1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
/*
* The compiler code necessary to support the #fmt extension. Eventually this
* should all get sucked into either the standard library extfmt module or the
* compiler syntax extension plugin interface.
*/
import core::{vec, str, option};
import option::{some};
import extfmt::ct::*;
import base::*;
import codemap::span;
export expand_syntax_ext;
fn expand_syntax_ext(cx: ext_ctxt, sp: span, arg: @ast::expr,
_body: option::t<str>) -> @ast::expr {
let args: [@ast::expr] =
alt arg.node {
ast::expr_vec(elts, _) { elts }
_ {
cx.span_fatal(sp, "#fmt requires arguments of the form `[...]`.")
}
};
if vec::len::<@ast::expr>(args) == 0u {
cx.span_fatal(sp, "#fmt requires a format string");
}
let fmt =
expr_to_str(cx, args[0],
"first argument to #fmt must be a " + "string literal.");
let fmtspan = args[0].span;
log "Format string:";
log fmt;
fn parse_fmt_err_(cx: ext_ctxt, sp: span, msg: str) -> ! {
cx.span_fatal(sp, msg);
}
let parse_fmt_err = bind parse_fmt_err_(cx, fmtspan, _);
let pieces = parse_fmt_string(fmt, parse_fmt_err);
ret pieces_to_expr(cx, sp, pieces, args);
}
// FIXME: A lot of these functions for producing expressions can probably
// be factored out in common with other code that builds expressions.
// FIXME: Cleanup the naming of these functions
fn pieces_to_expr(cx: ext_ctxt, sp: span, pieces: [piece], args: [@ast::expr])
-> @ast::expr {
fn make_new_lit(cx: ext_ctxt, sp: span, lit: ast::lit_) -> @ast::expr {
let sp_lit = @{node: lit, span: sp};
ret @{id: cx.next_id(), node: ast::expr_lit(sp_lit), span: sp};
}
fn make_new_str(cx: ext_ctxt, sp: span, s: str) -> @ast::expr {
let lit = ast::lit_str(s);
ret make_new_lit(cx, sp, lit);
}
fn make_new_int(cx: ext_ctxt, sp: span, i: int) -> @ast::expr {
let lit = ast::lit_int(i as i64, ast::ty_i);
ret make_new_lit(cx, sp, lit);
}
fn make_new_uint(cx: ext_ctxt, sp: span, u: uint) -> @ast::expr {
let lit = ast::lit_uint(u as u64, ast::ty_u);
ret make_new_lit(cx, sp, lit);
}
fn make_add_expr(cx: ext_ctxt, sp: span, lhs: @ast::expr, rhs: @ast::expr)
-> @ast::expr {
let binexpr = ast::expr_binary(ast::add, lhs, rhs);
ret @{id: cx.next_id(), node: binexpr, span: sp};
}
fn make_path_expr(cx: ext_ctxt, sp: span, idents: [ast::ident]) ->
@ast::expr {
let path = {global: false, idents: idents, types: []};
let sp_path = @{node: path, span: sp};
let pathexpr = ast::expr_path(sp_path);
ret @{id: cx.next_id(), node: pathexpr, span: sp};
}
fn make_vec_expr(cx: ext_ctxt, sp: span, exprs: [@ast::expr]) ->
@ast::expr {
let vecexpr = ast::expr_vec(exprs, ast::imm);
ret @{id: cx.next_id(), node: vecexpr, span: sp};
}
fn make_call(cx: ext_ctxt, sp: span, fn_path: [ast::ident],
args: [@ast::expr]) -> @ast::expr {
let pathexpr = make_path_expr(cx, sp, fn_path);
let callexpr = ast::expr_call(pathexpr, args, false);
ret @{id: cx.next_id(), node: callexpr, span: sp};
}
fn make_rec_expr(cx: ext_ctxt, sp: span,
fields: [{ident: ast::ident, ex: @ast::expr}]) ->
@ast::expr {
let astfields: [ast::field] = [];
for field: {ident: ast::ident, ex: @ast::expr} in fields {
let ident = field.ident;
let val = field.ex;
let astfield =
{node: {mut: ast::imm, ident: ident, expr: val}, span: sp};
astfields += [astfield];
}
let recexpr = ast::expr_rec(astfields, option::none::<@ast::expr>);
ret @{id: cx.next_id(), node: recexpr, span: sp};
}
fn make_path_vec(_cx: ext_ctxt, ident: ast::ident) -> [ast::ident] {
ret ["extfmt", "rt", ident];
}
fn make_rt_path_expr(cx: ext_ctxt, sp: span, ident: str) -> @ast::expr {
let path = make_path_vec(cx, ident);
ret make_path_expr(cx, sp, path);
}
// Produces an AST expression that represents a RT::conv record,
// which tells the RT::conv* functions how to perform the conversion
fn make_rt_conv_expr(cx: ext_ctxt, sp: span, cnv: conv) -> @ast::expr {
fn make_flags(cx: ext_ctxt, sp: span, flags: [flag]) -> @ast::expr {
let flagexprs: [@ast::expr] = [];
for f: flag in flags {
let fstr;
alt f {
flag_left_justify. { fstr = "flag_left_justify"; }
flag_left_zero_pad. { fstr = "flag_left_zero_pad"; }
flag_space_for_sign. { fstr = "flag_space_for_sign"; }
flag_sign_always. { fstr = "flag_sign_always"; }
flag_alternate. { fstr = "flag_alternate"; }
}
flagexprs += [make_rt_path_expr(cx, sp, fstr)];
}
// FIXME: 0-length vectors can't have their type inferred
// through the rec that these flags are a member of, so
// this is a hack placeholder flag
if vec::len::<@ast::expr>(flagexprs) == 0u {
flagexprs += [make_rt_path_expr(cx, sp, "flag_none")];
}
ret make_vec_expr(cx, sp, flagexprs);
}
fn make_count(cx: ext_ctxt, sp: span, cnt: count) -> @ast::expr {
alt cnt {
count_implied. {
ret make_rt_path_expr(cx, sp, "count_implied");
}
count_is(c) {
let count_lit = make_new_int(cx, sp, c);
let count_is_path = make_path_vec(cx, "count_is");
let count_is_args = [count_lit];
ret make_call(cx, sp, count_is_path, count_is_args);
}
_ { cx.span_unimpl(sp, "unimplemented #fmt conversion"); }
}
}
fn make_ty(cx: ext_ctxt, sp: span, t: ty) -> @ast::expr {
let rt_type;
alt t {
ty_hex(c) {
alt c {
case_upper. { rt_type = "ty_hex_upper"; }
case_lower. { rt_type = "ty_hex_lower"; }
}
}
ty_bits. { rt_type = "ty_bits"; }
ty_octal. { rt_type = "ty_octal"; }
_ { rt_type = "ty_default"; }
}
ret make_rt_path_expr(cx, sp, rt_type);
}
fn make_conv_rec(cx: ext_ctxt, sp: span, flags_expr: @ast::expr,
width_expr: @ast::expr, precision_expr: @ast::expr,
ty_expr: @ast::expr) -> @ast::expr {
ret make_rec_expr(cx, sp,
[{ident: "flags", ex: flags_expr},
{ident: "width", ex: width_expr},
{ident: "precision", ex: precision_expr},
{ident: "ty", ex: ty_expr}]);
}
let rt_conv_flags = make_flags(cx, sp, cnv.flags);
let rt_conv_width = make_count(cx, sp, cnv.width);
let rt_conv_precision = make_count(cx, sp, cnv.precision);
let rt_conv_ty = make_ty(cx, sp, cnv.ty);
ret make_conv_rec(cx, sp, rt_conv_flags, rt_conv_width,
rt_conv_precision, rt_conv_ty);
}
fn make_conv_call(cx: ext_ctxt, sp: span, conv_type: str, cnv: conv,
arg: @ast::expr) -> @ast::expr {
let fname = "conv_" + conv_type;
let path = make_path_vec(cx, fname);
let cnv_expr = make_rt_conv_expr(cx, sp, cnv);
let args = [cnv_expr, arg];
ret make_call(cx, arg.span, path, args);
}
fn make_new_conv(cx: ext_ctxt, sp: span, cnv: conv, arg: @ast::expr) ->
@ast::expr {
// FIXME: Extract all this validation into extfmt::ct
fn is_signed_type(cnv: conv) -> bool {
alt cnv.ty {
ty_int(s) {
alt s { signed. { ret true; } unsigned. { ret false; } }
}
ty_float. { ret true; }
_ { ret false; }
}
}
let unsupported = "conversion not supported in #fmt string";
alt cnv.param {
option::none. { }
_ { cx.span_unimpl(sp, unsupported); }
}
for f: flag in cnv.flags {
alt f {
flag_left_justify. { }
flag_sign_always. {
if !is_signed_type(cnv) {
cx.span_fatal(sp,
"+ flag only valid in " +
"signed #fmt conversion");
}
}
flag_space_for_sign. {
if !is_signed_type(cnv) {
cx.span_fatal(sp,
"space flag only valid in " +
"signed #fmt conversions");
}
}
flag_left_zero_pad. { }
_ { cx.span_unimpl(sp, unsupported); }
}
}
alt cnv.width {
count_implied. { }
count_is(_) { }
_ { cx.span_unimpl(sp, unsupported); }
}
alt cnv.precision {
count_implied. { }
count_is(_) { }
_ { cx.span_unimpl(sp, unsupported); }
}
alt cnv.ty {
ty_str. { ret make_conv_call(cx, arg.span, "str", cnv, arg); }
ty_int(sign) {
alt sign {
signed. { ret make_conv_call(cx, arg.span, "int", cnv, arg); }
unsigned. {
ret make_conv_call(cx, arg.span, "uint", cnv, arg);
}
}
}
ty_bool. { ret make_conv_call(cx, arg.span, "bool", cnv, arg); }
ty_char. { ret make_conv_call(cx, arg.span, "char", cnv, arg); }
ty_hex(_) { ret make_conv_call(cx, arg.span, "uint", cnv, arg); }
ty_bits. { ret make_conv_call(cx, arg.span, "uint", cnv, arg); }
ty_octal. { ret make_conv_call(cx, arg.span, "uint", cnv, arg); }
ty_float. { ret make_conv_call(cx, arg.span, "float", cnv, arg); }
_ { cx.span_unimpl(sp, unsupported); }
}
}
fn log_conv(c: conv) {
alt c.param {
some(p) { log "param: " + int::to_str(p, 10u); }
_ { log "param: none"; }
}
for f: flag in c.flags {
alt f {
flag_left_justify. { log "flag: left justify"; }
flag_left_zero_pad. { log "flag: left zero pad"; }
flag_space_for_sign. { log "flag: left space pad"; }
flag_sign_always. { log "flag: sign always"; }
flag_alternate. { log "flag: alternate"; }
}
}
alt c.width {
count_is(i) { log "width: count is " + int::to_str(i, 10u); }
count_is_param(i) {
log "width: count is param " + int::to_str(i, 10u);
}
count_is_next_param. { log "width: count is next param"; }
count_implied. { log "width: count is implied"; }
}
alt c.precision {
count_is(i) { log "prec: count is " + int::to_str(i, 10u); }
count_is_param(i) {
log "prec: count is param " + int::to_str(i, 10u);
}
count_is_next_param. { log "prec: count is next param"; }
count_implied. { log "prec: count is implied"; }
}
alt c.ty {
ty_bool. { log "type: bool"; }
ty_str. { log "type: str"; }
ty_char. { log "type: char"; }
ty_int(s) {
alt s {
signed. { log "type: signed"; }
unsigned. { log "type: unsigned"; }
}
}
ty_bits. { log "type: bits"; }
ty_hex(cs) {
alt cs {
case_upper. { log "type: uhex"; }
case_lower. { log "type: lhex"; }
}
}
ty_octal. { log "type: octal"; }
ty_float. { log "type: float"; }
}
}
let fmt_sp = args[0].span;
let n = 0u;
let tmp_expr = make_new_str(cx, sp, "");
let nargs = vec::len::<@ast::expr>(args);
for pc: piece in pieces {
alt pc {
piece_string(s) {
let s_expr = make_new_str(cx, fmt_sp, s);
tmp_expr = make_add_expr(cx, fmt_sp, tmp_expr, s_expr);
}
piece_conv(conv) {
n += 1u;
if n >= nargs {
cx.span_fatal(sp,
"not enough arguments to #fmt " +
"for the given format string");
}
log "Building conversion:";
log_conv(conv);
let arg_expr = args[n];
let c_expr = make_new_conv(cx, fmt_sp, conv, arg_expr);
tmp_expr = make_add_expr(cx, fmt_sp, tmp_expr, c_expr);
}
}
}
let expected_nargs = n + 1u; // n conversions + the fmt string
if expected_nargs < nargs {
cx.span_fatal
(sp, #fmt["too many arguments to #fmt. found %u, expected %u",
nargs, expected_nargs]);
}
ret tmp_expr;
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//
|