numbers, propagating NaN.
    ///
    /// This returns NaN when *either* argument is NaN, as opposed to
    /// [`f128::min`] which only returns NaN when *both* arguments are NaN.
    ///
    /// ```
    /// #![feature(f128)]
    /// #![feature(float_minimum_maximum)]
    /// # // Using aarch64 because `reliable_f128_math` is needed
    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
    ///
    /// let x = 1.0f128;
    /// let y = 2.0f128;
    ///
    /// assert_eq!(x.minimum(y), x);
    /// assert!(x.minimum(f128::NAN).is_nan());
    /// # }
    /// ```
    ///
    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
    /// Note that this follows the semantics specified in IEEE 754-2019.
    ///
    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
    #[must_use = "this returns the result of the comparison, without modifying either input"]
    pub const fn minimum(self, other: f128) -> f128 {
        intrinsics::minimumf128(self, other)
    }

    /// Calculates the midpoint (average) between `self` and `rhs`.
    ///
    /// This returns NaN when *either* argument is NaN or if a combination of
    /// +inf and -inf is provided as arguments.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # // Using aarch64 because `reliable_f128_math` is needed
    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
    ///
    /// assert_eq!(1f128.midpoint(4.0), 2.5);
    /// assert_eq!((-5.5f128).midpoint(8.0), 1.25);
    /// # }
    /// ```
    #[inline]
    #[doc(alias = "average")]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    pub const fn midpoint(self, other: f128) -> f128 {
        const LO: f128 = f128::MIN_POSITIVE * 2.;
        const HI: f128 = f128::MAX / 2.;

        let (a, b) = (self, other);
        let abs_a = a.abs();
        let abs_b = b.abs();

        if abs_a <= HI && abs_b <= HI {
            // Overflow is impossible
            (a + b) / 2.
        } else if abs_a < LO {
            // Not safe to halve `a` (would underflow)
            a + (b / 2.)
        } else if abs_b < LO {
            // Not safe to halve `b` (would underflow)
            (a / 2.) + b
        } else {
            // Safe to halve `a` and `b`
            (a / 2.) + (b / 2.)
        }
    }

    /// Rounds toward zero and converts to any primitive integer type,
    /// assuming that the value is finite and fits in that type.
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `float*itf` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let value = 4.6_f128;
    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
    /// assert_eq!(rounded, 4);
    ///
    /// let value = -128.9_f128;
    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
    /// assert_eq!(rounded, i8::MIN);
    /// # }
    /// ```
    ///
    /// # Safety
    ///
    /// The value must:
    ///
    /// * Not be `NaN`
    /// * Not be infinite
    /// * Be representable in the return type `Int`, after truncating off its fractional part
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the operation, without modifying the original"]
    pub unsafe fn to_int_unchecked<Int>(self) -> Int
    where
        Self: FloatToInt<Int>,
    {
        // SAFETY: the caller must uphold the safety contract for
        // `FloatToInt::to_int_unchecked`.
        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
    }

    /// Raw transmutation to `u128`.
    ///
    /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
    ///
    /// See [`from_bits`](#method.from_bits) for some discussion of the
    /// portability of this operation (there are almost no issues).
    ///
    /// Note that this function is distinct from `as` casting, which attempts to
    /// preserve the *numeric* value, and not the bitwise value.
    ///
    /// ```
    /// #![feature(f128)]
    ///
    /// # // FIXME(f16_f128): enable this once const casting works
    /// # // assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting!
    /// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the operation, without modifying the original"]
    #[allow(unnecessary_transmutes)]
    pub const fn to_bits(self) -> u128 {
        // SAFETY: `u128` is a plain old datatype so we can always transmute to it.
        unsafe { mem::transmute(self) }
    }

    /// Raw transmutation from `u128`.
    ///
    /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
    /// It turns out this is incredibly portable, for two reasons:
    ///
    /// * Floats and Ints have the same endianness on all supported platforms.
    /// * IEEE 754 very precisely specifies the bit layout of floats.
    ///
    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
    /// (notably x86 and ARM) picked the interpretation that was ultimately
    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
    ///
    /// Rather than trying to preserve signaling-ness cross-platform, this
    /// implementation favors preserving the exact bits. This means that
    /// any payloads encoded in NaNs will be preserved even if the result of
    /// this method is sent over the network from an x86 machine to a MIPS one.
    ///
    /// If the results of this method are only manipulated by the same
    /// architecture that produced them, then there is no portability concern.
    ///
    /// If the input isn't NaN, then there is no portability concern.
    ///
    /// If you don't care about signalingness (very likely), then there is no
    /// portability concern.
    ///
    /// Note that this function is distinct from `as` casting, which attempts to
    /// preserve the *numeric* value, and not the bitwise value.
    ///
    /// ```
    /// #![feature(f128)]
    /// #  // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let v = f128::from_bits(0x40029000000000000000000000000000);
    /// assert_eq!(v, 12.5);
    /// # }
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    #[allow(unnecessary_transmutes)]
    pub const fn from_bits(v: u128) -> Self {
        // It turns out the safety issues with sNaN were overblown! Hooray!
        // SAFETY: `u128` is a plain old datatype so we can always transmute from it.
        unsafe { mem::transmute(v) }
    }

    /// Returns the memory representation of this floating point number as a byte array in
    /// big-endian (network) byte order.
    ///
    /// See [`from_bits`](Self::from_bits) for some discussion of the
    /// portability of this operation (there are almost no issues).
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    ///
    /// let bytes = 12.5f128.to_be_bytes();
    /// assert_eq!(
    ///     bytes,
    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
    /// );
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the operation, without modifying the original"]
    pub const fn to_be_bytes(self) -> [u8; 16] {
        self.to_bits().to_be_bytes()
    }

    /// Returns the memory representation of this floating point number as a byte array in
    /// little-endian byte order.
    ///
    /// See [`from_bits`](Self::from_bits) for some discussion of the
    /// portability of this operation (there are almost no issues).
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    ///
    /// let bytes = 12.5f128.to_le_bytes();
    /// assert_eq!(
    ///     bytes,
    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
    /// );
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the operation, without modifying the original"]
    pub const fn to_le_bytes(self) -> [u8; 16] {
        self.to_bits().to_le_bytes()
    }

    /// Returns the memory representation of this floating point number as a byte array in
    /// native byte order.
    ///
    /// As the target platform's native endianness is used, portable code
    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
    ///
    /// [`to_be_bytes`]: f128::to_be_bytes
    /// [`to_le_bytes`]: f128::to_le_bytes
    ///
    /// See [`from_bits`](Self::from_bits) for some discussion of the
    /// portability of this operation (there are almost no issues).
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    ///
    /// let bytes = 12.5f128.to_ne_bytes();
    /// assert_eq!(
    ///     bytes,
    ///     if cfg!(target_endian = "big") {
    ///         [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
    ///     } else {
    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
    ///     }
    /// );
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the operation, without modifying the original"]
    pub const fn to_ne_bytes(self) -> [u8; 16] {
        self.to_bits().to_ne_bytes()
    }

    /// Creates a floating point value from its representation as a byte array in big endian.
    ///
    /// See [`from_bits`](Self::from_bits) for some discussion of the
    /// portability of this operation (there are almost no issues).
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let value = f128::from_be_bytes(
    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
    /// );
    /// assert_eq!(value, 12.5);
    /// # }
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn from_be_bytes(bytes: [u8; 16]) -> Self {
        Self::from_bits(u128::from_be_bytes(bytes))
    }

    /// Creates a floating point value from its representation as a byte array in little endian.
    ///
    /// See [`from_bits`](Self::from_bits) for some discussion of the
    /// portability of this operation (there are almost no issues).
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let value = f128::from_le_bytes(
    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
    /// );
    /// assert_eq!(value, 12.5);
    /// # }
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn from_le_bytes(bytes: [u8; 16]) -> Self {
        Self::from_bits(u128::from_le_bytes(bytes))
    }

    /// Creates a floating point value from its representation as a byte array in native endian.
    ///
    /// As the target platform's native endianness is used, portable code
    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
    /// appropriate instead.
    ///
    /// [`from_be_bytes`]: f128::from_be_bytes
    /// [`from_le_bytes`]: f128::from_le_bytes
    ///
    /// See [`from_bits`](Self::from_bits) for some discussion of the
    /// portability of this operation (there are almost no issues).
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `eqtf2` is available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let value = f128::from_ne_bytes(if cfg!(target_endian = "big") {
    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
    /// } else {
    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
    /// });
    /// assert_eq!(value, 12.5);
    /// # }
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self {
        Self::from_bits(u128::from_ne_bytes(bytes))
    }

    /// Returns the ordering between `self` and `other`.
    ///
    /// Unlike the standard partial comparison between floating point numbers,
    /// this comparison always produces an ordering in accordance to
    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
    /// floating point standard. The values are ordered in the following sequence:
    ///
    /// - negative quiet NaN
    /// - negative signaling NaN
    /// - negative infinity
    /// - negative numbers
    /// - negative subnormal numbers
    /// - negative zero
    /// - positive zero
    /// - positive subnormal numbers
    /// - positive numbers
    /// - positive infinity
    /// - positive signaling NaN
    /// - positive quiet NaN.
    ///
    /// The ordering established by this function does not always agree with the
    /// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example,
    /// they consider negative and positive zero equal, while `total_cmp`
    /// doesn't.
    ///
    /// The interpretation of the signaling NaN bit follows the definition in
    /// the IEEE 754 standard, which may not match the interpretation by some of
    /// the older, non-conformant (e.g. MIPS) hardware implementations.
    ///
    /// # Example
    ///
    /// ```
    /// #![feature(f128)]
    ///
    /// struct GoodBoy {
    ///     name: &'static str,
    ///     weight: f128,
    /// }
    ///
    /// let mut bois = vec![
    ///     GoodBoy { name: "Pucci", weight: 0.1 },
    ///     GoodBoy { name: "Woofer", weight: 99.0 },
    ///     GoodBoy { name: "Yapper", weight: 10.0 },
    ///     GoodBoy { name: "Chonk", weight: f128::INFINITY },
    ///     GoodBoy { name: "Abs. Unit", weight: f128::NAN },
    ///     GoodBoy { name: "Floaty", weight: -5.0 },
    /// ];
    ///
    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
    ///
    /// // `f128::NAN` could be positive or negative, which will affect the sort order.
    /// if f128::NAN.is_sign_negative() {
    ///     bois.into_iter().map(|b| b.weight)
    ///         .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter())
    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
    /// } else {
    ///     bois.into_iter().map(|b| b.weight)
    ///         .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter())
    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
    /// }
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
        let mut left = self.to_bits() as i128;
        let mut right = other.to_bits() as i128;

        // In case of negatives, flip all the bits except the sign
        // to achieve a similar layout as two's complement integers
        //
        // Why does this work? IEEE 754 floats consist of three fields:
        // Sign bit, exponent and mantissa. The set of exponent and mantissa
        // fields as a whole have the property that their bitwise order is
        // equal to the numeric magnitude where the magnitude is defined.
        // The magnitude is not normally defined on NaN values, but
        // IEEE 754 totalOrder defines the NaN values also to follow the
        // bitwise order. This leads to order explained in the doc comment.
        // However, the representation of magnitude is the same for negative
        // and positive numbers – only the sign bit is different.
        // To easily compare the floats as signed integers, we need to
        // flip the exponent and mantissa bits in case of negative numbers.
        // We effectively convert the numbers to "two's complement" form.
        //
        // To do the flipping, we construct a mask and XOR against it.
        // We branchlessly calculate an "all-ones except for the sign bit"
        // mask from negative-signed values: right shifting sign-extends
        // the integer, so we "fill" the mask with sign bits, and then
        // convert to unsigned to push one more zero bit.
        // On positive values, the mask is all zeros, so it's a no-op.
        left ^= (((left >> 127) as u128) >> 1) as i128;
        right ^= (((right >> 127) as u128) >> 1) as i128;

        left.cmp(&right)
    }

    /// Restrict a value to a certain interval unless it is NaN.
    ///
    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
    /// less than `min`. Otherwise this returns `self`.
    ///
    /// Note that this function returns NaN if the initial value was NaN as
    /// well.
    ///
    /// # Panics
    ///
    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # // FIXME(f16_f128): remove when `{eq,gt,unord}tf` are available
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0);
    /// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0);
    /// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0);
    /// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan());
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn clamp(mut self, min: f128, max: f128) -> f128 {
        const_assert!(
            min <= max,
            "min > max, or either was NaN",
            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
            min: f128,
            max: f128,
        );

        if self < min {
            self = min;
        }
        if self > max {
            self = max;
        }
        self
    }

    /// Computes the absolute value of `self`.
    ///
    /// This function always returns the precise result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let x = 3.5_f128;
    /// let y = -3.5_f128;
    ///
    /// assert_eq!(x.abs(), x);
    /// assert_eq!(y.abs(), -y);
    ///
    /// assert!(f128::NAN.abs().is_nan());
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn abs(self) -> Self {
        // FIXME(f16_f128): replace with `intrinsics::fabsf128` when available
        // We don't do this now because LLVM has lowering bugs for f128 math.
        Self::from_bits(self.to_bits() & !(1 << 127))
    }

    /// Returns a number that represents the sign of `self`.
    ///
    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
    /// - NaN if the number is NaN
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let f = 3.5_f128;
    ///
    /// assert_eq!(f.signum(), 1.0);
    /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
    ///
    /// assert!(f128::NAN.signum().is_nan());
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn signum(self) -> f128 {
        if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
    }

    /// Returns a number composed of the magnitude of `self` and the sign of
    /// `sign`.
    ///
    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
    /// returned.
    ///
    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
    /// info.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
    ///
    /// let f = 3.5_f128;
    ///
    /// assert_eq!(f.copysign(0.42), 3.5_f128);
    /// assert_eq!(f.copysign(-0.42), -3.5_f128);
    /// assert_eq!((-f).copysign(0.42), 3.5_f128);
    /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
    ///
    /// assert!(f128::NAN.copysign(1.0).is_nan());
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn copysign(self, sign: f128) -> f128 {
        // SAFETY: this is actually a safe intrinsic
        unsafe { intrinsics::copysignf128(self, sign) }
    }

    /// Float addition that allows optimizations based on algebraic rules.
    ///
    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[unstable(feature = "float_algebraic", issue = "136469")]
    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
    #[inline]
    pub const fn algebraic_add(self, rhs: f128) -> f128 {
        intrinsics::fadd_algebraic(self, rhs)
    }

    /// Float subtraction that allows optimizations based on algebraic rules.
    ///
    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[unstable(feature = "float_algebraic", issue = "136469")]
    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
    #[inline]
    pub const fn algebraic_sub(self, rhs: f128) -> f128 {
        intrinsics::fsub_algebraic(self, rhs)
    }

    /// Float multiplication that allows optimizations based on algebraic rules.
    ///
    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[unstable(feature = "float_algebraic", issue = "136469")]
    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
    #[inline]
    pub const fn algebraic_mul(self, rhs: f128) -> f128 {
        intrinsics::fmul_algebraic(self, rhs)
    }

    /// Float division that allows optimizations based on algebraic rules.
    ///
    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[unstable(feature = "float_algebraic", issue = "136469")]
    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
    #[inline]
    pub const fn algebraic_div(self, rhs: f128) -> f128 {
        intrinsics::fdiv_algebraic(self, rhs)
    }

    /// Float remainder that allows optimizations based on algebraic rules.
    ///
    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[unstable(feature = "float_algebraic", issue = "136469")]
    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
    #[inline]
    pub const fn algebraic_rem(self, rhs: f128) -> f128 {
        intrinsics::frem_algebraic(self, rhs)
    }
}

// Functions in this module fall into `core_float_math`
// FIXME(f16_f128): all doctests must be gated to platforms that have `long double` === `_Float128`
// due to https://github.com/llvm/llvm-project/issues/44744. aarch64 linux matches this.
// #[unstable(feature = "core_float_math", issue = "137578")]
#[cfg(not(test))]
impl f128 {
    /// Returns the largest integer less than or equal to `self`.
    ///
    /// This function always returns the precise result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let f = 3.7_f128;
    /// let g = 3.0_f128;
    /// let h = -3.7_f128;
    ///
    /// assert_eq!(f.floor(), 3.0);
    /// assert_eq!(g.floor(), 3.0);
    /// assert_eq!(h.floor(), -4.0);
    /// # }
    /// ```
    #[inline]
    #[rustc_allow_incoherent_impl]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn floor(self) -> f128 {
        // SAFETY: intrinsic with no preconditions
        unsafe { intrinsics::floorf128(self) }
    }

    /// Returns the smallest integer greater than or equal to `self`.
    ///
    /// This function always returns the precise result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let f = 3.01_f128;
    /// let g = 4.0_f128;
    ///
    /// assert_eq!(f.ceil(), 4.0);
    /// assert_eq!(g.ceil(), 4.0);
    /// # }
    /// ```
    #[inline]
    #[doc(alias = "ceiling")]
    #[rustc_allow_incoherent_impl]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn ceil(self) -> f128 {
        // SAFETY: intrinsic with no preconditions
        unsafe { intrinsics::ceilf128(self) }
    }

    /// Returns the nearest integer to `self`. If a value is half-way between two
    /// integers, round away from `0.0`.
    ///
    /// This function always returns the precise result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let f = 3.3_f128;
    /// let g = -3.3_f128;
    /// let h = -3.7_f128;
    /// let i = 3.5_f128;
    /// let j = 4.5_f128;
    ///
    /// assert_eq!(f.round(), 3.0);
    /// assert_eq!(g.round(), -3.0);
    /// assert_eq!(h.round(), -4.0);
    /// assert_eq!(i.round(), 4.0);
    /// assert_eq!(j.round(), 5.0);
    /// # }
    /// ```
    #[inline]
    #[rustc_allow_incoherent_impl]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn round(self) -> f128 {
        // SAFETY: intrinsic with no preconditions
        unsafe { intrinsics::roundf128(self) }
    }

    /// Returns the nearest integer to a number. Rounds half-way cases to the number
    /// with an even least significant digit.
    ///
    /// This function always returns the precise result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let f = 3.3_f128;
    /// let g = -3.3_f128;
    /// let h = 3.5_f128;
    /// let i = 4.5_f128;
    ///
    /// assert_eq!(f.round_ties_even(), 3.0);
    /// assert_eq!(g.round_ties_even(), -3.0);
    /// assert_eq!(h.round_ties_even(), 4.0);
    /// assert_eq!(i.round_ties_even(), 4.0);
    /// # }
    /// ```
    #[inline]
    #[rustc_allow_incoherent_impl]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn round_ties_even(self) -> f128 {
        intrinsics::round_ties_even_f128(self)
    }

    /// Returns the integer part of `self`.
    /// This means that non-integer numbers are always truncated towards zero.
    ///
    /// This function always returns the precise result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let f = 3.7_f128;
    /// let g = 3.0_f128;
    /// let h = -3.7_f128;
    ///
    /// assert_eq!(f.trunc(), 3.0);
    /// assert_eq!(g.trunc(), 3.0);
    /// assert_eq!(h.trunc(), -3.0);
    /// # }
    /// ```
    #[inline]
    #[doc(alias = "truncate")]
    #[rustc_allow_incoherent_impl]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn trunc(self) -> f128 {
        // SAFETY: intrinsic with no preconditions
        unsafe { intrinsics::truncf128(self) }
    }

    /// Returns the fractional part of `self`.
    ///
    /// This function always returns the precise result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let x = 3.6_f128;
    /// let y = -3.6_f128;
    /// let abs_difference_x = (x.fract() - 0.6).abs();
    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
    ///
    /// assert!(abs_difference_x <= f128::EPSILON);
    /// assert!(abs_difference_y <= f128::EPSILON);
    /// # }
    /// ```
    #[inline]
    #[rustc_allow_incoherent_impl]
    #[unstable(feature = "f128", issue = "116909")]
    #[rustc_const_unstable(feature = "f128", issue = "116909")]
    // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub const fn fract(self) -> f128 {
        self - self.trunc()
    }

    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
    /// error, yielding a more accurate result than an unfused multiply-add.
    ///
    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
    /// the target architecture has a dedicated `fma` CPU instruction. However,
    /// this is not always true, and will be heavily dependant on designing
    /// algorithms with specific target hardware in mind.
    ///
    /// # Precision
    ///
    /// The result of this operation is guaranteed to be the rounded
    /// infinite-precision result. It is specified by IEEE 754 as
    /// `fusedMultiplyAdd` and guaranteed not to change.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let m = 10.0_f128;
    /// let x = 4.0_f128;
    /// let b = 60.0_f128;
    ///
    /// assert_eq!(m.mul_add(x, b), 100.0);
    /// assert_eq!(m * x + b, 100.0);
    ///
    /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
    /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
    /// let minus_one = -1.0_f128;
    ///
    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
    /// // Different rounding with the non-fused multiply and add.
    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
    /// # }
    /// ```
    #[inline]
    #[rustc_allow_incoherent_impl]
    #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub fn mul_add(self, a: f128, b: f128) -> f128 {
        // SAFETY: intrinsic with no preconditions
        unsafe { intrinsics::fmaf128(self, a, b) }
    }

    /// Calculates Euclidean division, the matching method for `rem_euclid`.
    ///
    /// This computes the integer `n` such that
    /// `self = n * rhs + self.rem_euclid(rhs)`.
    /// In other words, the result is `self / rhs` rounded to the integer `n`
    /// such that `self >= n * rhs`.
    ///
    /// # Precision
    ///
    /// The result of this operation is guaranteed to be the rounded
    /// infinite-precision result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let a: f128 = 7.0;
    /// let b = 4.0;
    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
    /// # }
    /// ```
    #[inline]
    #[rustc_allow_incoherent_impl]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub fn div_euclid(self, rhs: f128) -> f128 {
        let q = (self / rhs).trunc();
        if self % rhs < 0.0 {
            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
        }
        q
    }

    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
    ///
    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
    /// most cases. However, due to a floating point round-off error it can
    /// result in `r == rhs.abs()`, violating the mathematical definition, if
    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
    /// This result is not an element of the function's codomain, but it is the
    /// closest floating point number in the real numbers and thus fulfills the
    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
    /// approximately.
    ///
    /// # Precision
    ///
    /// The result of this operation is guaranteed to be the rounded
    /// infinite-precision result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let a: f128 = 7.0;
    /// let b = 4.0;
    /// assert_eq!(a.rem_euclid(b), 3.0);
    /// assert_eq!((-a).rem_euclid(b), 1.0);
    /// assert_eq!(a.rem_euclid(-b), 3.0);
    /// assert_eq!((-a).rem_euclid(-b), 1.0);
    /// // limitation due to round-off error
    /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
    /// # }
    /// ```
    #[inline]
    #[rustc_allow_incoherent_impl]
    #[doc(alias = "modulo", alias = "mod")]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub fn rem_euclid(self, rhs: f128) -> f128 {
        let r = self % rhs;
        if r < 0.0 { r + rhs.abs() } else { r }
    }

    /// Raises a number to an integer power.
    ///
    /// Using this function is generally faster than using `powf`.
    /// It might have a different sequence of rounding operations than `powf`,
    /// so the results are not guaranteed to agree.
    ///
    /// # Unspecified precision
    ///
    /// The precision of this function is non-deterministic. This means it varies by platform,
    /// Rust version, and can even differ within the same execution from one invocation to the next.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let x = 2.0_f128;
    /// let abs_difference = (x.powi(2) - (x * x)).abs();
    /// assert!(abs_difference <= f128::EPSILON);
    ///
    /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
    /// # }
    /// ```
    #[inline]
    #[rustc_allow_incoherent_impl]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub fn powi(self, n: i32) -> f128 {
        // SAFETY: intrinsic with no preconditions
        unsafe { intrinsics::powif128(self, n) }
    }

    /// Returns the square root of a number.
    ///
    /// Returns NaN if `self` is a negative number other than `-0.0`.
    ///
    /// # Precision
    ///
    /// The result of this operation is guaranteed to be the rounded
    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
    /// and guaranteed not to change.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(f128)]
    /// # #![feature(cfg_target_has_reliable_f16_f128)]
    /// # #![expect(internal_features)]
    /// # #[cfg(not(miri))]
    /// # #[cfg(target_has_reliable_f128_math)] {
    ///
    /// let positive = 4.0_f128;
    /// let negative = -4.0_f128;
    /// let negative_zero = -0.0_f128;
    ///
    /// assert_eq!(positive.sqrt(), 2.0);
    /// assert!(negative.sqrt().is_nan());
    /// assert!(negative_zero.sqrt() == negative_zero);
    /// # }
    /// ```
    #[inline]
    #[doc(alias = "squareRoot")]
    #[rustc_allow_incoherent_impl]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "method returns a new number and does not mutate the original value"]
    pub fn sqrt(self) -> f128 {
        // SAFETY: intrinsic with no preconditions
        unsafe { intrinsics::sqrtf128(self) }
    }
}