1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
|
/*
Module: float
*/
// Currently this module supports from -lm
// C95 + log2 + log1p + trunc + round + rint
export t;
export consts;
export
acos, asin, atan, atan2, ceil, cos, cosh, exp, abs, floor, fmod, frexp,
ldexp, ln, ln1p, log10, log2, modf, rint, round, pow, sin, sinh, sqrt,
tan, tanh, trunc;
export to_str_common, to_str_exact, to_str, from_str;
export lt, le, eq, ne, gt, eq;
export NaN, isNaN, infinity, neg_infinity;
export pow_uint_to_uint_as_float;
export min, max;
export add, sub, mul, div;
export positive, negative, nonpositive, nonnegative;
import mtypes::m_float;
import ctypes::c_int;
import ptr;
// PORT This must match in width according to architecture
import f64;
import m_float = f64;
type t = m_float;
/**
* Section: String Conversions
*/
/*
Function: to_str_common
Converts a float to a string
Parameters:
num - The float value
digits - The number of significant digits
exact - Whether to enforce the exact number of significant digits
*/
fn to_str_common(num: float, digits: uint, exact: bool) -> str {
let (num, accum) = num < 0.0 ? (-num, "-") : (num, "");
let trunc = num as uint;
let frac = num - (trunc as float);
accum += uint::str(trunc);
if frac == 0.0 || digits == 0u { ret accum; }
accum += ".";
let i = digits;
let epsilon = 1. / pow_uint_to_uint_as_float(10u, i);
while i > 0u && (frac >= epsilon || exact) {
frac *= 10.0;
epsilon *= 10.0;
let digit = frac as uint;
accum += uint::str(digit);
frac -= digit as float;
i -= 1u;
}
ret accum;
}
/*
Function: to_str
Converts a float to a string with exactly the number of provided significant
digits
Parameters:
num - The float value
digits - The number of significant digits
*/
fn to_str_exact(num: float, digits: uint) -> str {
to_str_common(num, digits, true)
}
/*
Function: to_str
Converts a float to a string with a maximum number of significant digits
Parameters:
num - The float value
digits - The number of significant digits
*/
fn to_str(num: float, digits: uint) -> str {
to_str_common(num, digits, false)
}
/*
Function: from_str
Convert a string to a float
This function accepts strings such as
* "3.14"
* "+3.14", equivalent to "3.14"
* "-3.14"
* "2.5E10", or equivalently, "2.5e10"
* "2.5E-10"
* "", or, equivalently, "." (understood as 0)
* "5."
* ".5", or, equivalently, "0.5"
Leading and trailing whitespace are ignored.
Parameters:
num - A string, possibly empty.
Returns:
<NaN> If the string did not represent a valid number.
Otherwise, the floating-point number represented [num].
*/
fn from_str(num: str) -> float {
let num = str::trim(num);
let pos = 0u; //Current byte position in the string.
//Used to walk the string in O(n).
let len = str::byte_len(num); //Length of the string, in bytes.
if len == 0u { ret 0.; }
let total = 0f; //Accumulated result
let c = 'z'; //Latest char.
//The string must start with one of the following characters.
alt str::char_at(num, 0u) {
'-' | '+' | '0' to '9' | '.' {}
_ { ret NaN; }
}
//Determine if first char is '-'/'+'. Set [pos] and [neg] accordingly.
let neg = false; //Sign of the result
alt str::char_at(num, 0u) {
'-' {
neg = true;
pos = 1u;
}
'+' {
pos = 1u;
}
_ {}
}
//Examine the following chars until '.', 'e', 'E'
while(pos < len) {
let char_range = str::char_range_at(num, pos);
c = char_range.ch;
pos = char_range.next;
alt c {
'0' to '9' {
total = total * 10f;
total += ((c as int) - ('0' as int)) as float;
}
'.' | 'e' | 'E' {
break;
}
_ {
ret NaN;
}
}
}
if c == '.' {//Examine decimal part
let decimal = 1f;
while(pos < len) {
let char_range = str::char_range_at(num, pos);
c = char_range.ch;
pos = char_range.next;
alt c {
'0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' {
decimal /= 10f;
total += (((c as int) - ('0' as int)) as float)*decimal;
}
'e' | 'E' {
break;
}
_ {
ret NaN;
}
}
}
}
if (c == 'e') | (c == 'E') {//Examine exponent
let exponent = 0u;
let neg_exponent = false;
if(pos < len) {
let char_range = str::char_range_at(num, pos);
c = char_range.ch;
alt c {
'+' {
pos = char_range.next;
}
'-' {
pos = char_range.next;
neg_exponent = true;
}
_ {}
}
while(pos < len) {
let char_range = str::char_range_at(num, pos);
c = char_range.ch;
alt c {
'0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' {
exponent *= 10u;
exponent += ((c as uint) - ('0' as uint));
}
_ {
break;
}
}
pos = char_range.next;
}
let multiplier = pow_uint_to_uint_as_float(10u, exponent);
//Note: not [int::pow], otherwise, we'll quickly
//end up with a nice overflow
if neg_exponent {
total = total / multiplier;
} else {
total = total * multiplier;
}
} else {
ret NaN;
}
}
if(pos < len) {
ret NaN;
} else {
if(neg) {
total *= -1f;
}
ret total;
}
}
/**
* Section: Arithmetics
*/
/*
Function: pow_uint_to_uint_as_float
Compute the exponentiation of an integer by another integer as a float.
Parameters:
x - The base.
pow - The exponent.
Returns:
<NaN> of both `x` and `pow` are `0u`, otherwise `x^pow`.
*/
fn pow_uint_to_uint_as_float(x: uint, pow: uint) -> float {
if x == 0u {
if pow == 0u {
ret NaN;
}
ret 0.;
}
let my_pow = pow;
let total = 1f;
let multiplier = x as float;
while (my_pow > 0u) {
if my_pow % 2u == 1u {
total = total * multiplier;
}
my_pow /= 2u;
multiplier *= multiplier;
}
ret total;
}
/* Const: NaN */
const NaN: float = 0./0.;
/* Const: infinity */
const infinity: float = 1./0.;
/* Const: neg_infinity */
const neg_infinity: float = -1./0.;
/* Predicate: isNaN */
pure fn isNaN(f: float) -> bool { f != f }
/* Function: add */
pure fn add(x: float, y: float) -> float { ret x + y; }
/* Function: sub */
pure fn sub(x: float, y: float) -> float { ret x - y; }
/* Function: mul */
pure fn mul(x: float, y: float) -> float { ret x * y; }
/* Function: div */
pure fn div(x: float, y: float) -> float { ret x / y; }
/* Function: rem */
pure fn rem(x: float, y: float) -> float { ret x % y; }
/* Predicate: lt */
pure fn lt(x: float, y: float) -> bool { ret x < y; }
/* Predicate: le */
pure fn le(x: float, y: float) -> bool { ret x <= y; }
/* Predicate: eq */
pure fn eq(x: float, y: float) -> bool { ret x == y; }
/* Predicate: ne */
pure fn ne(x: float, y: float) -> bool { ret x != y; }
/* Predicate: ge */
pure fn ge(x: float, y: float) -> bool { ret x >= y; }
/* Predicate: gt */
pure fn gt(x: float, y: float) -> bool { ret x > y; }
/*
Predicate: positive
Returns true if `x` is a positive number, including +0.0 and +Infinity.
*/
pure fn positive(x: float) -> bool { ret x > 0. || (1./x) == infinity; }
/*
Predicate: negative
Returns true if `x` is a negative number, including -0.0 and -Infinity.
*/
pure fn negative(x: float) -> bool { ret x < 0. || (1./x) == neg_infinity; }
/*
Predicate: nonpositive
Returns true if `x` is a negative number, including -0.0 and -Infinity.
(This is the same as `float::negative`.)
*/
pure fn nonpositive(x: float) -> bool {
ret x < 0. || (1./x) == neg_infinity;
}
/*
Predicate: nonnegative
Returns true if `x` is a positive number, including +0.0 and +Infinity.
(This is the same as `float::positive`.)
*/
pure fn nonnegative(x: float) -> bool {
ret x > 0. || (1./x) == infinity;
}
/*
Module: consts
*/
mod consts {
/*
Const: pi
Archimedes' constant
*/
const pi: float = 3.14159265358979323846264338327950288;
/*
Const: frac_pi_2
pi/2.0
*/
const frac_pi_2: float = 1.57079632679489661923132169163975144;
/*
Const: frac_pi_4
pi/4.0
*/
const frac_pi_4: float = 0.785398163397448309615660845819875721;
/*
Const: frac_1_pi
1.0/pi
*/
const frac_1_pi: float = 0.318309886183790671537767526745028724;
/*
Const: frac_2_pi
2.0/pi
*/
const frac_2_pi: float = 0.636619772367581343075535053490057448;
/*
Const: frac_2_sqrtpi
2.0/sqrt(pi)
*/
const frac_2_sqrtpi: float = 1.12837916709551257389615890312154517;
/*
Const: sqrt2
sqrt(2.0)
*/
const sqrt2: float = 1.41421356237309504880168872420969808;
/*
Const: frac_1_sqrt2
1.0/sqrt(2.0)
*/
const frac_1_sqrt2: float = 0.707106781186547524400844362104849039;
/*
Const: e
Euler's number
*/
const e: float = 2.71828182845904523536028747135266250;
/*
Const: log2_e
log2(e)
*/
const log2_e: float = 1.44269504088896340735992468100189214;
/*
Const: log10_e
log10(e)
*/
const log10_e: float = 0.434294481903251827651128918916605082;
/*
Const: ln_2
ln(2.0)
*/
const ln_2: float = 0.693147180559945309417232121458176568;
/*
Const: ln_10
ln(10.0)
*/
const ln_10: float = 2.30258509299404568401799145468436421;
}
// FIXME min/max type specialize via libm when overloading works
// (in theory fmax/fmin, fmaxf, fminf /should/ be faster)
/*
Function: min
Returns the minimum of two values
*/
pure fn min<copy T>(x: T, y: T) -> T { x < y ? x : y }
/*
Function: max
Returns the maximum of two values
*/
pure fn max<copy T>(x: T, y: T) -> T { x < y ? y : x }
/*
Function: acos
Returns the arccosine of an angle (measured in rad)
*/
pure fn acos(x: float) -> float
{ be m_float::acos(x as m_float) as float }
/*
Function: asin
Returns the arcsine of an angle (measured in rad)
*/
pure fn asin(x: float) -> float
{ be m_float::asin(x as m_float) as float }
/*
Function: atan
Returns the arctangents of an angle (measured in rad)
*/
pure fn atan(x: float) -> float
{ be m_float::atan(x as m_float) as float }
/*
Function: atan2
Returns the arctangent of an angle (measured in rad)
*/
pure fn atan2(y: float, x: float) -> float
{ be m_float::atan2(y as m_float, x as m_float) as float }
/*
Function: ceil
Returns the smallest integral value less than or equal to `n`
*/
pure fn ceil(n: float) -> float
{ be m_float::ceil(n as m_float) as float }
/*
Function: cos
Returns the cosine of an angle `x` (measured in rad)
*/
pure fn cos(x: float) -> float
{ be m_float::cos(x as m_float) as float }
/*
Function: cosh
Returns the hyperbolic cosine of `x`
*/
pure fn cosh(x: float) -> float
{ be m_float::cosh(x as m_float) as float }
/*
Function: exp
Returns `consts::e` to the power of `n*
*/
pure fn exp(n: float) -> float
{ be m_float::exp(n as m_float) as float }
/*
Function: abs
Returns the absolute value of `n`
*/
pure fn abs(n: float) -> float
{ be m_float::abs(n as m_float) as float }
/*
Function: floor
Returns the largest integral value less than or equal to `n`
*/
pure fn floor(n: float) -> float
{ be m_float::floor(n as m_float) as float }
/*
Function: fmod
Returns the floating-point remainder of `x/y`
*/
pure fn fmod(x: float, y: float) -> float
{ be m_float::fmod(x as m_float, y as m_float) as float }
/*
Function: ln
Returns the natural logaritm of `n`
*/
pure fn ln(n: float) -> float
{ be m_float::ln(n as m_float) as float }
/*
Function: ldexp
Returns `x` multiplied by 2 to the power of `n`
*/
pure fn ldexp(n: float, i: int) -> float
{ be m_float::ldexp(n as m_float, i as c_int) as float }
/*
Function: ln1p
Returns the natural logarithm of `1+n` accurately,
even for very small values of `n`
*/
pure fn ln1p(n: float) -> float
{ be m_float::ln1p(n as m_float) as float }
/*
Function: log10
Returns the logarithm to base 10 of `n`
*/
pure fn log10(n: float) -> float
{ be m_float::log10(n as m_float) as float }
/*
Function: log2
Returns the logarithm to base 2 of `n`
*/
pure fn log2(n: float) -> float
{ be m_float::log2(n as m_float) as float }
/*
Function: modf
Breaks `n` into integral and fractional parts such that both
have the same sign as `n`
The integral part is stored in `iptr`.
Returns:
The fractional part of `n`
*/
#[no(warn_trivial_casts)] // FIXME Implement
pure fn modf(n: float, &iptr: float) -> float { unsafe {
be m_float::modf(n as m_float, ptr::addr_of(iptr) as *m_float) as float
} }
/*
Function: frexp
Breaks `n` into a normalized fraction and an integral power of 2
The inegral part is stored in iptr.
The functions return a number x such that x has a magnitude in the interval
[1/2, 1) or 0, and `n == x*(2 to the power of exp)`.
Returns:
The fractional part of `n`
*/
pure fn frexp(n: float, &exp: c_int) -> float
{ be m_float::frexp(n as m_float, exp) as float }
/*
Function: pow
*/
pure fn pow(v: float, e: float) -> float
{ be m_float::pow(v as m_float, e as m_float) as float }
/*
Function: rint
Returns the integral value nearest to `x` (according to the
prevailing rounding mode) in floating-point format
*/
pure fn rint(x: float) -> float
{ be m_float::rint(x as m_float) as float }
/*
Function: round
Return the integral value nearest to `x` rounding half-way
cases away from zero, regardless of the current rounding direction.
*/
pure fn round(x: float) -> float
{ be m_float::round(x as m_float) as float }
/*
Function: sin
Returns the sine of an angle `x` (measured in rad)
*/
pure fn sin(x: float) -> float
{ be m_float::sin(x as m_float) as float }
/*
Function: sinh
Returns the hyperbolic sine of an angle `x` (measured in rad)
*/
pure fn sinh(x: float) -> float
{ be m_float::sinh(x as m_float) as float }
/*
Function: sqrt
Returns the square root of `x`
*/
pure fn sqrt(x: float) -> float
{ be m_float::sqrt(x as m_float) as float }
/*
Function: tan
Returns the tangent of an angle `x` (measured in rad)
*/
pure fn tan(x: float) -> float
{ be m_float::tan(x as m_float) as float }
/*
Function: tanh
Returns the hyperbolic tangent of an angle `x` (measured in rad)
*/
pure fn tanh(x: float) -> float
{ be m_float::tanh(x as m_float) as float }
/*
Function: trunc
Returns the integral value nearest to but no larger in magnitude than `x`
*/
pure fn trunc(x: float) -> float
{ be m_float::trunc(x as m_float) as float }
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//
|