about summary refs log tree commit diff
path: root/library/std/tests/floats/f32.rs
blob: 3acd067091415658f7f150e870eb3fa4d4bca825 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use std::f32::consts;

/// Miri adds some extra errors to float functions; make sure the tests still pass.
/// These values are purely used as a canary to test against and are thus not a stable guarantee Rust provides.
/// They serve as a way to get an idea of the real precision of floating point operations on different platforms.
const APPROX_DELTA: f32 = if cfg!(miri) { 1e-3 } else { 1e-6 };

#[allow(unused_macros)]
macro_rules! assert_f32_biteq {
    ($left : expr, $right : expr) => {
        let l: &f32 = &$left;
        let r: &f32 = &$right;
        let lb = l.to_bits();
        let rb = r.to_bits();
        assert_eq!(lb, rb, "float {l} ({lb:#010x}) is not bitequal to {r} ({rb:#010x})");
    };
}

#[test]
fn test_powf() {
    let nan: f32 = f32::NAN;
    let inf: f32 = f32::INFINITY;
    let neg_inf: f32 = f32::NEG_INFINITY;
    assert_eq!(1.0f32.powf(1.0), 1.0);
    assert_approx_eq!(3.4f32.powf(4.5), 246.408218, APPROX_DELTA);
    assert_approx_eq!(2.7f32.powf(-3.2), 0.041652);
    assert_approx_eq!((-3.1f32).powf(2.0), 9.61, APPROX_DELTA);
    assert_approx_eq!(5.9f32.powf(-2.0), 0.028727);
    assert_eq!(8.3f32.powf(0.0), 1.0);
    assert!(nan.powf(2.0).is_nan());
    assert_eq!(inf.powf(2.0), inf);
    assert_eq!(neg_inf.powf(3.0), neg_inf);
}

#[test]
fn test_exp() {
    assert_eq!(1.0, 0.0f32.exp());
    assert_approx_eq!(2.718282, 1.0f32.exp(), APPROX_DELTA);
    assert_approx_eq!(148.413162, 5.0f32.exp(), APPROX_DELTA);

    let inf: f32 = f32::INFINITY;
    let neg_inf: f32 = f32::NEG_INFINITY;
    let nan: f32 = f32::NAN;
    assert_eq!(inf, inf.exp());
    assert_eq!(0.0, neg_inf.exp());
    assert!(nan.exp().is_nan());
}

#[test]
fn test_exp2() {
    assert_approx_eq!(32.0, 5.0f32.exp2(), APPROX_DELTA);
    assert_eq!(1.0, 0.0f32.exp2());

    let inf: f32 = f32::INFINITY;
    let neg_inf: f32 = f32::NEG_INFINITY;
    let nan: f32 = f32::NAN;
    assert_eq!(inf, inf.exp2());
    assert_eq!(0.0, neg_inf.exp2());
    assert!(nan.exp2().is_nan());
}

#[test]
fn test_ln() {
    let nan: f32 = f32::NAN;
    let inf: f32 = f32::INFINITY;
    let neg_inf: f32 = f32::NEG_INFINITY;
    assert_approx_eq!(1.0f32.exp().ln(), 1.0);
    assert!(nan.ln().is_nan());
    assert_eq!(inf.ln(), inf);
    assert!(neg_inf.ln().is_nan());
    assert!((-2.3f32).ln().is_nan());
    assert_eq!((-0.0f32).ln(), neg_inf);
    assert_eq!(0.0f32.ln(), neg_inf);
    assert_approx_eq!(4.0f32.ln(), 1.386294, APPROX_DELTA);
}

#[test]
fn test_log() {
    let nan: f32 = f32::NAN;
    let inf: f32 = f32::INFINITY;
    let neg_inf: f32 = f32::NEG_INFINITY;
    assert_approx_eq!(10.0f32.log(10.0), 1.0);
    assert_approx_eq!(2.3f32.log(3.5), 0.664858);
    assert_approx_eq!(1.0f32.exp().log(1.0f32.exp()), 1.0, APPROX_DELTA);
    assert!(1.0f32.log(1.0).is_nan());
    assert!(1.0f32.log(-13.9).is_nan());
    assert!(nan.log(2.3).is_nan());
    assert_eq!(inf.log(10.0), inf);
    assert!(neg_inf.log(8.8).is_nan());
    assert!((-2.3f32).log(0.1).is_nan());
    assert_eq!((-0.0f32).log(2.0), neg_inf);
    assert_eq!(0.0f32.log(7.0), neg_inf);
}

#[test]
fn test_log2() {
    let nan: f32 = f32::NAN;
    let inf: f32 = f32::INFINITY;
    let neg_inf: f32 = f32::NEG_INFINITY;
    assert_approx_eq!(10.0f32.log2(), 3.321928, APPROX_DELTA);
    assert_approx_eq!(2.3f32.log2(), 1.201634);
    assert_approx_eq!(1.0f32.exp().log2(), 1.442695, APPROX_DELTA);
    assert!(nan.log2().is_nan());
    assert_eq!(inf.log2(), inf);
    assert!(neg_inf.log2().is_nan());
    assert!((-2.3f32).log2().is_nan());
    assert_eq!((-0.0f32).log2(), neg_inf);
    assert_eq!(0.0f32.log2(), neg_inf);
}

#[test]
fn test_log10() {
    let nan: f32 = f32::NAN;
    let inf: f32 = f32::INFINITY;
    let neg_inf: f32 = f32::NEG_INFINITY;
    assert_approx_eq!(10.0f32.log10(), 1.0);
    assert_approx_eq!(2.3f32.log10(), 0.361728);
    assert_approx_eq!(1.0f32.exp().log10(), 0.434294);
    assert_eq!(1.0f32.log10(), 0.0);
    assert!(nan.log10().is_nan());
    assert_eq!(inf.log10(), inf);
    assert!(neg_inf.log10().is_nan());
    assert!((-2.3f32).log10().is_nan());
    assert_eq!((-0.0f32).log10(), neg_inf);
    assert_eq!(0.0f32.log10(), neg_inf);
}

#[test]
fn test_asinh() {
    assert_eq!(0.0f32.asinh(), 0.0f32);
    assert_eq!((-0.0f32).asinh(), -0.0f32);

    let inf: f32 = f32::INFINITY;
    let neg_inf: f32 = f32::NEG_INFINITY;
    let nan: f32 = f32::NAN;
    assert_eq!(inf.asinh(), inf);
    assert_eq!(neg_inf.asinh(), neg_inf);
    assert!(nan.asinh().is_nan());
    assert!((-0.0f32).asinh().is_sign_negative()); // issue 63271
    assert_approx_eq!(2.0f32.asinh(), 1.443635475178810342493276740273105f32);
    assert_approx_eq!((-2.0f32).asinh(), -1.443635475178810342493276740273105f32);
    // regression test for the catastrophic cancellation fixed in 72486
    assert_approx_eq!((-3000.0f32).asinh(), -8.699514775987968673236893537700647f32, APPROX_DELTA);

    // test for low accuracy from issue 104548
    assert_approx_eq!(60.0f32, 60.0f32.sinh().asinh(), APPROX_DELTA);
    // mul needed for approximate comparison to be meaningful
    assert_approx_eq!(1.0f32, 1e-15f32.sinh().asinh() * 1e15f32);
}

#[test]
fn test_acosh() {
    assert_eq!(1.0f32.acosh(), 0.0f32);
    assert!(0.999f32.acosh().is_nan());

    let inf: f32 = f32::INFINITY;
    let neg_inf: f32 = f32::NEG_INFINITY;
    let nan: f32 = f32::NAN;
    assert_eq!(inf.acosh(), inf);
    assert!(neg_inf.acosh().is_nan());
    assert!(nan.acosh().is_nan());
    assert_approx_eq!(2.0f32.acosh(), 1.31695789692481670862504634730796844f32);
    assert_approx_eq!(3.0f32.acosh(), 1.76274717403908605046521864995958461f32);

    // test for low accuracy from issue 104548
    assert_approx_eq!(60.0f32, 60.0f32.cosh().acosh(), APPROX_DELTA);
}

#[test]
fn test_atanh() {
    assert_eq!(0.0f32.atanh(), 0.0f32);
    assert_eq!((-0.0f32).atanh(), -0.0f32);

    let inf32: f32 = f32::INFINITY;
    let neg_inf32: f32 = f32::NEG_INFINITY;
    assert_eq!(1.0f32.atanh(), inf32);
    assert_eq!((-1.0f32).atanh(), neg_inf32);

    assert!(2f64.atanh().atanh().is_nan());
    assert!((-2f64).atanh().atanh().is_nan());

    let inf64: f32 = f32::INFINITY;
    let neg_inf64: f32 = f32::NEG_INFINITY;
    let nan32: f32 = f32::NAN;
    assert!(inf64.atanh().is_nan());
    assert!(neg_inf64.atanh().is_nan());
    assert!(nan32.atanh().is_nan());

    assert_approx_eq!(0.5f32.atanh(), 0.54930614433405484569762261846126285f32);
    assert_approx_eq!((-0.5f32).atanh(), -0.54930614433405484569762261846126285f32);
}

#[test]
fn test_gamma() {
    // precision can differ between platforms
    assert_approx_eq!(1.0f32.gamma(), 1.0f32, APPROX_DELTA);
    assert_approx_eq!(2.0f32.gamma(), 1.0f32, APPROX_DELTA);
    assert_approx_eq!(3.0f32.gamma(), 2.0f32, APPROX_DELTA);
    assert_approx_eq!(4.0f32.gamma(), 6.0f32, APPROX_DELTA);
    assert_approx_eq!(5.0f32.gamma(), 24.0f32, APPROX_DELTA);
    assert_approx_eq!(0.5f32.gamma(), consts::PI.sqrt(), APPROX_DELTA);
    assert_approx_eq!((-0.5f32).gamma(), -2.0 * consts::PI.sqrt(), APPROX_DELTA);
    assert_eq!(0.0f32.gamma(), f32::INFINITY);
    assert_eq!((-0.0f32).gamma(), f32::NEG_INFINITY);
    assert!((-1.0f32).gamma().is_nan());
    assert!((-2.0f32).gamma().is_nan());
    assert!(f32::NAN.gamma().is_nan());
    assert!(f32::NEG_INFINITY.gamma().is_nan());
    assert_eq!(f32::INFINITY.gamma(), f32::INFINITY);
    assert_eq!(171.71f32.gamma(), f32::INFINITY);
}

#[test]
fn test_ln_gamma() {
    assert_approx_eq!(1.0f32.ln_gamma().0, 0.0f32);
    assert_eq!(1.0f32.ln_gamma().1, 1);
    assert_approx_eq!(2.0f32.ln_gamma().0, 0.0f32);
    assert_eq!(2.0f32.ln_gamma().1, 1);
    assert_approx_eq!(3.0f32.ln_gamma().0, 2.0f32.ln());
    assert_eq!(3.0f32.ln_gamma().1, 1);
    assert_approx_eq!((-0.5f32).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), APPROX_DELTA);
    assert_eq!((-0.5f32).ln_gamma().1, -1);
}

#[test]
fn test_real_consts() {
    let pi: f32 = consts::PI;
    let frac_pi_2: f32 = consts::FRAC_PI_2;
    let frac_pi_3: f32 = consts::FRAC_PI_3;
    let frac_pi_4: f32 = consts::FRAC_PI_4;
    let frac_pi_6: f32 = consts::FRAC_PI_6;
    let frac_pi_8: f32 = consts::FRAC_PI_8;
    let frac_1_pi: f32 = consts::FRAC_1_PI;
    let frac_2_pi: f32 = consts::FRAC_2_PI;
    let frac_2_sqrtpi: f32 = consts::FRAC_2_SQRT_PI;
    let sqrt2: f32 = consts::SQRT_2;
    let frac_1_sqrt2: f32 = consts::FRAC_1_SQRT_2;
    let e: f32 = consts::E;
    let log2_e: f32 = consts::LOG2_E;
    let log10_e: f32 = consts::LOG10_E;
    let ln_2: f32 = consts::LN_2;
    let ln_10: f32 = consts::LN_10;

    assert_approx_eq!(frac_pi_2, pi / 2f32);
    assert_approx_eq!(frac_pi_3, pi / 3f32, APPROX_DELTA);
    assert_approx_eq!(frac_pi_4, pi / 4f32);
    assert_approx_eq!(frac_pi_6, pi / 6f32);
    assert_approx_eq!(frac_pi_8, pi / 8f32);
    assert_approx_eq!(frac_1_pi, 1f32 / pi);
    assert_approx_eq!(frac_2_pi, 2f32 / pi);
    assert_approx_eq!(frac_2_sqrtpi, 2f32 / pi.sqrt());
    assert_approx_eq!(sqrt2, 2f32.sqrt());
    assert_approx_eq!(frac_1_sqrt2, 1f32 / 2f32.sqrt());
    assert_approx_eq!(log2_e, e.log2());
    assert_approx_eq!(log10_e, e.log10());
    assert_approx_eq!(ln_2, 2f32.ln());
    assert_approx_eq!(ln_10, 10f32.ln(), APPROX_DELTA);
}